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The Quantity Flexibility (QF) contract is a method for coordinating materials and infor-
mation flows in supply chains operating under rolling-horizon planning. It stipulates a

maximum percentage revision each element of the period-by-period replenishment schedule
is allowed per planning iteration. The supplier is obligated to cover any requests that remain
within the upside limits. The bounds on reductions are a form of minimum purchase com-
mitment which discourages the customer from overstating its needs. While QF contracts are
being implemented in industrial practice, the academic literature has thus far had little guid-
ance to offer a firm interested in structuring its supply relationships in this way. This paper
seeks to address this need, by developing rigorous conclusions about the behavioral conse-
quences of QF contracts, and hence about the implications for the performance and design of
supply chains with linkages possessing this structure. Issues explored include the impact of
system flexibility on inventory characteristics and the patterns by which forecast and order
variability propagate along the supply chain. The ultimate goal is to provide insights as to
where to position flexibility for the greatest benefit, and how much to pay for it.
(Supply Chain Management; Supply Contracts; Quantity Flexibility; Forecast Revision; Materials
Planning; Bullwhip Effect)

1. Introduction
Many modern supply chains operate under decentral-
ized control for a variety of reasons. For example, out-
sourcing of various aspects of production is currently
a popular business model in many industries (cf.
Farlow et al. 1995, Iyer and Bergen 1997), which au-
tomatically distributes decision-making authority.
Even for highly vertically integrated firms, today’s
characteristically global business environments often
result in multiple sites worldwide working together to
deliver product, while reporting to different organi-
zational functions or units within the corporation. Op-
erational control of these sites may be intentionally
decentralized for informational or incentive consider-
ations. However, decentralization is not without risks.
For expository purposes, we describe some of these in

the context of the single-product, serial supply chain
depicted in Figure 1. Each node represents an inde-
pendently managed organization, and each pair of
consecutive nodes is a distinct supplier-buyer
relationship.
To reconcile manufacturing/procurement time-lags

with a need for timely response, agents within such
supply chains often commit resources to production
quantities based on forecasted, rather than realized de-
mand. A period-by-period replenishment schedule
(e.g., six months’ worth of monthly volume estimates)
is a common format by which many firms communi-
cate information about future purchases to their sup-
ply partners. Rolling horizon updating is a standard
operational means of incorporating new information
as it accrues over time. For example, each period the
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Figure 1 Decentralized Supply Chain

retailer creates a forecast of the uncertain and poten-
tially non-stationary market demand e.g., [100, 120,
110, . . .] where the 100 denotes the current period’s de-
mand, 120 is an estimate of the next period’s demand,
and so on. Based on this, the retailer provides to the
manufacturer a schedule of desired replenishments,
e.g., [50, 150, 90, . . .], where the numbers may differ
from the market forecast due to whatever inventory
policy the retailer may use, and any stock carried over
from the previous period. The manufacturer treats this
schedule as its own “demand forecast” and in turn cre-
ates a replenishment schedule for the parts supplier to
fill, and so on. This information flow is represented by
the dotted lines in Figure 1. We assume that each party
knows only the schedule provided by its immediate
customer, and is only concerned with its own cost
performance.
Such estimates are intended to assist an upstream

supplier’s capacity and materials planning. However,
buyers commonly view them as a courtesy only, and
indeed craft the supply contracts to preserve this po-
sition. To some buyers this presents an opportunity to
inflate these figures as a form of insurance, only to later
disavow any undesired product (cf. Lee et al. 1997). A
careful supplier must then deflate the numbers to
avoid over-capacity and inventory. This game of mu-
tual deception may be individually rational given the

circumstances, but increases the uncertainties and
costs in the system (cf. Magee and Boodman 1967,
Lovejoy 1998).
Various remedies to this well-known inefficiency

have been attempted, a number of which are noted in
§2. One approach that has become popular in many
industries is the Quantity Flexibility (QF) contract,
which attaches a degree of commitment to the forecasts
by installing constraints on the buyer’s ability to revise
them over time. The extent of revision flexibility is de-
fined in percentages that vary as a function of the num-
ber of periods away from delivery. This is made con-
crete in Figure 2.
Since individual nodes share common structure and

wemay wish to consider chains of considerable length,
we use common variable names for node attributes
wherever possible, and associate them with specific
parties via superscripts (P,M, and R in the example in
Figure 2).
At each time period, indexed by t, the period-by-

period stochastic market demand is described by {l(t)}
� [l0(t), l1(t), l2(t), . . .], where

l (t) � actual market demand occurring in0

period t (1)

l (t) � estimate of period (t � j) demand,j

for each j � 1.
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Figure 2 Decentralized Supply Chain with QF Contracts

The statistical structure of this process is known to the
retailer, who incorporates it into supply planning. The
retailer in turn provides the manufacturer with a re-
plenishment schedule vector {r(t)}R � [r0(t), r1(t),
r2(t), . . .]R, where

r (t) � actual purchase made in period t (2)0

r (t) � estimate of purchase to be made inj

period (t � j), for each j � 1.

This becomes the upstream supplier’s release schedule
vector, denoted { f(t)}M � [ f0(t), f1(t), f2(t), . . .]M, where

f (t) � quantity sold in period t (3)0

f (t) � estimate of quantity to be sold inj

period (t � j), for each j � 1.

Thus far we have simply formalized the information
flow described in Figure 1. Next, we consider the QF
contract between each pair of nodes. The
manufacturer-retailer QF contract is parametrized by
(�, x), where � � [�1, �2, . . .] and x � [x1, x2, . . .].
This places bounds on how the retailer may revise
{r(t)}R going forward in time. Specifically, for each t
and j � 1:

[1 � x ]r (t) � r (t � 1) � [1 � � ]r (t). (4)j j j�1 j j

That is, the estimate for future period (t � j) cannot
be revised upward by a fraction of more than �j or
downward by more than xj. Contingent on this, the
contract stipulates that the retailer’s eventual orders
will all be filled with certainty.1

1It is natural to expect that any reasonable flexibility agreement
should be such that the interval bounding a given future period’s
purchase becomes progressively smaller as that period approaches.
Although not readily apparent from Equation (4), the QF arrange-
ment has this feature. For instance, according to Equation (4), in
planning for period (t � 2) the retailer’s period t estimate r2(t) con-
strains the period (t � 1) estimate by

[1 � x ]r (t) � r (t � 1) � [1 � � ]r (t).2 2 1 2 2

In turn, by another application of Equation (4), r1(t � 1) is known
to constrain the eventual purchase r0(t � 2) by

[1 � x ]r (t � 1) � r (t � 2) � [1 � � ]r (t � 1).1 1 0 1 1

Together these define from the period t perspective the window
within which the eventual purchase must fall:

[1 � x ][1 � x ]r (t) � r (t � 2) � [1 � � ][1 � � ]r (t).1 2 2 0 1 2 2

Hence, the window bounding the actual purchase evolves from [(1
� x1)(1 � x2)r2(t), (1 � �1)(1 � �2)r2(t)] to [(1 � x1)r1(t � 1), (1 �

�1)r1(t � 1)]. Assuming Equation (4) is observed, the latter window
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Because { f(t)}M � {r(t)}R, Equation (4) means the
manufacturer can be sure that revisions to estimates of
its “demand” will obey

[1 � x ] f (t) � f (t � 1) � [1 � � ] f (t) (5)j j j�1 j j

and is contractually obligated to support the resulting
sequence of purchases. The manufacturer in turn
passes a replenishment schedule, denoted {r(t)}M, to its
own supplier. This will obey constraints analogous to
Equation (4) above, except with flexibility parameters

Thus the parts supplier knows that revisions to(�̃, x̃).
{ f(t)}P will stay within the bounds, and in turn(�̃, x̃)
passes upstream the replenishment schedule {r(t)}P

(staying within the bounds), and so on. This ex-(�̂, x̂)
ercise is repeated each period, with all estimates up-
dated in rolling-horizon fashion.
QF contracts are intended to provide a benefit to

each party. The supplier formally guarantees the buyer
a specific safety cushion in excess of estimated require-
ments. In return, the buyer agrees to limit its order
reductions, essentially a form of minimum purchase
agreement. In this way the buyer accepts some of the
downside demand risk which, were forecasts com-
pletely divorced of commitment, would be left to the
supplier. Mutual agreement on the significance of fore-
casts improves the planning capabilities of both par-
ties. Any favoritism expressed by this arrangement can
be mitigated in setting the flexibility limits, as we will
demonstrate.
The emergence of QF contracts as a response to cer-

tain supply chain inefficiencies is described in Lee et
al. (1997). Sun Microsystems uses QF contracts in its
purchase of monitors, keyboards, and various other

(one period prior to purchase) is contained entirely in the former
(two periods prior). More generally, requiring Equation (4) at every
revision generates a sequence of nested intervals that ultimately con-
verge to the actual purchase. This will become clear when, in §3, we
formalize this “cumulative” perspective on the flexibility terms of
the contract, taking an alternative view of the per-period incremental
flexibilities in Equation (4). Both representations have been observed
in industry. The incremental form would be preferred by a buyer,
since this constrains the successive updating of its replenishment
schedules. The cumulative form would be used by a supplier, since
this renders future capacity needs more transparent. But as these
forms are mathematically equivalent, our results apply equally well
to each.

workstation components (cf. Farlow et al. 1995).
Nippon Otis, a manufacturer of elevator equipment,
implicitly maintains such contracts with Tsuchiya, its
supplier of parts and switches (cf. Lovejoy 1998). So-
lectron, a leading contract manufacturer for many elec-
tronics firms, has recently installed such agreements
with both its customers and its rawmaterials suppliers
(Ng 1997), implying that benefits may accrue to either
end of such a contract. QF-type contracts have also
been used by Toyota Motor Corporation (Lovejoy
1998), IBM (Connors et al. 1995), Hewlett Packard, and
Compaq (Faust 1996). A similar structure, called a
“Take-or-Pay” provision, is often embedded in long-
term supply contracts for natural resources (cf. Masten
and Crocker 1985, Mondschein 1993, National Energy
Board 1993). In addition to being used to govern re-
lations between separate companies, QF structures
have also appeared at the interface between the manu-
facturing and marketing/sales functions (taking the
role of supplier and buyer, respectively) within single
firms (cf. Magee and Boodman 1967).
While QF contracts are being implemented in in-

dustrial practice, the academic literature has thus far
had little guidance to offer a firm interested in struc-
turing its supply relationships in this way. This paper
seeks to address this need, by pursuing the following
objectives: (a) to provide a formal framework for the
analysis of such contracts, with explicit consideration
of the non-stationarity in demand that drives the desire
for flexibility; (b) to propose behavioral models, i.e.,
forecasting and ordering policies, for buyers who are
subject to such constraints in their procurement plan-
ning, and for suppliers who promise such flexibility to
their customers; and (c) to link these behaviors to local
and systemwide performance (e.g., inventory levels
and order variability), and therefore guide the nego-
tiation of contracts. In the following discussion, our
intent is not necessarily to advocate the QF contract,
but to provide conclusions about the implications of
its usage.
Section 2 positions this paper in the literature. Sec-

tions 3 and 4 introduce the modeling primitives. We
will analyze complex systems such as the one in Figure
2 by decomposing the supply chain into modules of
simpler structure. All interior nodes, meaning those
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which have QF contracts on both their input and out-
put sides, can be represented by one node type. Here
we will derive a reasonable inventory policy that rec-
onciles the constraints and the commitments implied
by the input and output flexibility profiles. Another
node type represents the node at the market interface,
which has a QF contract on its input side only, but has
statistical knowledge about demand on its output side.
Here we will suggest an ordering policy that takes into
account the market demand dynamics, the relative
costs of holding and shortage, and the input-side flex-
ibility parameters. The decision problems of each node
type are formidable due to the large number of deci-
sion variables and the statistical complexity of cus-
tomer ordering, so we will utilize heuristic policies.
This enables us to explore in §5 the performance prop-
erties of supply chains controlled with QF contracts.
We investigate the implications of flexibility character-
istics for both inventory and service, as well as how
order variability propagates along the supply chain.
Once these relationships are established, the issue of
contract design, i.e., the choice of flexibility parame-
ters, may be pursued. In particular, §6 examines the
value of flexibility in the supply chain. We conclude in
§7 with discussion of these results and implementation
issues. For clarity of exposition, all proofs are deferred
to Appendix 1.

2. Literature Review
It is not generally the case that a supply chain com-
posed of independent agents acting in their own best
interests will achieve systemwide efficiency, often due
to some incongruence between the incentives faced lo-
cally and the global optimization problem. In our
single-product setting in which the only uncertainty is
in the market demand and the only decision is product
quantity, this is because overstock and understock
risks are visited differently upon the individual
parties.
One response is to reconsider the nature of the sup-

ply contracts along the chain. (See Tsay et al. (1999) for
a recent review.) The general goal is to install rules for
materials accountability and/or pricing that will guide
autonomous entities towards the globally desirable
outcome (cf. Whang 1995, Lariviere 1999). This type of

approach recurs in a broad range of settings, for ex-
ample the economic literature on “vertical restraints”
(cf. Mathewson and Winter 1984, Tirole 1988, Katz
1989), the marketing literature of “channel coordina-
tion” (e.g., Jeuland and Shugan 1983, Moorthy 1987),
and agency theory (cf. Bergen et al. 1992, Van Ackere
1993). Recent examples in the multi-echelon inventory
literature include Lee and Whang (1997), Chen (1997),
and Iyer and Bergen (1997). When recourse in light of
information changes is admitted, results are limited to
single-period settings. Contractual structures that have
been shown to replicate the efficiency of centralized
control in that context include buyback/return ar-
rangements (cf. Pasternack 1985, Donohue 1996,
Kandel 1996, Ha 1997, Emmons and Gilbert 1998) and
the QF contract (cf. Tsay 1996). In all the above works,
information about market demand is common to all
parties.
Some flexible supply contracts with risk-sharing in-

tent have been studied in more realistic settings.
Bassok and Anupindi (1995) consider forecasting and
purchasing behavior when the buyer initially forecasts
month-by-month demand over an entire year and then
may revise each month’s purchase once within speci-
fied percentage bounds. Bassok and Anupindi (1997a)
analyze a contract which specifies that cumulative pur-
chases over a multi-period horizon exceed a previ-
ously (and exogenously) specified quantity, a form of
minimum-purchase agreement. Bassok and Anupindi
(1997b) study a rolling-horizon flexibility contract
similar to our QF structure, focusing on the retailer’s
ordering behavior when facing an independent and
stationary market demand process. Eppen and Iyer
(1997) analyze “backup agreements” in which the
buyer is allowed a certain backup quantity in excess of
its initial forecast at no premium, but pays a penalty
for any of these units not purchased. These models do
not attempt to demonstrate efficiency of the contract,
instead focusing on the operational implications of the
specified prices and constraints for the buyer. No con-
sideration is made for how the supplier might best
support its obligations, as the upstream decision prob-
lem is rendered difficult by the statistical complexity
of the demand that is transmitted through. Moreover,
the information structure is kept simplified, with the
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forecast for a given period’s demand updated at most
once, if at all.
What little is known about ongoing relationships

with information updating is limited to a single node
setting with very stylized demand models. For exam-
ple, Azoury (1985), Miller (1986) and Lovejoy (1990,
1992) consider demand whose structure is known ex-
cept for a single uncertain parameter that is updated
each period in a very specific way (e.g., Bayesian up-
dating, or exponentially smoothed mean). Base stock
policies with moving targets turn out to be optimal or
near-optimal. While these are quite powerful results,
they apply only when delivery is immediate. When
lead times are non-zero, a properly made current-
period decision would need to account for the behav-
ior of demand over several subsequent periods. Even
with these relatively straightforward demand models,
the statistics required for the policy calculations be-
come computationally formidable. This is the case
even absent supply side flexibility.
Industrially, rolling horizon planning is the most

common approach to non-stationary problems with
positive lead times, a prominent application beingMa-
terial Requirements Planning (MRP). As in our setting,
MRP seeks a supply schedule that attends to a period-
by-period schedule of materials needs. Baker (1993)
provides a recent review of lot-sizing studies, for both
single and multiple level models. Numerical simula-
tion is the predominant means of evaluating algorithm
performance, largely due to the complexity of the
setting.
Our primary interest is in the way these studies

model demand and how demand information is in-
corporated into the planning process. In general, the
installed policies rarely explicitly account for the tem-
poral dynamics of the underlying demand. The accu-
racy of the forecasts may be specified as a forecast error
that gets incorporated into safety stock factors for each
period (cf. Miller 1979, Guererro et al. 1986). However,
there is no consideration for how each forecast might
change from one period to the next. Typically, either
deterministic end demand is assumed (in which case
forecast updating is not an issue) or the forecast is fro-
zen over the planning horizon. Either way, the re-
sponse is reactive. Finding that the “stochastic, se-
quential, and multi-dimensional nature” of this class

of problem defies an optimization-based approach,
Heath and Jackson (1994) suggests that this approxi-
mates “reasonable” decision-making. We share this
view in our pursuit of insights for industrial
application.
One limitation of the MRP framework and other

conventional models is the notion of a fixed, or what
we call “rigid”, lead time. In many real systems, the
lead times that are loaded into the materials planning
model are exaggerated to hedge against uncertainties
in the supply process (e.g., queuing or raw materials
shortages) (cf. Karmarkar 1989). The QF contract for-
malizes the reality that a single lead time alone is an
inadequate representation of many supply relation-
ships, as evinced by the ability of buyers to negotiate
quantity changes even within quoted lead times.
This paper seeks insights for a setting including all

of the above features: resources which require advance
commitments, non-stationary demand about which in-
formation evolves over time, and the possibility of re-
vising the commitments within bounds in reaction to
information changes. Because this work evolved from
collaboration with an industrial partner competing in
a volatile industry, we have avoided as much as pos-
sible any dependence on specific statistical assump-
tions about market demand. In this context, optimal
policies are unknown, so we seek behavioral models
that mimic rational but potentially suboptimal policy-
makers. We also consider the perspectives of both par-
ties to each contract. In addition to specifying the
buyer’s behavior, we recommend how a supplier
might economically deliver the promised flexibility,
and characterize how the costs of both parties vary
with the contract parameters.

3. Analysis of an Interior Node
We first specify the structure and behavior of a flex
node,which we use to represent an agent which has QF
contracts with both its supplier and customer (e.g., the
manufacturer or the parts supplier in Figure 2). In §4
we will introduce the semi-flex node to handle the case
when the customer-side interface is unstructured. We
will model multi-stage supply chains by linking these
modular units.
At each period t, the node receives { f(t)}� [ f0(t), f1(t),
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f2(t), . . .] as defined in Equation (3), the release schedule
delineating the downstream node’s needs. The node
will in turn provide its upstream supplier with a re-
plenishment schedule {r(t)} � [r0(t), r1(t), r2(t), . . .] as de-
fined in Equation (2). Note that one node’s release
schedule is simultaneously the downstream node’s re-
plenishment schedule. I(t) is the node’s period t ending
stock, calculated as I(t) � I(t � 1) � r0(t) � f0(t). All
quantities are measured in end-item equivalents.
The input and output QF parameters are denoted as

(�in, xin) and (�out, xout) respectively, superscripted to
signify the node’s point of reference. Restating Equa-
tions (4) and (5) with this notation gives the following
ground rules for schedule revisions, termed Incremen-
tal Revision (IR) constraints:

out out[1 � x ] f (t) � f (t � 1) � [1 � � ] f (t),j j j�1 j j

for all t, each j � 1 (6)
in in[1 � x ] r (t) � r (t � 1) � [1 � � ] r (t),j j j�1 j j (7)

for all t, each j � 1.

Naturally, we assume � 0 and 0 �in out in out� , � x , xj j j j

� 1. Since these IR constraints are assumed to hold in
all future iterations, the current period’s fj(t) suggests
bounds on f0(t � j), the actual customer purchase in
period (t � j). Specifically, Equation (6) implies

out out[1 � X ] f (t) � f (t � j) � [1 � A ] f (t),j j 0 j j

for all t, each j � 1, where (8)
j

out out•1 � X � (1 � x ) andj � q
q�1

j
out out•1 � A � (1 � � ). (9)j � q

q�1

Similarly, on the replenishment side, Equation (7)
implies

in in[1 � X ] r (t) � r (t � j) � [1 � A ] r (t),j j 0 j j

for all t, each j � 1, where (10)
j

in in•1 � X � (1 � x ) andj � q
q�1

j
in in•1 � A � (1 � � ). (11)j � q

q�1

Equations (8) and (10) are termed Cumulative Flexibility
(CF) constraints. Clearly and arein in out outA , X , A Xj j j j

non-negative and increasing in j, indicating that
greater cumulative flexibility is available for periods
further out, which is helpful since longer-term projec-
tions are generally less informative. As noted in §1, the
IR and CF systems of constraints are mathematically
equivalent, so that QF contracts may be stated either
way. Each perspective has certain advantages, and
throughout this paper we will use whatever form is
more convenient for the given context.

Replenishment Planning at a Flex Node
The flex node decision problem is to construct the {r(t)}
to be passed upstream, given the {f(t)} faced and the
local inventory level. The only policies we deem “ad-
missible” are those that uphold the release-side con-
tract without violating the replenishment-side con-
tract. That is, an admissible policy is one for which,
given any arbitrary sequence of {f(t)} whose updates
obey Equation (6), (a) updates to {r(t)} obey (7), and (b)
coverage is provided (i.e., I(t � 1) � r0(t) � f0(t) for all
t).
The stochastic optimization problem to be solved at

period t, called program (F), is:
H

min E[G(I(t � j))|{f(t)}]{r(t)},(r (t�1), . . ,r (t�H)) �0 0
j�0

subject to (12)

I(t � j) � I(t � j � 1) � r (t � j) � f (t � j)0 0

for j � 0, . . , H (13)

I(t � j) � 0 for j � 0, . . , H (14)

in(1 � x )r (t � 1) � r (t)j�1 j�1 j

in� (1 � � )r (t � 1) for j � 0, . . H � 1j�1 j�1

(15)

in in(1 � X )r (t) � r (t � j) � (1 � A )r (t)j j 0 j j

for j � 0, . . , H. (16)

G() is some convex cost function (minimized at zero)
that is charged against future ending stock levels, so
the objective is to minimize expected total cost over H
periods for some fixed H. This problem is stochastic
because, as suggested by balance Equation (13), G(I(t
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� j)) depends on the random variables ( f0(t � 1), . . . ,
f0(t � j)) conditional on { f(t)}. The decision variables
are {r(t)} (the current replenishment schedule, which is
all that must be formally stated to the supplier) and,
for internal planning purposes, (r0(t � 1), . . . , r0(t �

H)) (the sequence of intended future purchases, which
still enjoys some opportunity for revision).2 Equation
(14) enforces the coverage commitment, Equation (15)
states what {r(t)} is allowed given {r(t � 1)} and the
input side IR constraint3 and Equation (16) then com-
putes the CF bounds on the node’s future purchases
based on the {r(t)} chosen.
Exact solution to (F) is difficult for two primary rea-

sons. First, dimensionality of the decision space is very
large, with each decision variable subject to con-
straints. In particular, Equation (16) acts like a capacity
constraint, which precludes closed-form solution in a
stochastic setting (cf. Federgruen and Zipkin 1986,
Tayur 1992). Here, the added wrinkle is that future
capacity limits can not only vary by period, but are
actually decision variables that can be dynamically ad-
justed. Second, and more problematically, the statisti-
cal properties of the random variables ( f0(t � 1), f0(t
� 2). . .) are in general very complex, since not only
are they ultimately derived from a non-stationary and
multivariate market demand/forecast process, they
are filtered through the inventory policies of one or
more intermediaries (see Figure 2) and all intervening
QF constraints. Hence, while the expectation in the ob-
jective function may be well-defined in theory, in prac-
tice it is intractable, rendering the search for an optimal
policy problematic. However, we can identify an open-
loop feedback control (OLFC) policy (cf. Bertsekas
1976) that has some satisfying mathematical and in-
tuitive properties. In an OLFC policy, at each period a
sequence of actions is computed looking forward and
assuming perfect information, and the first action is in-
voked. The information is then updated the following
period and another forward-looking sequence of ac-
tions is computed, and so forth. In this way, a complex

2{r(t � 1)}, {r(t � 2)}, etc. need not be specified at this point since
any influence they may have are reflected implicitly through Equa-
tion (16). Values consistent with any feasible solution can be inferred
if desired.
3{r(t � 1)} is data resulting from the period (t � 1) planning iteration.

stochastic dynamic program is approximated by a se-
ries of deterministic models. Such policies are com-
monplace in problems with complex or incompletely
specified process dynamics. The conventional wisdom
is that OLFC is a fairly satisfactory mode of control for
many problems. This, in fact, is the approach taken by
industry practitioners in their adoption of the MRP
paradigm.
To construct an OLFC policy for the control of a flex

node, we suppress explicit consideration of future up-
dates to { f(t)}. Instead, the contractual coverage obli-
gation suggests fixed targets to which the flex node can
position. In particular, this node must fill any orders
provided that the customer’s revisions do not exceed
the defined bounds.4 The resulting deterministic prob-
lem, which we denote program (F-OLFC) is:

h

min G(I(t � j)) subject to{r(t)},(r (t�1), . . ,r (t�h)) �0 0
j�0

I(t � j) � I(t � j � 1) � r (t � j)0

out� (1 � A )f (t) for j � 0, . . , h (17)j j

I(t � j) � 0 for j � 0, . . , h (18)
in(1 � x )r (t � 1) � r (t) �j�1 j�1 j

in(1 � � )r (t � 1) for j � 0, . . h � 1 (19)j�1 j�1

in in(1 � X )r (t) � r (t � j) � (1 � A )r (t)j j 0 j j

for j � 0, . . , h. (20)

f0(t � j) has been replaced with (1 � ) fj(t) foroutAj

reasons discussed above. This program also considers
a potentially shorter time window, of length h � H, as
a practical consideration. Naturally, this assumes that
all flexibility parameters are well-defined for an h-pe-
riod outlook.

Proposition 1. The following {r(t)} is optimal for pro-
gram (F-OLFC), and is admissible:

in•r (t) � max[T (t), (1 � x )r (t � 1)]j j j�1 j�1

for j � 0, . . , h, where (21)

4This is not the same as guaranteeing to meet all customer demand,
since the allowable order is groomed in advance by the flexibility
constraints, i.e., it is a truncated version of what the customer might
desire otherwise.
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out(1 � A ) f (t) � l (t)j j j•• T (t) � (22)j in1 � Aj

I(t � 1) for j � 0
in•• l (t) � [l (t) � (1 � X )r (t) (23)j j�1 j�1 j�1� out �� (1 � A )f (t)] for j � 1.j�1 j�1

This is named the Minimum Commitment (MC) policy
as the present decisions minimize commitment to fu-
ture costs subject to supporting service obligations.
(r0(t � 1), . . . , r0(t � h)) is not stated explicitly since
only {r(t)} needs to be provided to the supplier (see
Appendix 1 for the complete optimal solution). lj(t) is
the period t projection of inventory assured to be avail-
able at period (t � j), anticipating the future actions of
the OLFC-optimal decision rule. From here on, we as-
sume that flex nodes use the MC policy. The next sec-
tion investigates the relationships among flexibility, in-
ventory, and information subject to this behavioral
assumption.

The Effect of Flexibility Disparities Across a Flex
Node
This section makes rigorous the notion that inventory
results from a disparity between input and output flex-
ibility. The intuition is as follows. The goal is for sup-
ply to track customer orders as closely as possible. Be-
cause of forecast updating, those orders are moving
targets and the output flexibility defines the range of
potential movement. Meanwhile, the input flexibility
represents the node’s tracking ability. A node with dif-
ficulty in matching upside movement compensates by
increasing its general positioning. Inventory accrues
when the node is unable to pare down its replenish-
ments as quickly as the customer is allowed to reduce
its own requirements.
Proposition 2 demonstrates that a flex node which

possesses more flexibility (in CF form) in its supply
process than it offers its customer can meet all obli-
gations with zero inventory.

Proposition 2. If (a) updates to { f(t)} obey IR con-
straints, (b) the MC policy is used, (c) I(0) � 0, and (d)
(Ain,Xin)� (Aout,Xout), then I(t)� 0 for all t. In the special
case that (Ain, Xin) � (Aout, Xout), then rj(t) � fj(t) for all
j � 0, t � 1.

Note that (�in, xin) � (�out, xout) is sufficient, but not

necessary, to guarantee that (Ain, Xin) � (Aout, Xout).
The result holds under the latter, less restrictive
condition.
This proposition provides insight into one aspect of

flexibility contracting. Once the input profile matches
the output profile, additional supply side flexibility is
wasted and represents an irrational configuration.
(Formally, this would be the case if, in addition to con-
dition (d), or for at least one j.)out in out inA � A X � Xj j j j

Such a node “absorbs” flexibility with no benefit to the
system, and would be able to provide better service
(more flexibility) at no cost to itself (no increase in in-
ventory) by passing its excess flexibility downstream
until (Ain, Xin) � (Aout, Xout). This will result in a per-
fect non-distortive conduit of information and mate-
rials. Orders are filled exactly, no inventory accumu-
lates, and every schedule received is transmitted
straight upstream unaltered (a pure lot-for-lot policy).
In all other scenarios, the node serves as an “amplifier”
of flexibility, offeringmore to the customer than it itself
receives. Such nodes must carry inventory to meet
their contracted goals. The specific inventory require-
ment will be driven not only by the flexibility profiles,
but also the nature of the {f(t)} process facing the node.
Analytical results predicting inventory from the in-

stalled flexibilities are currently limited. While this
question will be addressed for the general setting via
numerical simulation in §5, to obtain insight into how
inventory builds we consider here the simplest con-
ceivable sequence of {f(t)}: deterministic and stable re-
lease schedules, i.e., fj(t) � for all j � 0, where theˆ ˆf fj j

are constants which satisfy Equation (6) ([ ]out ˆ1 � x fj j

� � [1� ] for j � 1). These “stable forecasts”outˆ ˆf � fj�1 j j

are perfect in that the actual release is exactly everyf̂0
time period. Naturally, if this were known in advance,
the output flexibility could be eliminated since the cus-
tomer has no real need for revision capability. How-
ever, to investigate the inventory impact of non-zero
flexibilities we consider how the MC policy will per-
form if applied to this predictable process. Inventory
will still arise due to the need to cover the possibility
of increases.
An equilibrium for a flex node facing stable forecasts

consists of an inventory level and replenishment
schedule that, once in place as the state variables, per-
sist for all subsequent periods. Proposition 3 provides
explicit characterization of the equilibrium behavior.
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Proposition 3. An equilibrium for a flex node facing

stable forecasts is {r̂, Î} where:ˆ{ f }

f̂0 for 0 � j � j*in1 � Xjr̂ � (24)j 1� max {z } for j* � j � hk�j kin1 � Xj

j*
outˆ ˆ ˆand I � [(1 � A )f � f ]� k k 0

k�1

in inA � Xj* j*ˆ� f where (25)0 � in �1 � Xj*

out ˆ(1 � A )fj j in•z � [1 � X ] andj j� in �1 � Aj

ˆ ˆmax {j: z � f } if ∃ j s.t. z � fj 0 j 0•j* � �0 otherwise.

The above expressions may be interpreted in the fol-
lowing way. As it is increasing in the output flexibility
and decreasing in the input flexibility, zj reports the
relative inadequacy of the input side flexibility over a
j-period-away outlook. Based on the zjs, j* defines the
flexibility shortfall horizon, the shortest horizon length
within which input flexibility constraints bind. Beyond
j*, the zks are “small,” which may be interpreted as a
surplus of input flexibility. Indeed, for these indices,
Equation (24) indicates that maximal replenishment
flexibility is not exercised. j* plays a key role in the
computation shown in Equation (25), which accumu-
lates period-by-period the amount by which the cov-
erage target exceeds the actual demand over the flex-
ibility shortfall horizon (the last term is a boundary
effect adjustment). Inventory results from a non-zero
j*, i.e., the existence of a window within which flexi-
bility is lacking, an insight that extends beyond the
“stable forecasts” setting. Comparative statics for the
inventory level are cataloged in Proposition 4.

Proposition 4. Under the conditions of Proposition 3,
the following properties apply: (a) Release Schedule: (i)

� 0, (ii) � 0 for j � 1 (the inequality isˆ ˆ ˆ ˆDI/Df DI/Df0 j

strict for j � j*); (b) Upside Output Flexibility: outˆDI/DAj

� 0 for j � 1 (the inequality is strict for j � j*); (c) Downside
Output Flexibility: � 0 for all j; (d) Upside InputoutˆDI/DXj

Flexibility: � 0 for j � j*, � 0 otherwise;in inˆ ˆDI/DA DI/DAj j

(e) Downside Input Flexibility: � 0 for j � j*,inˆDI/DXj

� 0 otherwise.inˆDI/DXj

Proposition 4 may be interpreted as follows. First,
the inventory level is determined by the size of the
actual release relative to the upside coverage targets.
In (a.i), increasing suggests that the demand out-f̂0
comematerializes higher relative to forecast, which de-
creases inventory. Increasing the forward-looking
components of the release schedule as in (a.ii) neces-
sitates inflation of corresponding replenishments,
hence potentially more inventory. Comparing (b) to
(a.ii) suggests that and have similar effects,outf̂ Aj j

which follows since only the product (1� playsout ˆA )fj j

into the MC logic. As appears nowhere in Prop-outXj

osition 3, , which may seem counterin-outˆDI/DX � 0j

tuitive. However, (c) assumes that remains con-ˆ{ f }
stant. In reality, a rational downstream customer
should increase its {r̂} (which becomes this flex node’s

in response to an increase in its downside inputˆ{ f })
flexibility (this flex node’s Xout). Hence the net effect
would actually be more consistent with that described
in (a), a network phenomenon not captured in this
single-node analysis. Items (d) and (e) show that im-
provements in input flexibility reduce inventory, but
only on the boundary of the flexibility shortfall hori-
zon. Adding within the horizon does not help, since
the constraint that defines the boundary continues to
bind. Beyond the boundary additional flexibility only
contributes to an existing surplus. Of course, with
more realistic release schedule dynamics, j* will move
about, so that increasing any component of the input
flexibility would likely be beneficial. This and all other
insights reported above have been corroborated by nu-
merous simulation experiments.

4. The Market Interface
A QF contract delineates conditions under which all
orders will be filled. However, at the market interface
this may be an inappropriate representation of the sup-
ply relationship. For example, consider a retailer that
serves the external market, which is not a single entity
with which a contract of this sort may bewritten. There
is no rationale for limiting a customer’s entitlement to
product, nor is there a customer-provided forecast to
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which to tie a minimum purchase requirement. We
represent this situation with a “semi-flex node”.
Like a flex node, the semi-flex node has replenish-

ment governed by a QF contract. However, there is no
such structure on the release side. {l(t)} � [l0(t), l1(t),
l2(t), . . .] represents information at period t regarding
the period-by-period demand, as defined in Equation
(1). The construction of {l(t)} is exogenous to the node
but will certainly impact performance. As with the flex
node, the decision is {r(t)}, with updates governed by
the IR constraints in Equation (7). Ending inventory is
updated by I(t) � I(t � 1) � r0(t) � l0(t), which as-
sumes complete backordering.
The optimization problem faced by a semi-flex node

is analogous to program (F) faced by a flex node, ex-
cept that the expectation in the objective function
Equation (12) would be conditional on {l(t)} rather
than {f(t)}, and l0(t � j) should appear in Equation (13)
in place of f0(t � j). The same issues that complicate
the solution of (F) and motivate an OLFC approach
(dimensionality and statistical complexity) also apply
here. Hence, following the logic applied at the flex
node, we formulate program (S-OLFC) as the open-
loop version of the semi-flex node’s decision problem:

h

min E[G(I(t � j))|{l(t)}]{r(t)},(r (t�1), . . ,r (t�h)) �0 0
j�0

subject to

I(t � j) � I(t � j � 1) � r (t � j) � l (t � j)0 0

for j � 0, . . , h
(26)

in in(1 � x )r (t � 1) � r (t) � (1 � � )r (t � 1)j�1 j�1 j j�1 j�1

for j � 0, . , h � 1
(27)

in in(1 � X )r (t) � r (t � j) � (1 � A )r (t)j j 0 j j

for j � 0, . . , h.
(28)

Whereas for the flex node the release-side contractual
obligation induced a deterministic schedule of future
releases on which to focus, here there is no such com-

mitment, reflected in the lack of an analog to Equation
(18). Hence, in contrast to (F-OLFC), this open-loop ob-
jective function still involves an expectation, which
will be based on the distribution of (l0(t � 1), . . , l0(t
� h)) conditional on {l(t)}. The open-loop approach is
to suppress consideration of how {l(t)} might be up-
dated over time.
Even with IID market demand and a G() of simple

structure, (S-OLFC) is difficult to solve analytically due
to the dimensionality and the constraint structure. In-
stead, we have considered a number of computation-
ally attractive, heuristic approaches based on relaxa-
tions of (S-OLFC), and performed a series of numerical
simulation tests, assuming a specific market demand
process. In particular, since flexibility is most mean-
ingful when tracking a non-stationary process, for all
studies in this paper we have used an Exponentially
Weighted Moving Average (EWMA) process (cf. Box et
al 1994). In an EWMA process, period t demand is l0(t)
� � 1) � nt. nt � N(0, r2) is an IID normal fore-l̄ (t1
casting noise with known variance, and � 1) is thel̄ (t1
mean of period t’s demand, which follows exponential
smoothing dynamics: � (1 � d) • � 1) � d •l̄ (t) l̄ (t1 1

l0(t). 0 � d � 1, with d � 0 corresponding to IID de-
mand and larger values of d indicating more volatile
demand environments. The demand and forecast pro-
cess then has two parameters of volatility, d and r, and
tests were conducted for numerous parameter combi-
nations. Based on the discussion and simulation anal-
ysis detailed in Appendix 2, we propose the following
heuristic.

The “Sequential Fractile” (SF) policy constructs {r(t)} as

follows. Define (t) � l0(t) and E[G(Sj•S* S*(t) � argmin0 j Sj

� Dj(t))|{l(t)}], where Dj(t) l0(t � j) is the cu-j•� �q�0

mulative demand for periods t through (t � j). Letting y �

[a, b] denote the point in the interval [a, b] closest to y, for
j � 0, . . , h, select:

r (t � j)0r (t) � �j in in(2 � A � X )/2j j

in[(1 � x )r (t � 1),j�1 j�1

in(1 � � )r (t � 1)], where (29)j�1 j�1
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Figure 3 Supply Chain for System Performance Analysis

j�1

r (t � j) � S*(t) � I(t � 1) � r (t � q)0 j � 0� �
q�0

in� [(1 � X )r (t � 1),j�1 j�1

in(1 � A )r (t � 1)].j�1 j�1

It is straightforward to verify that in a conventional
scenario of a fixed lead-time with no flexibility, this
reduces to the classical policy of maintaining stock on-
hand plus on-order at a critical fractile of cumulative
demand over the lead-time. In fact, the SF policy may
be viewed as a generalization of multi-period news-
vendor logic, known to be optimal with IID demand,
to rolling horizon planning in the presence of flexibil-
ity. Replenishment policies based on IID logic but ap-
plied to real (almost certainly not IID) demand pro-
cesses have been demonstrated both in research and
practice to be very effective, if not optimal (cf. Lovejoy
1990, 1992). We make no claim that the SF policy is
optimal in more general settings, only that it includes
logic approximating the behavior of a reasonable prac-
titioner and has intuitive appeal. Bassok andAnupindi
(1997b) propose alternative OLFC semi-flex node pol-
icies under slightly different assumptions, which allow
for the development of certain performance bounds.
The computationally intensive nature of their policies
underscores the need for simplifying heuristics.

5. Performance Properties of QF
Supply Chains

We are now prepared to explore the performance
properties of multi-level supply chains controlledwith
QF contracts, which can be modeled by linking to-
gether the individual node building blocks presented
in §2 and §3. Below we characterize the following met-
rics: (i) system-wide inventory patterns, (ii) variability

of orders placed at each node, and (iii) service pro-
vided at the market interface. In particular, the com-
parative statics of each of these with respect to themar-
ket demand volatility and system flexibility
characteristics will be provided.

Modeling Supply Chains
Inventory points whose replenishments and releases
are both controlled by QF contracts are represented by
flex nodes (cf. §2). Only the single node furthest down-
stream in the chain may deviate from this structure,
and semi-flex structure (cf. §3) accommodates its dis-
tinctive features.
The link between two nodes is described by the flex-

ibility profile of the QF contract and, if desired, a logis-
tical delay (LD). The LD allows the representation of
delay that is truly unavoidable (e.g., for ocean transit).
As in MRP explosion calculus, a buyer node’s replen-
ishment schedule becomes its supplier’s release fore-
cast, differing by the intervening LD time offset:

(t) → (t) for j � LD. A non-zero LD alsosupplier buyerf rj�LD j

leads the parties to perceive the QF contract differ-
ently. Along with the time offset, i.e. ( out� ,j�LD

↔ ( )buyer, the immutability of ordersout supplier in inx ) � , xj�LD j j

within the incoming logistical pipeline is represented
by ( )buyer � ( )buyer � 0 for j � LD. Hence, a logis-in in� xj j

tical delay may be regarded as an extreme form of
inflexibility.

Supply Chain Performance
For the following experiments we consider the serial
chain depicted in Figure 3. Nodes 1–3 are flex nodes
and node 0 is a semi-flex node. Logistical delays are as
labeled.
Figure 4 presents the assumed system flexibility

characteristics, stated in CF form since the computa-
tional algorithms were easier to implement this way.
Conversion back to IR form is easy, via Equations (9)
and (11). Parameter values were chosen to provide
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Figure 4 Base-Case System Flexibilities

j 1 2 3 4 5 6 7 8 9 10
Node 1 out outA and Xj j 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

in inA and Xj j 0.00 0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32
Node 2 out outA and Xj j 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

in inA and Xj j 0.00 0.00 0.03 0.06 0.10 0.13 0.16 0.19
Node 3 out outA and Xj j 0.03 0.06 0.10 0.13 0.16 0.19

in inA and Xj j 0.00 0.00 0.03 0.05 0.08 0.10

Figure 5 Summary of Experiments and Observations

Observations and Conclusions
System Parameter Under
Consideration

Inventory Variability of Orders Node 0 Cost & Service Level

1. Demand forecast error. r is
increased incrementally.

increases at every node (Fig. 6) over all r considered, upstream
variability � market demand
variability (Fig. 10)

both cost and fill rate worsen with
r (Fig. 14)

2. Parameter governing movement
of mean demand. d is increased
incrementally.

increases at every node (Fig. 7) for low d, upstream variability �

market demand variability; as d

increases, bullwhip effect eventually
occurs (Fig. 11)

both cost and fill rate worsen with
d (Fig. 15)

3. Flexibility between flex nodes.
Components of (Aout, Xout)Node2 are
increased incrementally. {d, r} �

{0.3, 20}

decreases at Node 1, increases at
Node 2; impact on Node 3 is minor
(Fig. 8)

upstream variability is fairly robust to
small perturbations of internal
flexibility parameters (Fig. 12)

NOT APPLICABLE

4. Flexibility between flex node and
semi-flex node. Components of (Aout,
Dout)Node1 are increased incrementally.
{d, r} � {0.3, 20}

decreases at Node 0, increases at
Nodes 1 and 2; impact on Node 3
is minor (Fig. 9)

order variability is apparently fairly
robust to small perturbations of
internal flexibility parameters (Fig. 13)

more supply-side flexibility
improves both cost and fill rate
(Fig. 16)

flexibility amplification (cf. Proposition 2) at each flex
node, with upside-downside symmetry in each profile.
This network configuration will be referred to as the
Base-Case. We again use the EWMA demand and fore-
cast process detailed in Appendix 2, with � 100l̄ (0)1

and (co, cu) � (30, 150).
In a series of simulation experiments, we consider

the relationship between key parameters and perfor-
mance outcomes. The parameters studied are: (1) r, the
demand forecast error, (2) d, the parameter governing
movement of the mean demand, (3) the flexibility pro-
file between two flex nodes (Nodes 1 and 2), and (4)
the flexibility profile between a flex node and a semi-
flex node (Nodes 1 and 0, respectively). The outcomes
reported for each node are: (1) average inventory, and
(2) variability of orders (i.e., StdDev(r0())). The investi-
gation of variability is motivated by concern for the

“bullwhip” effect, an empirically common phenome-
non in which the variability of replenishment orders
placed by a node exceeds the variability of customer
orders encountered. That is, order variability exceeds
market demand variability, and increases on moving
upstream. Lee et al. (1997) reports that the QF contract
has appeared in industry as a counter-measure to the
bullwhip effect.
For stated combinations of the system parameters

we report the performance metrics over 100 separate
500-period simulation runs. The four experiments and
observations are summarized in Figure 5, and illus-
trated in Figures 6–16.
Note that increasing the flexibility between flex

nodes (Experiment 3 in Figure 5) has no bearing on
Node 0 performance. This is because Node 0 continues
to receive the same flexibility from Node 1, regardless
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Figure 8 Inventory vs. (Aout, Xout)Node 2Figure 7 Inventory vs. d, with r � 20

Figure 6 Inventory vs. r, with d � 0

of what happens further upstream. Of course, we
would expect that in a real supply chain an increase in
upstream flexibility should potentially benefit even
downstream parties further removed. This would oc-
cur if, for instance, Node 1 were to be willing to pass
to Node 0 some of the inventory savings enabled by
the improved flexibility provided by Node 2. This
could be in some combination of increased flexibility
and lower unit cost. Such behaviors are not considered
within the scope of these experiments.
Figures 6 and 7 validate our intuitions regarding de-

mand variability and inventory. Figure 8 is consistent
with the intuitions developed in Proposition 4. Node

1 is receiving improved service (higher input flexibil-
ity), therefore can meet its commitments with less in-
ventory. Node 2 is in turn promising a higher level of
service, and carries more inventory as a result. From
this we note that all else equal, increasing the param-
eters of the QF contract reduces the customer’s costs at
the expense of the supplier. This conflict of preferences
provides the tension in the contract negotiation pro-
cess. Even though Node 3’s flexibility status is unal-
tered, its inventory situation does change. The effects
are carried upstream via changes in the dynamics of
the information vector. Each flexibility profile trans-
forms the information flow, so changes in any profile
will have ramifications for all nodes upstream no mat-
ter how far removed. As with Figure 8, Figure 9 shows
that increasing the flexibility between two nodes (this
time a flex node and a semi-flex node) shifts inventory
upstream. Slight upward pressure is also expressed at
Node 2, which apparently gets damped out before
reaching Node 3. At this point it is still unclear where
inventory, and by implication flexibility, should best
be positioned from a system-optimizing perspective.
This design question requires additional structure de-
scribing the relative economic implications of holding
inventory at the various locations, which we do not
pursue in this paper. A methodology for addressing
this issue is provided in Tsay (1995).
The next several figures investigate the prevalence

of the bullwhip effect in QF environments. In Figure
10, which has IID market demand, no bullwhip occurs.
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Figure 12 System Variability vs. (Aout, Xout)Node 2, with {d, r} � {0.3,
20}

Figure 11 System Variability vs. d, with r � 20

Figure 10 System Variability vs. r, with d � 0

Figure 9 Inventory vs. (Aout, Xout)Node 1

This was not unexpected since the phenomenon is usu-
ally associated with non-stationary demand. However,
dampening of variability is achieved. When demand is
non-stationary (Figure 11), increasing volatility in the
market demand and forecasts eventually overwhelms
the variability-diffusing capability of the installed flex-
ibility. However, a true bullwhip, which would cor-
respond to an upward-sloping curve, is not always
present. Figures 10 and 11 confirm that at each node
StdDev(r0()) increases with either demand variability
parameter. Figures 12 and 13 suggest that the patterns
of variability are fairly robust to small perturbations of
flexibility parameters.

We conclude that the presence of flexibility can
dampen the transmission of order variability up the
chain. This is because an entire replenishment schedule
can move in response to changes in the demand en-
vironment. For example, suppose demand forecasts
are revised upwards in a given period, which would
lead a node to generally increase the elements of its
replenishment schedule. If the demand forecasts are
revised back down in the next period, the node has the
opportunity to undo some of the previous increases in
the replenishment schedule. The ability to dynamically
adjust the estimates is what enables a node to recover
from some of the overreacting that becomes a bullwhip



TSAY AND LOVEJOY
Quantity Flexibility Contracts

Manufacturing & Service Operations Management
104 Vol. 1, No. 2, 1999, pp. 89–111

Figure 16 Node O Performance vs. (Ain, Xin)Node 0, with {d, r} � {0.3,
20}

Figure 15 Node O Performance vs. d, r � 20

Figure 14 Node O Performance vs. r, d � 0

Figure 13 System Variability vs. (Aout, Xout)Node 1, with {d, r} � {0.3,
20}

effect in rigid lead-time settings. As market demand
becomes more volatile, the dampening capabilities of
the installed flexibilities are eventually overwhelmed,
and a bullwhip-type of effect may then be expressed.
As the semi-flex node (Node 0) has distinct structure

due to its interface with the external market, additional
performance metrics are appropriate. Figures 14
through 16 report this node’s average holding and bac-
korder cost per period and service performance (de-
fined as a fill rate) for the relevant experiments. As we
would expect, increasing market demand uncertainty
and forecast volatility (Figures 14 and 15) cause both

the cost and fill rate to worsen, and increased input
flexibility (Figure 16) enables an improvement in both.
Natural performance benchmarks are apparent only

for the semi-flex node. These include a single-location
model with immediate replenishment (extreme flexi-
bility) and one with a fixed lead time of H � 0 (zero
flexibility), which are well understood in IID demand
settings (this approach is taken in Bassok and
Anupindi 1997b). However, what remains lacking is
some basis for evaluating the absolute magnitudes of
the performance outcomes observed at individual flex
nodes and across the system. Are there ways to control
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Figure 17 Tandem Supply Chain for Contract Evaluation

the same supply chain which will result in lower in-
ventory levels across the board? Would these methods
increase or decrease the order variability? Models of
behavior and performance under alternative control
schemes are necessary. To the best of our knowledge,
these remain open research areas.

6. Contract Design
Thus far we have provided primitives for modeling
supply chains controlled by QF contracts and charac-
terized system performance for fixed flexibility param-
eters. We now consider these as decision variables,
since this will be a manager’s ultimate interest.5 Our
goal is to provide the “willingness-to-pay” for incre-
ments of flexibility, which a materials manager can
then compare against the menu of flexibility vs. unit
procurement cost combinations offered by a vendor or
pool of vendors, as well as other cost considerations
not included in this analysis.
To illustrate ourmethodologywe use the simple tan-

dem chain depicted in Figure 17, in which a single flex
node (Node 1) feeds into a semi-flex node (Node 0)
located at the market interface. Given a contract be-
tween Node 0 and Node 1 of (A, X), we wish to place
a value on Node 1’s supply-side flexibility, denoted as

(Ã, Both contracts have h � 4. While we use aX̃).
multi-level system for greater realism in the dynamics
of the materials and information flows, the results and
intuitions that follow are not materially different from
those obtained for a single node model.

5In general, the planning horizon H should also be open to negoti-
ation, and the method we present could easily handle this simply by
increasing the dimensionality of the experiment design (i.e., repeat-
ing the process for alternative values of H).

The general methodology is straightforward, in that
we incrementally increase and record the correspond-
ing reductions in Node 1’s inventory cost given a hold-
ing cost per period of 15, using the method of §4 to
compute average inventory levels in each case. Rather
than varying (Ã, along its eight degrees of freedomX̃)
independently, here we limit consideration to a spe-
cific parametric form: Ã � � {0.04s, 0.08s, 0.12s,X̃

0.16s} with s � 0, . . , 5. Using � 100 and r � 20,l̄ (0)1

this procedure was repeated for d values of {0.3, 0.5,
0.7}. The cost outcomes are reported in Figure 18 as
Node 1’s average inventory cost per unit of demand,
which is appropriate for comparison against unit pro-
curement cost.
The left figure reports how inventory costs varywith

the external contract, while on the right is the same
data in terms of savings relative to the zero-flexibility
case (s � 0). This describes the buyer’s “willingness to
pay” (WTP) for positive increments of flexibility rela-
tive to a rigid supply lead time. The cost curves indi-
cate that for any external contract the costs are increas-
ing with the market’s d. Each cost curve is decreasing
in s, as would be expected. As s becomes arbitrarily
large the cost approaches zero since demand can be
tracked perfectly with infinite flexibility. The WTP
curves suggest, for example, that in a market with d �

0.7 the materials manager of Node 1 should to be will-
ing to pay the external vendor an additional $7.60/unit
to go from a no-flexibility contract (s � 0) to an s � 5
supply contract. The curves shift upwardwith d, which
we expect since flexibility, the ability to track a moving
target, should increase in value with the extent of
movement to be tracked. More generally, flexibility
cannot be valued without an environmental context.
For example, the WTP curve will be uniformly zero in
a world of completely deterministic demand as long
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Figure 18 Node 1 Inventory Cost, Willingness-to-Pay (WTP) (per unit) vs. Supply Flexibility

as the internal contracts are specified properly. In each
demand environment there appears to be a point of
diminishing returns beyond which additional flexibil-
ity becomes practically worthless, suggesting that
there is already sufficient flexibility on hand to suitably
respond to the degree of schedule volatility encoun-
tered. A buyer always prefers more flexibility, but
should be happy to settle for less if the price is right.

7. Concluding Remarks
This paper proposes a framework for performance
analysis and design of QF supply chains. We have pro-
vided local policies that, in addition to suggesting a
rational way to make use of flexible supply, dictate
what actions must be taken to support flexibility prom-
ised to a customer. While these are not necessarily op-
timal in the traditional sense, we feel they provide a

reasonable compromise in light of their computational
properties and the complexity of the general problem.
We have developed the notion of inventory as a con-

sequence of disparities in flexibility. In particular, in-
ventory is the cost incurred in overcoming the inflex-
ibility of a supplier so as to meet a customer’s desire
for flexible response, which we call flexibility amplifi-
cation. All else equal, increasing a node’s input flexi-
bility reduces its costs. And all else equal, promising
more output flexibility comes at the expense of greater
inventory costs. We therefore recommend that inven-
tory management should be viewed as the manage-
ment of process flexibilities.
The modular design of our local nodal models en-

ables multi-echelon analysis, which has been lacking
in the literature of flexible supply contracts. Our ex-
periences have revealed that the distribution of the in-
ventory burden across QF supply chains is determined



TSAY AND LOVEJOY
Quantity Flexibility Contracts

Manufacturing & Service Operations Management
Vol. 1, No. 2, 1999, pp. 89–111 107

by the system flexibility characteristics and the volatil-
ity in the market demand and forecast process. We
have found in addition that QF contracts can dampen
the transmission of order variability throughout the
chain, thus potentially retarding thewell-known “bull-
whip effect”.
We provide a methodology for computing a mate-

rials manager’s “willingness-to-pay” for flexibility
from an external vendor, which has certain properties.
These include the notions that flexibility increases in
value as the market environment becomes more vola-
tile, and that flexibility observes a principle of dimin-
ishing returns. The buyer always prefers more flexi-
bility, but should be careful to make the appropriate
cost-benefit assessment in negotiating the contract.
As firms have experimented with QF contracts, cer-

tain implementation issues have come to light. The QF
contract represents a radical change in procurement
practice for some firms, and change rarely comeswith-
out organizational resistance.
Materials buyers may present one source of oppo-

sition. Some are accustomed to manipulating orders
without perceived consequence, and are reluctant to
surrender this position. For others it is the formality of
the flexibility limits, rather than the particular latitudes
specified, that inspires discontent. Some of these indi-
viduals thrive on the thrill and challenge of the dy-
namic bargaining process, and have confidence in their
ability to extract greater concessions in an ad-hoc sys-
tem than any supplier would actually commit to for-
mally. A large part of this problem is in the difficulty
of understanding just how much flexibility is actually
needed and how much is available in the relationship.
More fundamentally, it can be problematic for a ma-
terials organization to recalibrate its intuitions and
business practices around specifying flexibilities in-
stead of inventories. The intent of this paper has been
to inform these issues.
Depending on what behavior is being replaced, it is

unclear whether the move to a QF arrangement will
drive procurement prices down or up. Even if these
increase, this may still be the best solution in terms of
total costs. Yet this can be obstructed by a conflict of
interest within the buyer organization. TheQF contract
is precisely about trading off procurement price for in-
ventory cost, yet in many firms different groups are

held accountable for each of these. In Sun Microsys-
tems, for example, the Supplier Management organi-
zation is responsible for the unit price, while the Ma-
terials organization owns the inventory (cf. Farlow et
al. 1995). Will the group concerned with procurement
price pay for the supply flexibility that will help the
factory operate with less inventory?
A similar conflict can occur within the supplier or-

ganization. The supplier benefits from themore honest
forecasts that the buyer may provide due to the QF
contract, but in exchange may need to lower its selling
price and carry additional inventory to meet its prom-
ise of coverage. Resistance may result if inventory and
price (which now affects revenue) are concerns of dif-
ferent groups.
These, and other cultural and organizational consid-

erations, will join efficiency and valuation issues in de-
termining the popularity of QF contracts over time.6

Appendix 1. Proofs of Propositions

PROOF OF PROPOSITION 1.
We solve (F-OLFC) in several steps, outlined as follows. First, we
momentarily relax the upper bounds in Constraints (19) and (20) to
avoid potential infeasibility. The relaxed solution is not unique in
{r(t)}, so we pick the option that has the lowest values component-
wise. Finally, we show that if updates to {f(t)} satisfy the required IR
constraints, our solution to the relaxed program automatically sat-
isfies the upper bounds of Equations (19) and (20), and hence is
admissible as well as being optimal for (F-OLFC). We now proceed
in this fashion.
(F-OLFC) is potentially infeasible since the upper bounds in Equa-

tions (19) and (20), which act like capacity constraints, may preclude
coverage. The problem is that in converting to a deterministic prob-
lem, the information indicating that updates to {f(t)} are also
bounded is lost. So for the moment we relax these upper bounds, in
which case Equations (19) and (20) can be combined into (1 �

, and the optimal (r0(t � 1), . . , r0(t �inX )r (t � 1) � r (t � j)j�1 j�1 0

h)) can be stated as:

6The authors would like to thank a number of individuals. Timothy
Eckert and Richard Goldstein of Sun Microsystems engaged us in
many meaningful conversations in the model design stage. Profes-
sors J. Michael Harrison, Warren Hausman, Martin Lariviere, Hau
Lee, James Patell, Evan Porteus, Seungjin Whang and RobertWilson
have provided many insightful comments. Seminar participants at
Duke University, Santa Clara University, Stanford University, the
University of Michigan, and Washington University (St. Louis) have
greatly assisted in the refining of our ideas. Last, but not least, we
are grateful to the referees and editors for thoughtful and timely
review. Any errors remain the responsibility of the authors.
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out ¯•r*(t � j) � max{(1 � A ) f (t) � l (t),0 j j j

in(1 � X )r (t � 1)} for j � 0, . . , h (30)j�1 j�1

¯ ¯ ¯• •where l (t) � I(t � 1) and l (t) � l (t) � r*(t0 j j�1 0

out� j � 1) � (1 � A )f (t). (31)j�1 j�1

The formal proof is a straightforward application of Kuhn-Tucker
conditions (cf. Rockafellar 1972). See Tsay (1995) for details. In fact,
this solution is readily apparent from the problem’s economic struc-
ture. (F-OLFC) without the upside constraints is essentially anMRP-
style lot-sizing problem with minimum lot sizes. With no fixed cost
per lot and a holding cost for any material taken earlier than abso-
lutely necessary, a lot-for-lot policy (modified for minimum lot size
requirements) will be appropriate. The sequential algorithm stated
in Equations (30) and (31) does precisely this, with the construct

extrapolating the beginning inventory for period (t � j).l̄ (t)j

While above we have computed the desired future replenish-
ments, denoted by ( (t � 1), . . , (t � h)), the present decision isr* r*0 0

{r(t)}, which is not uniquely determined by (F-OLFC). Because an
rj(t) (in conjunction with the input flexibility parameters) simply
stakes out a region within which (t � j) may lie, there will bemanyr*0
{r(t)} that can enable the above ( (t � 1), . . , (t � h)). Since {r(t)}r* r*0 0

defines the lower IR bounds in subsequent periods, aminimal choice
of each rj(t) reduces the risk of unnecessary future inventory. (20)
requires (t � j) � (1 � )rj(t) (one of the two constraints weinr* A0 j

relaxed earlier), so choosing an rj(t) � (t � j)/(1 � ) is neces-inr* A0 j

sary. To guarantee this without violating (19), we select:

in•r (t) � max[r*(t � j)/(1 � A ),j 0 j

in(1 � x )r (t � 1)] for j � 0, . . , h (32)j�1 j�1

The policy that results from applying this rule every period may
be stated in a more compact and analytically convenient form that
gives {r(t)} as a direct function of { f(t)}, bypassing the intermediate
calculation of in (30) and (31). Detailed(r*(t � 1), . . , r*(t � h))0 0

proof of this equivalence is omitted, however the general idea is as
follows. Direct substitution of (30) and (31) into (32) is followed by
a straightforward but tedious inductive argument that (as de-l̄ (t)j

fined in (31)) and lj(t) (as defined in (23)) are equivalent for all jwhen
(32) is applied at every t.
To show admissibility, we first prove Lemma 1, which states a

property of lj(t).

Lemma 1.
In rolling from period (t � 1) to period t, if: (a) I(t � 1) � 0; (b) { f (t)}
obeys the upside of the output IR constraints; and (c) the {r(t)} generated
by the MC policy obeys the downside of the input IR constraints, then lj(t)
� lj�1(t � 1) for all j � 0.

Proof of Lemma 1. This property follows from induction on j.
Details are omitted due to space limitations. Instead we offer the
following intuition. From the period (t � 1) perspective, lj�1(t � 1)
is the most conservative (i.e., lowest) estimate for the period (t � j)

inventory. That is, it assumes maximal demand and minimal re-
plenishment in all intervening periods. One period’s demand and
schedule revision outcome is resolved with each horizon roll, and
cannot result in inventory any lower than in the extreme scenario.
Admissibility requires that if all updates to { f(t)} obey their IR

constraints, then for all t, I(t) � 0 and replenishment side IR con-
straints are observed. Proof is by induction on t. At period (t � 1),

(21) implies rj�1(t � 1) � Tj�1(t � 1) [(1 � fj�1(t � 1) �out•� A )j�1

lj�1(t � 1)]/(1 � for all j � 0, which may be rewritten as (1inA )j�1

� rj�1(t � 1) � [(1 � (1 � fj�1(t � 1) � lj�1(t � 1)]/in out out� ) A ) � )j�1 j j�1

(1 � (see (9) and (11)). Since fj(t) � (1 � ) fj�1(t � 1) (IRin outA ) �j j�1

constraint) and lj(t) � lj�1(t � 1) (Lemma 1), this suggests (1 �

)rj�1(t � 1) � [(1 � fj(t) � lj(t)]/(1 � Tj(t). Thus,in out in •� A ) A ) �j�1 j j

rj(t) max[Tj(t), (1 � � 1)] � (1 � , soin in•� x )r (t � )r (t � 1)j�1 j�1 j�1 j�1

the upper bound in (19) is obeyed. Furthermore, rj(t) � Tj(t) for all j

� 0 by construction. At j � 0, this is r0(t) � T0(t) f0(t) � I(t � 1),•�

or equivalently, 0� I(t � 1)� r0(t)� f0(t) I(t). Thus, admissibility•�

conditions are satisfied at every t. �

Proof of Proposition 2. The MC policy can be stated as follows:

1 in•r (t) � max [(1 � X )T (t � (k � j))]j k�j k kin1 � Xj

for j � 0, with T () from (22) (33)k

The equivalence of this more analytically convenient form can be
verified by induction on j.
We next establish that inventory is non-increasing with time. Us-

ing (33) at j � 0:

1•r (t) � max0 k�0in1 � X0

outf (t � k)(1 � A ) � l (t � k)k k kin(1 � X )k� �in1 � Ak

out in1 � A 1 � Xk kout� max f (t � k) (1 � X ) � f (t)k�0 k k 0� � �� ��in out1 � A 1 � Xk k

The former inequality holds because lk() is non-negative and inX �0

. The latter is due to the output CF constraint and [(1 � �out0 A )/(1k

(1 � � � 1, which follows from condition (d).in in outA ) X )/(1 X )]k k k

Thus I(t) I(t � 1) � r0(t) � f0(t) � I(t � 1). Furthermore, I(t)•�

remains non-negative by the admissibility of the MC policy. So if
the inventory is initialized at zero, it will remain there.
The results for the specific case of (Ain, Xin) � (Aout, Xout) follow

from induction on j. We have shown that I(t) � I(t � 1) � 0 for all

t � 1. As I(t) I(t � 1) � r0(t) � f0(t) for all t � 1, this implies r0(t)•�

� f0(t). Also, l0(t) I(t � 1) � 0 for all t � 1.•�

Next, suppose that lj�1(t) � 0 and rj�1(t) � fj�1(t) for some j �

1. Then

in out �•l (t) � [l (t) � (1 � X )r (t) � (1 � A )f (t)]j j�1 j�1 j�1 j�1 j�1

in out �� [� (X � A )r (t)] � 0j�1 j�1 j�1
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We also know that lj(t) � lj�q(t � q) � 0 for all q � 0, where the first
inequality is due to Lemma 1 and the second reflects the non-
negativity of these entities. Consequently, lj�q(t � q) � 0 for all q �

0. Or, with the change of variable k � j � q, lk(t � (k � j)) � 0 for
all k � j. Then, beginning with (33), we have

1
r (t) � maxj k�jin1 � Xj

out(1 � A )f (t � (k � j)) � l (t � (k � j))k k kin(1 � X )k� �in1 � Ak

1 out� max [(1 � X )f (t � (k � j))]k�j k kout1 � Xj

out(1 � X )f (t)j j
� � f (t)jout1 � Xj

The second equality is due to (33) and the assumption that inA �k

and for all k. By the lower output IR constraint, fk(tout in outA X � Xk k k

� (k � j))� (1� ) fk�1(t � (k � 1� j)) for all k, or equivalently,outxk�1

(1 � ) fk(t � (k � j)) � (1 � ) fk�1(t � (k � 1 � j)). Thisout outX Xk k�1

delivers the third equality as the maximization must then occur at k
� j. �

Proof of Proposition 3. The proof, as detailed in Tsay (1995),
entails a single, purely mechanical iteration through the MC policy,
and is omitted due to space limitations. �

Proof of Proposition 4. The explicit functional forms of the dif-
ferences are computed in a tedious but straightforwardmanner from
the results of Proposition 3. �

Appendix 2. Analysis of Semi-Flex Node Policy
Our approach to obtaining a reasonable and computationally effi-
cient policy for the semi-flex node will be as follows. The solution
to (S-OLFC) with (27) and (28) relaxed is relatively straightforward
to obtain. We will then consider several alternative heuristic ap-
proaches for reconciling this with (27) and (28), and select one for
use in network performance analysis based on numerical simulation
studies.
Noting that I(t � j) � I(t � 1) � � q) �j j� r (t � l (t �q�0 0 q�0 0

and defining Sj (I(t � 1) � r0(t � q)) and Dj(t)j j• •q) � � � �q�0 q�0

l0(t � j), the objective in (S-OLFC) can be restated as
E[G(Sj � Dj(t))|{l(t)}]. If (27) and (28) are re-hmin �{r(t)},(S , . . ,S ) j�00 h

laxed, then clearly � l0(t) and �* •S*(t) S (t) � argmin E[G(Sj0 S jj

Dj(t))|{l(t)}] for j � 1 will be optimal since the summation in the
objective can be decomposed. The corresponding optimal (t � j)r*0
would then be obtained as � � I(t � 1) and � j) �r*(t) S*(t) r*(t0 0 0

� for j � 1. However, in general the attainment of thisS*(t) S* (t)j j�1

solution will be obstructed by some of the constraints. We therefore
seek a feasible point that is “close” to this ideal in some sense. Our
candidate heuristics each have two steps: (Step 1) projecting

into a feasible (r0(t � 1), . . , r0(t � h)), and (Step 2)(S*(t), . . , S*(t))0 h

constructing {r(t)} to declare to the supplier based on this (r0(t �

1), . . , r0(t � h)). Below are two proposed alternatives for each step.

Step 1: (Option a) Component-wise projection. By the above argu-
ment, the ideal would be to achieve r0(t) � � I(t � 1) and r0(tS*(t)0

� j) � � for j � 1. However, (27) and (28) togetherS*(t) S* (t)j j�1

require that (1 � � 1) � r0(t � j) � (1 � �in inX )r (t A )r (tj�1 j�1 j�1 j�1

1) for all j. So one approach is to get as close as possible term-wise,
subject to this constraint, i.e.,

in(S*(t) � I(t � 1)) � [(1 � X )r (t � 1),0 1 1
in(1 � A )r (t � 1)] for j � 01 1r (t � j) �0 in(S*(t) � S* (t)) � [(1 � X )r (t � 1),j j�1 j�1 j�1� in(1 � A )r (t � 1)] for j � 1j�1 j�1

(Option b) Lexicographic projection. Here the projection is per-
formed sequentially, with the index j target taking into account what
has been installed for all preceding terms. So, for all j,

j�1

r (t � j) � S*(t) � I(t � 1) � r (t � q)0 j � 0� � ��
q�0

in in� [(1 � X )r (t � 1), (1 � A )r (t � 1)]j�1 j�1 j�1 j�1

The rationale for this approach is that the consequences of decision
variables for near-term replenishments exceed those for periods fur-
ther off. Also, the latitude for change is less broad for periods closer
in. So it makes sense to first position r0(t) as close to its ideal value
as possible, then compensate for discrepancies in that match when
r0(t � 1) is selected, and so on.

Step 2: (Option a) Minimum commitment. This is the same approach

as at the flex node: max[r0(t � j)/(1 � (1 �in in•r (t) � A ), x )r (tj j j�1 j�1

� 1)] for j � 0, . . , h. The (r0(t � 1), . . , r0(t � h)) chosen at Step 1
takes into account the relative impacts of overage and underage.
Here we install the (component-wise) minimum allowable {r(t)} that
renders those targets attainable.

(Option b): Centering. The selection of rj(t) induces [(1 � (1inX )r (t),j j

� as the feasible range for r0(t � j). This option positionsinA )r (t)]j j

that interval so that the target r0(t � j) sits as close to the midpoint

(rj(t)[(1 � � (1 � as is allowed by (27): rj(t) r0(t �in in •X ) A )]/2) �j j

j)/[(2 � � � [(1 � � 1), (1 � (t �in in in inA X )/2] x )r (t � )rj j j�1 j�1 j�1 j�1

1)]. Whereas minimum commitment logic was used at the flex node
because maximum potential customer requests are already incor-
porated into the targets, at a semi-flex node the updates to {l(t)} are
unconstrained. There is uncertainty as to the direction and extent
that the desired r0(t � j) will move going forward in time, so this
method tries to keep the latest target at the middle of the window
to leave room to track it in either direction.
The above alternatives suggest the following four distinct heuris-

tics, labeled SF1–SF4:

Step 2: (r0(t), . . , r0(t � h))
→ {r(t)}

Min.
commitment Centering

Step 1: Component-wise SF1 SF2
→(S*(t), . . , S*(t))0 h

(r0(t), . . , r0(t � h))
Lexicographic SF3 SF4
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We compare these methods via numerical simulation, using the
EWMA process defined in §3. For this process, an unbiased and
minimum mean-squared-error estimate of period (t � k) demand is
provided by setting lk(t) � E[l0(t � � for k � 1 (thek)|l̄ (t)] l̄ (t)1 1

last equality is true since l0(t � k) � � d � , cf.k�1l̄ (t) � n n1 m�1 t�m t�k

Box et al 1994). Cumulative demand is Dj(t) � l0(t) � �j • l̄ (t)1

(dn � , a normal variate with moments E[Dj(t)] � l0(t)j�1� 1)nn�0 t�j�n

� and Var[Dj(t)] � jr2[d2(j � 1)(2j � 1)/6 � d(j � 1) � 1].j • l̄ (t)1

(Calculation of the latter uses identities n2 � k(k � 1)(2k � 1)/k�n�1

6 and n � k(k � 1)/2.)k�n�1

We assume G(x) � co[x]� � cu[x]�, where co and cu are respec-
tively the linear holding and backorder costs, in which case the

are easily obtained. Specifically, and, by newsven-S*(t) S*(t) � l (t)j 0 0

dor logic (cf. Heyman and Sobel 1984), �1S*(t) � F (c /(c � c ))j D (t) u o uj

where () is the distribution of Dj(t). For the EWMA process, theFD (t)j

above analysis suggests that S*(t) � l (t) � j • l̄ (t) � (j j •	j 0 1

where j � U�1(cu/(co �2r) d (j � 1)(2j � 1)/6 � d(j � 1) � 1	
cu)) and U() is the standard normal distribution function.
We compare the heuristics over scenarios distinguished by values

used for d, r, and (Ain, Xin): d � {0.3, 0.7}, r � {10, 20}, and (Ain, Xin)
� {SY, UD, DD} as described below. Profile SY has Ain � Xin �

{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}, symmetrical in
upside and downside flexibility. UD is upside dominant, withAin �

{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} and Xin � {0.00,
0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45}.DD is downside dom-
inant, with Ain � {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45} and Xin � {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}.
Cost parameters (co, cu) � (30, 150) are used. The performance of
each heuristic is evaluated by the average cost over 100 sample
paths, each path representing 500 periods. � 100 in all cases.l̄ (0)1

The outcomes of the 12 scenarios support the following conclu-
sions, with numerical details omitted due to space limitations (see
Tsay 1995). SF3 and SF4 are each uniformly superior to both SF1 and
SF2 by far, with results that are statistically significant with p-values
no greater than 1 � 10�17 in all cases (and typically even lower). So
Lexicographic projection dominates Component-wise projection for
Step 1 regardless of the option taken at Step 2, presumably for its
handling of the interrelationships between periods. There is no dom-
inant approach at Step 2, with relative performance varyingwith the
flexibility structure. We thus select SF3 as the semi-flex node oper-
ating policy, acknowledging the existence of alternatives that are
equally easy to implement and give superior performance in some
settings.
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