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Abstract This paper develops an integrated model for analyzing and designing structured
supply contracts from the perspectives of the buyer, the supplier, and the entire supply chain in
an open supply chain. We first present a flexible framework that encapsulates a wide range of
contracting types that have been studied previously.We then introduce the concept of relative
contract value vis-a-vis a reference alternative, which facilitates addressing explicitly both
the demand uncertainty and the price uncertainty within which real supply relationships
operate. To guide practitioners in designing optimal supply contracts, we derive closed-form
expressions for optimal contract structure, quantity commitment and flexibility, pricing, and
sharing policy aswell as the conditions tomaximize total supply chain profitability associated
with a contract. Our research demonstrates that structured contracts consisting of several fixed
and/or flexible components are capable ofmaximizing total supply chain profit and allocating
profit between contracting parties arbitrarily.
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1 Introduction

Supplier relationship management and supply contracting are emerging as critical ways to
improve supply chain performance. Supply contracts, however, are often difficult to design.
First, the contracts employed in the real business world are diverse and complex. In many
cases, a single contract will combine multiple provisions in order to address a broad range of
issues and risks, which enormously complicates contract specification and analysis. Sec-
ond, although supply contracts can assure supply, safeguard investments in the specific
relationship, and reduce uncertainty in cost, they do come with their own hazards. For exam-
ple, if demand turns out to be weak, committing to buy a fixed quantity would result in
significant inventory buildup and write-offs. Third, supply contracting does not occur in
an isolated and exclusive supply chain. As argued by Macneil (1980), contracts become
irrelevant when the parties have no alternative courses of action. Access to alternatives
affects the perception of contract value and the enforcement. Supply contracting requires
appropriate pricing, a careful balancing of cost against other priorities, mutually agreeable
allocation and sharing of the consequences of uncertainty, and proper design of contract
structure.

As a response to these challenges, which are insufficiently addressed in the literature,
this paper proposes a flexible framework for analyzing and designing structured contracts
from the perspective of the buyer, the supplier, and the supply chain. We provide under-
standing and general guidelines on how to use and design structured contracts in an open
supply chain: how to construct a structured contract, what are the possible values of con-
tract parameters, when the contract can maximize the joint value, and how joint value can
be allocated. Our study is unique in four aspects. First, we do not restrict consideration to
a given type of supply contracts. Instead, we directly deal with the diversity in contract
forms in an integrated manner and provide a flexible and unified framework that practition-
ers can employ and extend to analyze their specific problems in both manufacturing and
retailing environments. Thus, practitioners need not go to individual studies under different
assumptions and specific contexts in the literature. Second, we do not assume a bilateral
monopoly in an isolated and exclusive contracting episode; rather, we allow for dynamically
evolving alternative sources and spot market purchasing. To achieve this, we introduce a
comparative and value-added concept of supply contract value (defined in Sect. 3). Third,
we propose a new contract format called a structured contract, which may combine mul-
tiple clauses specifying quantity commitment and flexibility, price discounts, revenue and
cost sharing, return privileges, and capacity reservation terms. We analyze the properties of
different structured contracts and provide guidelines and insights regarding how to price,
commit to quantity, negotiate for flexibility, and specify a structured contract to deal with
demand and price uncertainty. We also develop conditions under which joint supply chain
value can be maximized and analyze how this value can be divided. We show that a struc-
tured contract consisting of several components provides more powerful mechanisms to
achieve supply chain optimality and to divide the joint value between the contract parties.
Fourth, we attempt to deal with not only demand uncertainty but also price uncertainty
of each component. To capture the price uncertainty, we introduce a Geometric Brown-
ian process to model the uncertain fluctuation and temporal evolution of the spot market
price.

The rest of the paper is organized as follows. Section 2 briefly reviews related literature.
Section 3 presents a component-based model to formulate various contract arrangements and
structured contracts. Subsequently, we model demand and price uncertainty and introduce
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the concept of contract value in an open supply chain. Section 4 analyzes the properties
of various contract components and discusses how to design optimal contracts. Section 5
concludes. All proofs are relegated to the “Appendix”.

2 Related literature

A large body of research has examined replenishment policy under a given supply contract
and discussed how to improve supply chain efficiency and achieve channel coordination (see,
e.g., Barnes-Schuster et al. 2002; Cachon and Lariviere 2005; Burnetas et al. 2007; Li et al.
2013; Zhao et al. 2014; Roy et al. 2015). Rather than summarize this vast literature, we
refer the reader to Tsay et al. (1999), Cachon (2003) and Kleindorfer and Wu (2003) for
comprehensive reviews.

Originating from inventory theory, a large branch of supply contract research dealswith the
uncertainty of demandand emphasizes the value offlexibility in the quantity of purchase (Tsay
et al. 1999; Sethi et al. 2004). Less attention has been paid to the contract price uncertainty,
i.e., the likelihood that the prenegotiated contract price will turn out to be unfavorable relative
to alternatives, and the impact of alternatives and spot market purchasing.

Li and Kouvelis (1999) and Fotopoulos et al. (2008) develop methodologies to determine
the value and the purchase time for time and quantity flexible supply contracts under price
uncertainty. One significant difference between their works and ours is that in their setting
the contract price rather than the spot market price is stochastic. Further, they assume deter-
ministic demand and do not consider spot market purchasing. Cohen and Agrawal (1999)
analyze the choice between long-term fixed-price contracts and short-term contracts which
have uncertain price but provide flexibility. Bonser and Wu (2001) link purchasing from a
given long-term contract to that from a spot market whose price is stochastic. Martinez-de
Albeniz and Simchi-Levi (2005) investigate optimal replenishment strategy under option
contracts in the presence of a spot market. Although a so-called portfolio contract is modeled
as containing multiple options, the options in a single portfolio contract are assumed to be
independent of each other. Li et al. (2009) consider a supply contracting problem in which
the buyer faces price and demand uncertainty and compare spot market purchasing with
long-term contracting with a single supplier. Like most other studies of supply contracting
in the presence of a spot market, these papers focus on designing contracts to maximize the
buyer’s utility with little attention to the supply chain efficiency, profit split, and structured
supply contracts. As explained by Tsay et al. (1999), Pasternack (2002) and De Giovanni and
Roselli (2012), contract schemes often influence players’ strategies through improvements
in their individual profits.

Araman et al. (2003) study optimal replenishment strategy as well as system efficiency
under a linear risk-sharing agreement, which resembles a quantity flexibility contract but
assumes the price increases linearly with the amount reserved but not purchased. In their
work, spot market purchasing serves only as a secondary supply source after the contract
quantity is purchased and contract price uncertainty is not explicitly revealed.Wuet al. (2002),
Wu and Kleindorfer (2005) and Golovachkina and Bradley (2003) integrate supply contracts
with spot market purchasing with a stochastic market price, and investigate both the buyer’s
and the supplier’s perspective. These works, however, are limited to option contracts and do
not address structured supply contracts. In addition, to their supplier the spot market is only a
secondary channel for liquidating excess inventory and the impact of alternative opportunities
is ignored. Thus, contract price uncertainty for the supplier is not explicitly treated.
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Fig. 1 A structured contract as a combination of fixed and flexible components

3 Modeling the structured supply contract

From an economic point of view, a broad range of supply contracts can be broken into several
standard components, which are the smallest contract element containing a specific identifi-
able feature. Formally, a contract component i at time t is a vector: (Pti , Xti , QL

ti , Q
U
ti , θ),1

where Pti is the purchase price which is valid for purchased quantities between QL
ti and

QU
ti , Q

L
ti < QU

ti ; Xti the up-front unit cost incurred at the contracting time; and θ the frac-
tion of the total revenue the buyer can retain. Note that Xti , which can also be termed
a unit reservation fee, is a parameter usually used for flexible components but not for
fixed components. In addition, Xti locks in at the contracting time an obligation to pay
Xti (QU

ti − QL
ti ) at the contract’s conclusion, which functions as a sunk cost at the purchas-

ing time, irrespective of the quantity eventually purchased. To simplify notation we will
suppress the time index t and the component index i whenever doing so will not cause
confusion.

Components are either flexible or fixed. Flexible components provide the buyer a right,
instead of an obligation, to purchase up to Qti = (QU

ti − QL
ti ). Note that a fixed component

in this model cannot be treated simply as a special case of a flexible component, since
fixed components push the demand uncertainty and excess inventory to the buyer, whereas
flexible components shift demand and price uncertainty and excess inventory to the supplier.
A buyer ought to compensate the supplier for the uncertainty reduction achieved by flexible
components, perhaps in a proportional manner. The up-front unit cost, Xti , represents such
compensation at period t on a unit basis. A structured supply contract is a serial combination
of fixed components and/or flexible components indexed by i in the purchase sequence,
satisfying QU

i = QL
i+1, as depicted in Fig. 1.

This component-based contract representation can formulate a variety of well-known
supply contracts, including wholesale contracts (Cachon 2003), quantity flexibility contracts
(Tsay et al. 1999), revenue-sharing contracts (Cachon and Lariviere 2005), quantity discount
and premium contracts (Tomlin 2003; Burnetas et al. 2007), capacity reservation contracts
(Eppen and Iyer 1997), option contracts (Cheng et al. 2011; Barnes-Schuster et al. 2002),
return and buyback contracts (Pasternack 1985; Bose andAnand 2007). Consider a structured
contract where the buyer reserves a quantity of qr at a discount price w1. After demand is
revealed, the buyer is allowed to adjust his purchase quantity down to a minimum quantity
qmin with a unit penalty cost wp or up to qmax (total available capacity) at a normal price
w2. Such a contract is a combination of a fixed component {P = w1, QL = 0, QU = qmin},
a flexible component {P = w1 − wp, X = wp, QL = qmin, QU = qr }, and a flexible
component {P = w2, X = 0, QL = qr , QU = qmax}, as shown in Fig. 2.

Similarly, a contract with purchase quantity qmax, price w, and a return policy that allows
the buyer to return up to qr of the purchased quantity for credit b per unit is a combination

1 The notation used in the analysis is summarized in “Appendix 2”.
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Fig. 2 The example contract as a combination of a fixed component and two flexible components

of a fixed component {P = w, QL = 0, QU = qmin − qr } and a flexible component
{P = b, X = w − b, QL = qmax − qr , QU = qmax}.

In a structured contract, flexible components always follow the fixed components in the
quantity order. Flexible components with a quantity flexibility policy should come after those
with a return policy since a return policy requires that a quantity as high as its maximum
quantityQU

ti shouldhavebeenpurchased at time t at first,which renders the quantityflexibility
below QU

ti meaningless.
We define supply contract value, denoted by V , as the net expected profit accrued over a

contract’s duration in comparison with a reference alternative. The reference alternative rep-
resents the best alternative source and provides a benchmark for contract valuation. This
paper assumes the spot market is the best alternative source and hence uses the terms
“reference alternative” and “spot market” interchangeably. Letting St be the price of the
reference alternative at period t , the incremental price of a contract component will be
�P = Pti − St . This model also accommodates supply contracts in a retailing setting
with an interpretation of St as the retail price. In this case, St − Pti represents the retailer’s
unit gross profit margin. Similarly, suppliers have opportunities to sell their products to
alternative buyers or on the spot market. Let βSt be the price that the supplier can achieve
outside the focal supply chain, where 0 < β ≤ 1. In effect, β represents the supplier’s
market and bargaining power. We assume the price of the reference alternative St is exoge-
nous and evolves over time stochastically, exposing both parties to price uncertainty. Let
Sm be the price beneath which suppliers will exit the industry. Denote S

′
t = St − Sm

and assume S
′
t follows a Geometric Brownian process with drift parameter a and variance

parameter σ (Li and Kouvelis 1999; Hull 2006. Specifically, ln[S′
t ] is normally distributed

with mean μt = (a − σ 2/2)t and variance σ 2
t = σ 2t , where a is the expected apprecia-

tion rate of S
′
t , and σ the volatility coefficient. Alternatively, St is lognormally distributed

with mean E[St ] = (S0 − Sm)eat + Sm and the cumulative distribution function (Hull
2006)

Ft (St ) = N0,1

(
ln[(St − Sm)/(S0 − Sm)] − (a − σ 2/2)t

σ
√
t

)
, (1)

where N0,1(·) is the standard normal cumulative distribution function.
For manufacturing companies, the demand for components is mainly prescribed by

the demand for the higher-level end products. Following Cohen and Agrawal (1999) and
Martinez-de Albeniz and Simchi-Levi (2005), we assume purchasing aims to support these
demands, and has no price speculation motive. We define demand, Dt , as the quantity to be
purchased at the beginning of period t . Dt may have alternative interpretations in different
contexts. For instance, in a return contract Dt can be seen as the actual quantity demanded
in production during time t . We assume Dt is distributed over [Da

t , D
b
t ] with a truncated

normal distribution function �t (·). Throughout this paper we use a tilde (∼) to distinguish a
random variable from a realized value.
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4 Designing optimal supply contracts

The sequence of events and the notation in our model are as follows: In the contracting
stage, the buyer and the supplier negotiate the contract structure and parameters through
multiple offers and counteroffers. In each round, the supplier offers Pi or (Pi , Xi ) for each
range (QL

i , QU
i ) and the buyer makes his counteroffer (QL ′

i , QU ′
i ) for each Pi or (Pi , Xi ) to

optimize his own expected contract value according to anticipated Dt and S. In the purchasing
stage, Dt and St , 1 ≤ t ≤ T , are revealed. The buyer purchases the fixed quantity committed
and optimally allocates the residual demand between flexible components and the spotmarket
tomaximize contract value. From the fixed components, the buyer takes any excess inventory,
which can be salvaged at hSt after period t , where h < β. From the flexible components, the
quantity committed but not purchased results in a loss of eSt for the supplier. This is because
the quantity committed but not purchased by the buyer can be salvaged for (β − e)St after
period t . The open supply chain is depicted in Fig. 3.

4.1 Designing optimal fixed components

Fixed components with fixed purchase quantity simplify contract implementation and logis-
tics management, and reduce the variance of orders and production experience by the
suppliers. With a fixed component, goods are “pushed” to the buyer, who bears the demand
risk in the supply chain (Cachon 2003). Because predetermined quantity enables them to
manage capacity more efficiently, suppliers are often willing to attach price discounts to
fixed components.

For the buyer, the expected value from afixed component i in a structured contract, E[V B
ti ],

is

E
[
V B
ti

]
=
∫ QU

ti

QL
ti

[
E[S̃t ]

(
Dt−QL

ti

)
+ hE[S̃t ]

(
QU

ti −Dt

)
−Pti

(
QU

ti − QL
ti

)]
�

′
t (Dt )dDt

+ (
E[S̃t ] − Pti

) (
QU

ti − QL
ti

) ∫ ∞

QU
ti

�
′
t (Dt )dDt + (

hE[S̃t ] − Pti
) (

QU
ti − QL

ti

)

×
∫ QL

ti

0
�

′
t (Dt )dDt . (2)

The first, second, and third terms in Eq. (2) are the buyer’s value of purchasing from
component i as opposed to the spot market plus the salvage value of excess inventory when
QL

ti < Dt < QU
ti , Dt > QU

ti , and Dt < QL
ti , respectively. Simplifying Eq. (2) yields

Fig. 3 The open supply chain
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E
[
V B
ti

]
=(

E[S̃t ]−Pti
) (

QU
ti − QL

ti

)
−(1 − h)E[S̃t ]

∫ QU
ti

QL
ti

�t (Dt )dDt . (3)

The buyer’s expected marginal value of commitment is then

dE
[
V B
ti

]
/dQU

ti = (
E[S̃t ] − Pti

)− (1 − h)E[S̃t ]�t

(
QU

ti

)
. (4)

As long as (E[S̃t ] − Pti ) − (1 − h)E[S̃t ]�t (QU
ti ) > 0, the buyer is inclined to increase

commitment. Given Pti , Pti < E[S̃t ], the maximum quantity the buyer is willing to commit,
QU

ti (Pti )max, will be

QU
ti (Pti )max = �−1

t

(
E[S̃t ] − Pti

(1 − h)E[S̃t ]
)

. (5)

For the supplier, the expected contract component value, E[V S
ti ], is

E
[
V S
ti

]
= (

Pti − βE[S̃t ]
) (

QU
ti − QL

ti

)
. (6)

From Eqs. (3) and (6), the expected joint value for the entire supply chain, E[π Fix
ti ], is

E
[
π Fix
ti

]
= E

[
V B
ti + V S

ti

]
= (1−β)E[S̃t ]

(
QU

ti − QL
ti

)
−(1−h)E[S̃t ]

∫ QU
ti

QL
ti

�t (Dt )dDt .

(7)
Then, the marginal value of commitment for the supply chain is

dE
[
π Fix
ti

]/
dQU

ti = (1 − β)E[S̃t ] − (1 − h)E[S̃t ]�t

(
QU

ti

)
. (8)

Since Eq. (7) is concave, the global optimal commitment for the supply chain will be

QU∗
t = �−1

t ((1 − β)/(1 − h)). (9)

βE[S̃t ] < Pti < E[S̃t ] must hold in order to ensure the willingness of both parties
to enter the contract. Hence, QU∗

t > QU
ti (Pti )max, indicating that the buyer commits less

than the supply chain optimal quantity. Thus we establish for the open supply chain setting
a property that is known of wholesale-price-only contracts in “selling-to-the-newsvendor”
types of closed supply chains (Cachon 2003):

Proposition 1 A single fixed component cannot achieve optimality for the supply chain.

The joint supply chain value of a contract consisting of a single fixed component is
maximized at Pt = βE[S̃t ], which gives the entire supply chain value to the buyer. Therefore,
supplier participation will be contingent on the ability to reallocate profit within the supply
chain.

Under a revenue-sharing policy which stipulates that the supplier can share a fraction 1−θ

of the buyer’s total revenue, the buyer’s expected contract value will be

E
[
V B
ti

]
= (

θE[S̃t ] − Pti
) (

QU
ti − QL

ti

)
− θ(1 − h)E[S̃t ]

∫ QU
ti

QL
ti

�t (Dt )dDt . (10)

θ affects value allocation without direct effect on joint supply chain value. Thus, as in the
selling-to-the-newsvendor setting (Cachon and Lariviere 2005), in the open supply chain
environment we can obtain:
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Proposition 2 (1) In a fixed component, a revenue-sharing policy can induce the buyer to
commit up to Db

t when θ is chosen appropriately, where Pti/E[S̃t ] ≤ θ ≤ Pti/(hE[S̃t ]).
(2) If θ = Pti/(βE[S̃t ]), a revenue-sharing policy can achieve the supply chain optimum.
Adjusting θ and keeping Pti = θβE[S̃t ] will allocate joint value arbitrarily.

Revenue-sharing, however, incurs administrative burden. The supplier may have difficulty
monitoring the buyer’s revenues and verifying whether they are being appropriately shared.
Therefore, revenue-sharing might not be implementable in certain situations (Cachon and
Lariviere 2005).

Proposition 3 (1) Decomposing a fixed component with a price Pt into a discount scheme
with n subcomponents such that E[S̃t ] ≥ Pt1 > · · · > Ptn = Pt ≥ βE[S̃t ] will trans-
fer a portion of the buyer’s value to the supplier. (2) The maximum value of the supply
chain can be achieved by a contract containing n fixed components with Ptn = βE[S̃t ]. As
n → ∞ , the supplier can extract the supply chain’s entire expected joint contract value,
E[S̃t ]

∫ 1
β

�−1
t ((1 − x)/(1 − h))dx.

Adjusting n and Pt1, . . . , Pt,n−1 changes how the joint valuewill be split.
∑n

i=1 Pti (Q
U
ti −

QL
ti ) is the supplier’s total revenue. Figure 4 illustrates how for a fixed supply chain structure

the supplier can capture more value via several fixed components, i.e., C2, C3, and C4,
with decreasing prices (incremental quantity discount policy) than from a contract with
a single fixed component C1. In contrast, a portion of value will be transferred from the
supplier to the buyer through the use of an increasing price scheme (incremental piece-wise
quantity premium policy) with componentsC5,C6, andC7. Thus, as found in the newsvendor
environment, a discount scheme can generally be used to achieve supply chain optimality
(e.g., Burnetas et al. 2007).

4.2 Designing flexible components

In providing flexibility a supplier relieves the buyer of some of the consequences of uncer-
tainty. This is consistentwith the “pull” principle andmay improve the supply chain efficiency
when the supplier is better positioned to accommodate uncertainty due to an ability to risk-
pool (Cachon 2003). Flexible components, however, are difficult to analyze due to their
flexibility and interdependence. We examine flexible components by means of marginal
analysis. Let us first consider a single flexible component with QL

t = 0. Recall that we
drop the component index i throughout this work when treating a single component. Given
(Xt , Pt ) and QU

t , the buyer’s expected value is the value expected to be realized at purchasing
time t minus the up-front reservation cost:

Fig. 4 Fixed components that differ in pricing scheme and structure
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E
[
V B
t

]
=
[∫ QU

t

0
Dt�

′
t (Dt )dDt+

∫ ∞

QU
t

QU
t �

′
t (Dt )dDt

]∫ ∞

Pt
(St − Pt )F

′
t (St )dSt − Xt Q

U
t .

(11)
The buyer’s marginal expected value with respect to the reserved quantity QU

t is

dE
[
V B
t

]/
dQU

t =
(
1 − �t

(
QU

t

)) ∫ ∞

Pt
(St − Pt )F

′
t (St )dSt − Xt . (12)

As long as dE[V B
t ]/dQU

t ≥ 0, the buyer is willing to reserve more. The maximum
quantity up to which the buyer is willing to reserve, QU

t (Xt , Pt )max, is

QU
t (Xt , Pt )max = �−1

t

(
1 − Xt∫∞

Pt
(St − Pt )F

′
t (St )dSt

)
, (13)

where Xt ≤ ∫∞
Pt

(St − Pt )F
′
t (St )dSt .

For the supplier, the expected contract value is

E
[
V S
t

]
=
[∫ QU

t

0
Dt�

′
t (Dt )dDt +

∫ ∞

QU
t

QU
t �

′
t (Dt )dDt

]

∫ ∞

Pt
[Pt + (e − β)St ] F

′
t (St )dSt + (

Xt − eE[S̃t ]
)
QU

t . (14)

The supplier’s marginal expected value with respect to the commitment is

dE
[
V S
t

]/
dQU

t =
(
1 − �t

(
QU

t

)) ∫ ∞

Pt
[Pt + (e − β)St ] F

′
t (St )dSt + Xt − eE[S̃t ].

(15)

Summing Eqs. (11) and (14) provides the expected joint value of the contract for the
supply chain:

E
[
π Flex
t

]
=
(
QU

t −
∫ QU

t

0
�t (Dt )dDt

)
(1 + e − β)

∫ ∞

Pt
St F

′
t (St )dSt − eE[S̃t ]QU

t ,

(16)

which is a concave function of QU
t .

Note that Eqs. (12), (13) and (15) can be extended to a flexible component in a structured
contract consisting of multiple components since the marginal expected value with respect
to QU

ti of flexible component i is a function of (Xti , Pti ) at the point QU
ti , independent of

QL
ti and the conditions of other flexible components. For any flexible component, however,

the ultimate negotiated QU
ti will be greater than QU

t,i−1 but not greater than the maximum

quantity up to which the buyer is willing to reserve, QU
ti (Xti , Pti )max, i.e., QU

t,i−1 < QU
ti ≤

QU
ti (Xti , Pti )max.
The marginal value of QU

ti in a flexible component i for the supply chain is then:

dE
[
π Flex
t

]/
dQU

ti =
(
1 − �t

(
QU

ti

))
(1+e−β)

(
E[S̃t ] −

∫ Pti

0
St F

′
t (St )dSt

)
−eE[S̃t ].

(17)

Proposition 4 (1) The maximum quantity the buyer is willing to reserve and the buyer’s
value of flexible component i are decreasing in Xti , 0 ≤ Xti ≤ E[S̃t ]. If Xti = 0,
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flexible component i is always valuable for the buyer and the maximum quantity up to
which the buyer is willing to reserve reaches its maximum Db

t .
(2) The quantity the buyer is willing to reserve and the buyer’s value as well as the supply

chain’s expected value are non-increasing in Pti .

Different pairs (Xti , Pti ) result in different expected joint value and splits of that value.
Xti affects the joint value indirectly through the buyer’s reserved quantity. Reducing Pti by
�Pti affects the expected value in an open supply chain in three respects. First, when the
realized demand Dt is above QL

ti and the realized market price St is higher than Pti , there is a
value-transfer effect, i.e., a value of (min(Dt , QU

ti ) − QL
ti )�Pti will be transferred from the

supplier to the buyer. Second, there is a purchase-winning effect . When the realized market
price satisfies Pti − �Pti < St < Pti , the buyer will turn from the spot market to the supply
contract at the purchasing stage. Third, there is a commitment-inducing effect. The buyer has
an incentive to reserve more at the contracting stage.

Proposition 5 For a single flexible component, the following are optimal for the supply
chain:

P∗
t = F−1

t (0), and X∗
t = (

E[S̃t ] − P∗
t

)
e/(1 + e − β). (18)

A single flexible component is not always able to achieve maximum supply chain value.

In specific contexts Pt may be subject to some additional constraints. For instance, the
supplier may require that Pt exceed the marginal production cost. The supply chain optimal
Pt is always the lowest allowable price.

Partially consistent with the finding of Pasternack (1985) that coordination in a selling-
to-the-newsvendor setting occurs with a partial return refund, in our open supply chain
environment both no compensation (Xt = 0) and complete compensation (Xt = ∫∞

Pt
(St −

Pt )F
′
t (St )dSt ) are supply chain suboptimal. When there is no compensation, i.e. Xt = 0, the

buyerwill reserve a quantity greater than or equal to hismaximumdemand, i.e.,�t (QU
t ) = 1.

As indicated by Eq. (16), the marginal supply chain value is dE[π Flex
t ]/dQU

t = −eE[S̃t ] ,
implying that the buyer will overcommit. In contrast, complete compensation gives the buyer
no incentive to commit the supply chain optimal quantity.

In the selling-to-the-newsvendor setting, a continuumof pairs (Xt , Pt ) exists for unlimited
return contracts with partial refund (Pasternack 1985) or option contracts (Cheng et al. 2011)
to coordinate the system. In the presence of a stochastic spot market, however, the contract
price must be set sufficiently low to prevent the spot market from “stealing” the purchase
from the contract. This result is also observed in Wu et al. (2002) and Golovachkina and
Bradley (2003). But unlike theseworks, we demonstrate that when the supplier has alternative
opportunities, the constraint Pt = F−1

t (0) may make a flexible component fall short of
providing the supplier an incentive to achieve the supply chain optimum. This complements
the finding of Bose and Anand (2007) that an equilibrium return policy generally makes
the supplier worse off in comparison with a price-only contract when the contract price is
exogenously set low.

In contrast to a contract containing a single component, a structured contract possesses
a more powerful mechanism to share the consequences of uncertainty, transfer value, and
provide incentives for both parties to maximize the joint contract value and improve the
supply chain efficiency, as demonstrated next.
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Proposition 6 A structured contract consisting of n flexible components with price Pti =
F−1
t (0) and increasing Xti , 1 ≤ i ≤ n, satisfying

eE[S̃t ] −
(
1 − �t

(
QU

ti

)) (
Pti − (β − e)E[S̃t ]

) ≤ Xti ≤
(
1 − �t

(
QU

ti

)) (
E[S̃t ] − Pti

)
,

(19)
can maximize joint supply chain value and split the joint value arbitrarily.

Proposition 7 For flexible component i in a structured supply contract, {Pti , Xti , QL
ti , Q

U
ti },

the following relation holds:

eE[S̃t ] −
(
1 − �t

(
QU

ti

)) ∫ ∞

Pti
[Pti − (β − e)St ]F ′

t (St )dSt

≤ Xti ≤
(
1 − �t

(
QU

ti

)) ∫ ∞

Pti
(St − Pti )F

′
t (St )dSt . (20)

The lower and the upper bounds on Xti intersect at the supply chain optimal quantity QU∗
t

for a given Pti .

Consider an illustrative numerical example used throughout this paper: E[S̃t ] = 10,a = 0,
Sm = 4, σ = 0.2, h = 0.55, e = 0.1, θ = 0, and β = 0.7. Demand follows a truncated
normal distribution over the range [0, 200] with expected value 100 and standard variance
20 . Consider a flexible component with P6i = 8 at period 6.

Figure 5 illustrates how the lower and the upper bound of X6i vary with the increase of
the commitment. When the commitment is above the supply chain optimal quantity QU∗

t , no
unit compensation X6i can motivate both parties to increase commitment.

Proposition 8 When Xti > 0, the buyer’s marginal value of QU
ti in flexible component i and

the maximum quantity up to which the buyer is willing to reserve increase in σt . There is a
threshold Pa

t , where (S0− Sm) exp(at− 1
2σ

2
t )+ Sm ≤ Pa

t < (S0− Sm) exp(at+ 1
2σ

2
t )+ Sm,

such that the supply chain’s marginal value of QU
ti increases in σt if Pt > Pa

t and decreases
in σt if Pt < Pa

t .

This proposition implies the buyer tends to reserve a larger quantity from flexible compo-
nents over time because the future market price becomes more volatile. This also suggests
that the supplier would tend to increase contract price or require more compensation for pro-
viding flexibility when the uncertainty ofmarket price increases. The supply chain’s marginal
value may decrease over time due to increased market price volatility when P is low. The

Fig. 5 Bounds on unit compensation
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underlying reason is that the buyer’s opportunistic behavior, i.e., purchasing from the spot
market at a lower price instead of from the contract, will be more sensitive to the increase in
market price volatility when P is low.

Proposition 9 Let Pt be the minimum price the supplier is willing to offer. If h < β − e
and (1+ e− β)

∫ Pt
0 St F

′
t (St )dSt < (1− β)E[S̃t ], it is supply chain optimal to employ fixed

components in a structured contract over the quantity range

0 ≤ Qt ≤ �−1
t

(
(1 + e − β)

∫ Pt
0 St F

′
t (St )dSt

(1 + e − β)
∫ Pt
0 St F

′
t (St )dSt − (e + h − β)E[S̃t ]

)
, (21)

and flexible components over the quantity range

Qt > �−1
t

(
(1 + e − β)

∫ Pt
0 St F

′
t (St )dSt

(1 + e − β)
∫ Pt
0 St F

′
t (St )dSt − (e + h − β)E[S̃t ]

)
. (22)

Otherwise, it is supply chain optimal to employ fixed components.

An optimal mixture of fixed and flexible components is supply chain optimal in some
cases in our model, as firm orders plus options (Barnes-Schuster et al. 2002) or minimum
commitment plus flexible quantity (Tsay et al. 1999) in the selling-to-the-newsvendor setting.
Consider the case of P6 = 8 at period 6 in the previous numerical example.

Figure 6 shows that the marginal supply chain value of an optimal contract consisting of
fixed components is greater than that of an optimal contract consisting of flexible components
over the range (0, Q̂t ). Fixed componentsmay be advantageous over flexible components due
to the buyer’s possible opportunistic behavior. With the increase in Qt , the benefit of quantity
flexibility will increase, which mitigates the adverse effect of the buyer purchasing from the
spot market, and makes flexible components more valuable. In other cases, however, the
benefit of quantity flexibility might not be sufficient to offset the adverse effect of the buyer’s
possible opportunistic behavior or the buyer may be better positioned than the supplier to
process the excess inventory. In other words, using fixed components improves supply chain
efficiency.

This proposition also indicates that fixed components tend to be better for the supply chain
with the increase of h, whereas flexible components become appealing with the decrease
of e.

Fig. 6 Expected marginal supply chain value of fixed and flexible components
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5 Conclusions

This paper develops an integrated model for understanding and designing more flexible and
structured contracts from the perspective of the buyer, the supplier, and the system as a
whole in an open supply chain, defined as one in which both parties have possible alternative
partners. Our research demonstrates that a wide range of contract types can be viewed as a
composite of fixed components and flexible components, where changing the composition
alters the allocation between the contract parties of exposure to the uncertainty in price and
demand. Our work also suggests that the concept of relative contract value with respect to a
reference alternative provides a means to analyze the interaction between a contract and its
alternatives and quantify the ramifications of contract price uncertainty. To assist practitioners
with supply contract design, we explored different contract structures and analyzed how to
configure a structured contract, when the total supply chain profit is maximized, and how
this profit is allocated between the parties.

Our paper reveals some key managerial insights: (i) A contract consisting of only a single
fixed component cannot maximize joint supply chain value, and a contract consisting of only
a single flexible component is not always able to maximize joint supply chain value. (ii)
Structured contracts consisting of several fixed and/or flexible components are capable of
maximizing total supply chain profit and allocating profit between contract parties arbitrarily.
(iii) It is supply chain optimal to partially compensate the supplier for providing flexibility.
There exists a range for the unit cost within which both the buyer and the supplier have an
incentive to increase contract quantity. Beyond the optimal supply chain quantity, however, it
is impossible to provide such an incentive to both parties. (iv)With the increase inmarket price
volatility, the buyer’s marginal contract value and reserved quantity for a flexible component
tend to increase. The marginal joint supply chain value increases in market price volatility
when the contract price is greater than a certain threshold, but decreases otherwise. (v) From
the supply chain’s perspective, flexible components are not necessarily superior to fixed
components in an open supply chain. Depending on the conditions, it may be optimal to
adopt fixed components, flexible components, or a combination.

We look forward to future research that addresses some of the limitations of this paper.
Our formulation uses the spot market as the reference alternative for each party. In reality,
contracts may be written with a range of other partners or supply chains. To address this
explicitly would require modeling a system with multiple suppliers and multiple buyers. Our
general multi-period framework focuses only on the design of supply contracts for individual
periods, but does not consider the ramifications of carrying inventory across periods, such as
the price speculation motive. Allowing such possibilities would expand the dimensionality
of strategies, and accordingly the space of possible contracts. In these the contract structures
could change from period to period, or govern the actions taken across multiple periods
collectively. The increase in complexity might call for heuristic approaches that can find
reasonable policies when optimal ones are too difficult to obtain.

Appendix 1: Proof of Propositions

Proof of Proposition 2 Equation (10) gives the buyer’s maximum commitment

QU
ti (Pti )max = �−1

t

(
θE[S̃t ] − Pti
θ(1 − h)E[S̃t ]

)
, (23)
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which shows that the buyer will commit only QU
ti (Pti )max = Da

t if θ = Pti/E[S̃t ] and
increase commitment to QU

ti (Pti )max = Db
t with the increase of θ to Pti/(hE[S̃t ]). Equa-

tions (23), (9), and (10) indicate that the buyer will commit the supply chain optimal quantity
and the buyer’s contract value will be E[V B

ti ] = θE[π Fix
ti ], if θ = Pti/βE[S̃t ]. 
�

Proof of Proposition 3 The total commitment is dependent on Ptn , irrespective of the price
of components 1 through n−1. By employing fixed components with decreasing component
price Pti , E[S̃t ] ≥ Pt1 > · · · > Ptn ≥ βE[S̃t ], 1 ≤ i ≤ n, the supplier can induce the buyer
to commit up to QU (Ptn)max and gain from the higher price of components 1 through n − 1.
If Ptn = βE[S̃t ], the supply chain achieves its maximum joint value. As n → ∞, if we keep
setting Pt = E[S̃t ] − (1− h)E[S̃t ]�t (Qt ) for Qt over the entire range [0, QU

tn], the buyer’s
marginal value will tend to zero. The supplier will obtain the entire supply chain value, i.e.,

∑
E
[
V S
ti

]
=
∫ E[S̃t ]

βE[S̃t ]
�−1

t

(
E[S̃t ] − Pt

(1 − h)E[S̃t ]
)
dPt , (24)

which can be simplified to E[S̃t ]
∫ 1
β

�−1
t ((1 − x)/(1 − h))dx . 
�

Proof of Proposition 5 Proposition 4 demonstrates that the supply chain value is maximized
if P∗

t = F−1
t (0). Substituting P∗

t = F−1
t (0) into Eq. (17), we obtain the optimal supply

chain commitment QU∗
t = �−1

t ((1 − β)/(1 + e − β)), which indicates the corresponding
X∗
t = e(E[S̃t ]− P∗

t )/(1+ e−β)) from Eq. (13). Equation (15) yields the second derivative
with respect to the commitment Qt of the supplier’s value of a single flexible component:

d2E
[
V S
t

]/
dQ2

t = −�
′
t (Qt )(Pt − (β − e)E[S̃t ]). (25)

P∗
t = F−1

t (0) indicates that P∗
t ≤ Sm . From Eq. (15), we know dE[V S

t ]/dQt = 0
at Qt = QU∗

t . In some cases the supplier always suffers a loss by a supply chain optimal
contract consisting of a single flexible component. For example, if Sm < (β − e)E[S̃t ],
d2E[V S

t ]/dQ2
t > 0, i.e., E[V S

t ] is a convex function in Qt , when 0 < Qt < QU∗
t . Since

E[V S
t ] = 0 at Qt = 0 and dE[V S

t ]/dQt = 0 at Qt = QU∗
t , E[V S

t ] < 0 at Qt = QU∗
t .

In other words, the supplier’s expected value from a single flexible component is negative.
Therefore, the supply chain optimum cannot be achieved. 
�
Proof of Proposition 6 Proposition 7 gives the upper and the lower bounds on Xti as in Eq.
(20). If Eq. (20) holds for component n, the buyer will reserve the supply chain optimal
quantity �−1

t ((1 − β)/(1 + e − β)). Adjusting Xti but keeping Pti = F−1
t (0) for 1 ≤

i ≤ n − 1 changes how the joint value will be split. As n → ∞, at the lower bound,
i.e., Xti = eE[S̃t ] − (1 − �t (QU

ti ))(Pti − (β − e)E[S̃t ]), the supplier’s marginal value
dE[V S

t ]/dQU
t is always zero and the buyer obtains the entirety of the supply chain value.

Conversely, at the upper bound, i.e., Xti = (1−�t (QU
ti ))(E[S̃t ]− Pti ), the supplier obtains

the entire supply chain value. 
�
Proof of Proposition 7 The marginal value for the buyer should be non-negative. Equa-
tion (15) indicates Xti ≥ eE[S̃t ]− (1−�t (QU

ti ))
∫∞
ti [Pti − (β − e)St ]F ′

t (St )dSt . Similarly,

Eq. (12 ) suggests Xti ≤ (1 − �t (QU
ti ))

∫∞
ti (St − Pti )F

′
t (St )dSt . The lower and the upper

bounds on Xti intersect at

Qt = �−1
t

(
1 − eE[S̃t ]

(1 + e − β)(E[S̃t ] − ∫ Pti
0 St F

′
t (St )dSt )

)
, (26)
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which is exactly the supply chain optimal quantity QU∗
t for a given Pti , indicated by Eq.

(17). 
�
Proof of Proposition 8 Integration by parts transforms Eq. (13) into

QU
t (Xti , Pti )max = �−1

t

(
1 − Xti

E[S̃t ] − Pti + ∫ Pti
0 Ft (St )dSt

)
. (27)

To prove
∫ Pti
0 Ft (St )dSt increases in σt , let S

′
t = St −Sm and P

′
ti = Pti −Sm . Equation (1)

gives

d
∫ Pti
0 Ft (St )dSt

dσt
=
∫ P

′
ti

0
N

′
0,1

⎛
⎝ ln

(
S

′
t/S

′
0

)
− μt

σt

⎞
⎠
⎛
⎝1 −

ln
(
S

′
t/S

′
0

)
− μt

σ 2
t

⎞
⎠ dS

′
t . (28)

Let μt = (a − σ 2/2)t , σ 2
t = σ 2t, and x = (ln(S

′
t/S

′
0) − μt )/σt , i.e., S

′
t = S

′
0 exp(xσt +

μt ). Then

d
∫ Pti
0 Ft (St )dSt

dσt
= S

′
0√
2π

∫ ln(P
′
ti /S

′
0)−μt

σt

−∞
exp

(
− x2

2

)
(−x + σt ) exp(xσt + μt )dx

= P
′
ti√
2π

exp

⎛
⎝−

(ln
(
P

′
ti/S

′
0

)
− μt )

2

2σ 2
t

⎞
⎠ > 0, (29)

which indicates that the buyer’s optimal reserved quantity is an increasing function of σt .
From Eq. (12), it is easy to prove that dE[V B

t ]/dQU
t increases with σt . Whether the

supply chain’s marginal value increases or decreases with σt depends on Pti . We rewrite Eq.
(17) as:

dE
[
π Flex
t

]/
dQU

ti =
(
1−�t

(
QU

ti

))
(1+e−β)

(
E[S̃t ]−Pti Ft (Pti ) +

∫ Pti

0
Ft (St )dSt

)

− eE[S̃t ]. (30)

Consider the term −Pti Ft (Pti ) + ∫ Pti
0 Ft (St )dSt . From Eqs. (1) and (29), we obtain

d(−Pti Ft (Pti ) + ∫ Pti
0 Ft (St )dSt )

dσt
= 1√

2π

⎡
⎣P

′
ti +

(
P

′
ti+Sm

)⎛⎝ ln
(
P

′
ti/S

′
0

)
− at

σ 2
t

−1

2

⎞
⎠
⎤
⎦

exp

⎛
⎜⎝−

(
ln
(
P

′
ti/S

′
0

)
− μt

)2
2σ 2

t

⎞
⎟⎠ . (31)

Obviously, P
′
ti + (P

′
ti + Sm)

(
ln(P

′
ti /S

′
0)−at

σ 2
t

− 1
2

)
determines the sign of

d(dE[π Flex
t ]/dQU

ti )

dσt
.

We can see that there is a threshold Pa
ti for Pti satisfying ln

(
P
a
ti −Sm
S0−Sm

)
= at+ 1

2σ
2
t − P

a
ti −Sm
P
a
ti

σ 2
t

such that dE[π Flex
t ]/dQU

ti increases in σt when Pti > Pa
ti and decreases in σt when Pti <

Pa
ti . Furthermore, we obtain (S0 − Sm) exp(at − 1

2σ
2
t ) + Sm ≤ Pa

ti < (S0 − Sm) exp(at +
1
2σ

2
t ) + Sm . 
�
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Proof of Proposition 9 From Eq. (8), we know the supply chain value of fixed components
increases in Qt when 0 ≤ Qt ≤ �−1

t ((1 − β)/(1 − h)). From Eq. (17), we know it is
supply chain suboptimal to employ flexible components if (1 + e − β)

∫ Pt
0 St F

′
t (St )dSt >

(1 − β)E[S̃t ], since the marginal supply chain value is negative and the increase in Qt only
results in more loss.

Consider the range (1+e−β)
∫ Pt
0 St F

′
t (St )dSt ≤ (1−β)E[S̃t ].LetG(Qt ) = dE[π Flex

t ]
dQt

−
dE[π Fix

t ]
dQt

. Then

G(Qt ) = �t (Qt )

{
(1 + e − β)

∫ Pt

0
St F

′
t (St )dSt − (e + h − β)E[S̃t ]

}

− (1 + e − β)

∫ Pt

0
St F

′
t (St )dSt . (32)

If h > β − e, then (e + h − β)E[S̃t ] > 0. Therefore,

(1 + e − β)

∫ Pt

0
St F

′
t (St )dSt−(e + h − β)E[S̃t ] < (1 + e − β)

∫ Pt

0
St F

′
t (St )dSt . (33)

This indicates that G(Qt ) < 0, and in turn that fixed components are supply chain
advantageous over flexible components. h > β−e suggests that the buyer is better positioned
than the supplier to process the excess inventory.

If h < β − e, then (e + h − β)E[S̃t ] < 0. The marginal supply chain value of optimal
flexible components will be greater than that of optimal fixed components, i.e., G(Qt ) > 0,

when Qt > �−1
t

(
(1+e−β)

∫ Pt
0 St F

′
t (St )dSt

(1+e−β)
∫ Pt
0 St F

′
t (St )dSt−(e+h−β)E[S̃t ]

)
. Otherwise, it will be less than or

equal to that of optimal fixed components. 
�

Appendix 2: Notation

The notation used in the analysis is summarized as follows.

a Expected appreciation rate of S
′
t

b Return credit per unit in a return contract
Ci Component i of a contract
Dt Demand at period t
Da
t Minimum possible demand at period t

Db
t Maximum possible demand at period t

eSt Unit loss at the supplier resulting from the quantity committed but not purchased
by the buyer

Ft (St ) Cumulative distribution function of St
hSt Salvage value of unit excess inventory at the buyer after period t
Pti Purchase price in contract component i at period t
qmax Maximum quantity the buyer can purchase
qmin Minimum quantity the buyer must purchase
qr Reserved quantity in a back-up or return contract
QL

ti Lower purchase quantity breakpoint of contract component i at period t
QU

ti Upper purchase quantity breakpoint of contract component i at period t
QU∗

t Supply chain optimal purchase quantity at period t
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Sm Minimum spot market price, beneath which suppliers will exit the industry
St Price of the reference alternative at period t
V B
ti The buyer’s expected value from contract component i at period t

V S
ti The supplier’s expected value from contract component i at period t

w Purchase price in a back-up or return contract
wp Unit penalty cost in a back-up contract paid by the buyer to the supplier for each

unit reserved but not purchased
Xti Up-front unit cost incurred at the contracting time for contract component i at

period t
βSt Price at which the supplier can sell her products outside the supply chain
θ Quota of the total revenue that the buyer can retain
μt Mean of ln S

′
t at period t

π Fix
ti The supply chain’s expected value from fixed contract component i at period t

π Flex
ti The supply chain’s expected value from flexible contract component i at period t

σ Volatility coefficient of S
′
t

�t (·) Truncated normal distribution function of Dt
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