METHODOLOGIES:

Our methodology is in no way a perfect science, but we made educated approximations while still preserving a user friendly interface. We ultimately wanted the calculator to be easy, quick, and informative. The calculations capture a day in the life as well as a year in the life of a student at Santa Clara. We wanted to capture what makes your life as a student unique, like Wednesday night partying, textbook purchases, and a fourth meal at the Bronco after a long night of studying. We will go through each tab and explain the basics that went into each calculation. Not all of the questions factor into the calculations; but some questions are there for the sake of getting people to think about their lifestyles. We also base some of the calculations on the idea of a "weighted population." This assumes students living on campus will use more water, energy, and waste, while part time or commuter students consume less of those resources. Full time students have a weight of 1 , commuter students a weight of .75 , and part time students/faculty + staff have a weight of .5 .

Consumption:

We wanted the consumption tab to reflect just how much of an impact our roles as consumers have on our carbon footprints. This of course had to include laptops, ipods, phones, clothing, etc. In order to calculate the carbon of electronics like laptops and phones we found the amount of kg CO2e used for a 4 year lifespan of the product. By asking how many years the user had owned the phone or laptop we were able to get a rough approximation of the carbon emissions. For textbooks, we found separate amounts of kg CO2e to make hard cover and soft cover books. We then multiplied by the amount of each kind of book the user buys per quarter. In order to factor in clothing we found the average kg CO 2 e it takes to create a kg of clothing. We then multiplied that by the average weight of a new article of clothing and how many articles of clothing the user purchases/month.

Question: Approximately how many soft cover books do you buy/quarter? Input element: allow user to input

Question: Approximately how many hard cover books do you buy/quarter?
Input element: allow user to input
CONVERSION FOR TEXTBOOKS: want to calculate (1) (kg CO2)/school yr and (2) (kg CO2)/day used from textbooks. User inputs number of textbooks.
(1) \# soft cover(5.00 kg CO 2$)+$ \#hard cover(10.2 kg CO2) $\mathbf{x} 3$ quarters $=\mathbf{k g ~ C O 2}$ books in a quarter school yr school yr
(2) \# soft cover(5.00 kg CO 2$)+$ \#hard cover(10.2 kg CO 2$) \times \frac{1 \text { quarter }}{33 \text { weeks }} \mathbf{x} \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2}}{\text { day }}$

Question: How often buy a new article of clothing in a given month? Input element: allow user to input

CONVERSION FOR CLOTHING: want to calculate (1) (kg CO2)/school yr and (2) (kg CO2)/day used from clothing. User inputs number how often buy new article of clothing
(1) \#clothes $\mathbf{x} \quad .2756 \mathrm{~kg} \times 6.5 \mathrm{~kg} \mathrm{CO} 2 \mathrm{x} 1$ month $\mathbf{x} 33$ weeks $=\mathbf{k g ~ C O 2}$ month 1 article clothing kg of clothing 4 weeks school yr school yr
(2) \#clothes $\mathbf{x} \quad .2756 \mathrm{~kg} \quad \mathbf{x} 6.5 \mathrm{~kg} \mathrm{CO} 2 \mathbf{x} 1$ month $\mathbf{x} \underline{1 \text { week }}=\underline{\mathbf{k g ~ C O 2}}$ month 1 article clothing kg of clothing 4 weeks 7days day

Question: How long have you had your current cell phone. Please approximate in years. Input element: allow user to input

Question: Do you own a:
Radio Button: option for smart phone and option for mobile phone
CONVERSION FOR CELL PHONE: want to calculate (1) (kg CO2)/school yr and (2) (kg CO2)/day for both mobile phone and smart phone.

IF choose mobile phone:

(1) $60 \mathrm{~kg} \mathrm{CO} 2+\left(\underset{\text { year }}{88 \mathrm{~kg} \mathrm{CO} 2} \mathbf{x} \frac{\# \text { of years owned phone })}{1} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }}=\frac{\mathbf{k g ~ C O 2}}{\mathbf{s c h o o l} \mathbf{~}}\right.$ year 1 33 weeks school yr
(1) $60 \mathrm{~kg} \mathrm{CO} 2+\left(\frac{88 \mathrm{~kg} \mathrm{CO} 2}{\text { year }} \mathbf{x} \frac{\text { \# of years owned phone })}{1} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }} \mathbf{x} \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2}}{\mathbf{d a y}}\right.$

If choose smart phone:

(1) $27 \mathrm{~kg} \mathrm{CO2}+\left(\frac{28 \mathrm{~kg} \mathrm{CO2} 2}{4 \text { years }} \mathbf{x} \frac{\text { \# of years owned phone })}{1} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }}=\frac{\mathbf{k g ~ C O 2}}{\mathbf{s c h o o l ~ y r}}\right.$
(1) $27 \mathrm{~kg} \mathrm{CO} 2+\left(\frac{28 \mathrm{~kg} \mathrm{CO2}}{4 \text { years }} \mathbf{x} \frac{\text { \# of years owned phone })}{1} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2}}{\mathbf{d a y}}\right.$

Question: How long have you had your current eReader. Please approximate in years. Input element: allow user to input

Question: Do you own a:
Radio Button: option for iPad and option for Kindle
CONVERSION FOR eReader: want to calculate (1) (kg CO2)/school yr and (2) (kg CO2)/day for both iPad and kindle.

If choose iPad:

(1) $65 \mathrm{~kg} \mathrm{CO} 2+\frac{(65 \mathrm{~kg} \mathrm{CO})(\# \text { yrs owned iPad })}{4 \text { year life span }} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }}=\frac{\mathbf{k g ~ C O 2}}{\text { school } \mathbf{~ y r}}$
(2) $65 \mathrm{~kg} \mathrm{CO} 2+\frac{(65 \mathrm{~kg} \mathrm{CO} 2)(\# \text { yrs owned iPad })}{4 \text { year life span }} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }} \mathbf{x} \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2}}{\mathbf{d a y}}$

If choose Kindle:
(1) $84 \mathrm{~kg} \mathrm{CO} 2+\frac{(84 \mathrm{~kg} \mathrm{CO})(\# \text { yrs owned } \mathrm{iPad})}{4 \text { year life span }} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }}=\frac{\mathbf{k g ~ C O 2}}{\mathbf{s c h o o l ~ \mathbf { ~ y r }}}$
(2) $84 \mathrm{~kg} \mathrm{CO} 2+(84 \mathrm{~kg} \mathrm{CO} 2)(\#$ yrs owned iPad $) \mathbf{x} 1$ year $\mathbf{x} \underline{1 \text { week }}=\underline{\mathbf{k g ~ C O 2}}$ 4 year life span 33 weeks 7 days day

Question: Do you own an ipod
Radio button: option for yes and option for no
Question: How long have you had your current ipod. Please approximate in years.
Input element: allow user to input
CONVERSION FOR ipod: want to calculate (1) (kg CO2)/school yr and (2) (kg CO2)/day for both ipod.
(1) $23 \mathrm{~kg} \mathrm{CO} 2+\frac{(23 \mathrm{~kg} \mathrm{CO} 2)(\# \text { yrs owned ipod) })}{4 \text { year life span }} \frac{1 \text { year }}{33 \text { weeks }}=\frac{\mathbf{k g ~ C O 2}}{\mathbf{s c h o o l ~} \mathbf{~ y r}}$
(2) $23 \mathrm{~kg} \mathrm{CO} 2+\frac{(23 \mathrm{~kg} \mathrm{CO})(\# \text { yrs owned ipod })}{4 \text { year life span }} \mathbf{x} \frac{1 \text { year }}{33 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2}}{\text { day }}$

OUTPUT

Output the (1) (kg CO2e)/school year and (2) (kg CO2e)/ day accumulated from all different areas of consumption

Transportation:

The transportation tab is similar to what you'd find on your average carbon footprint calculator. For ease of use we decided to categorize cars as small, average, SUV/truck, and hybrid. This way the user did not have to research their exact fuel efficiency. The user only had to approximate the number of miles driven in a given month. This same tactic was used for bus
travel and train travel. The conversion for air travel is a little more complex in that we use the amount of CO2e /passenger kilometer and also multiply by a factor of 1.09 to account for the uplift factor. The uplift factor is taking into consideration non direct flights, delays, and circling.

Question: Do you longboard, skateboard, or bike to class?
Radio buttons: option for yes and option for no
Question: Do you own a car?
Drop down menu with following options: small, average, SUV/truck, hybrid
Question: Approximately how many miles do you drive/month?
Input element: allow user to input
Help link that expands when rollover with mouse that gives the following info:
Automobile Distances
Santa Clara University to: Santa Cruz__ 30.0 miles
Valley Fair Mall_-2.1 miles
Downtown San Jose- 3.6 miles
San Francisco- 46.1 miles
Tahoe- 228.4 miles

CONVERSION FOR CAR TRAVEL: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from driving car. User inputs x.

Small: (1) $\underline{x \text { miles }} \mathbf{x} \underline{0.32990 \mathrm{~kg} \text { CO2e }} \mathbf{x} 1$ month $\mathbf{x} \underline{33 \text { weeks }}=\underline{\mathbf{k g} \text { CO2e }}$ month mile 4 weeks 1 school yr school yr
(2) $\frac{x \text { miles }}{\text { month }} \times \frac{0.32990 \mathrm{~kg} \mathrm{CO2e}}{\text { mile }} \times \frac{1 \text { month }}{4 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

Average: (1) $\frac{x \text { miles }}{\text { month }} \times \frac{0.40935 \mathrm{~kg} \text { CO2e }}{\text { mile }} \times \frac{1 \text { month }}{4 \text { weeks }} \times \frac{33 \text { weeks }}{1 \text { school } \mathrm{yr}}=\frac{\mathbf{k g ~ C O 2 e}}{\mathbf{s c h o o l ~ y r}}$
(2) $\frac{x \text { miles }}{\text { month }} \times \frac{0.40935 \mathrm{~kg} \mathrm{CO2e}}{\text { mile }} \times \frac{1 \text { month }}{4 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

SUV/truck: (1) $\frac{x \text { miles }}{\text { month }} \times \frac{0.56964 \mathrm{~kg} \text { CO2e }}{\text { mile }} \times \frac{1 \text { month }}{4 \text { weeks }} \mathbf{x} \frac{33 \text { weeks }}{1 \text { school yr }}=\frac{\mathbf{k g ~ C O 2 e}}{\mathbf{s c h o o l ~ y r}}$
(2) $\frac{x \text { miles }}{\text { month }} \times \frac{0.56964 \mathrm{~kg} \mathrm{CO2e}}{\text { mile }} \times \frac{1 \text { month }}{4 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

Hybrid: (1) $\frac{x \text { miles }}{\text { month }} \times \frac{0.22767 \mathrm{~kg} \mathrm{CO2e}}{\text { mile }} \times \frac{1 \text { month }}{4 \text { weeks }} \mathbf{x} \frac{33 \text { weeks }}{1 \text { school yr }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { school yr }}$
(2) $\frac{x \text { miles }}{\text { month }} \mathbf{x} \frac{0.22767 \mathrm{~kg} \mathrm{CO2e}}{\text { mile }} \mathbf{x} \frac{1 \text { month }}{4 \text { weeks }} \mathbf{x} \quad \frac{1 \text { week }}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

Question: Do you use the bus?
Radio buttons: Option for yes and option for no
Question: Approximately how many miles/month do you travel on bus? Input element: allow user to input

CONVERSION FOR BUS: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/school yr used from bus usage. User inputs x pm (passenger miles).

Bus:

Question: Do you use caltrain or bart?
Radio buttons: option for yes and option for no
Question: Approximately how many miles/month do you travel on caltrain or bart? Input element: allow user to input

CONVERSION FOR CALTRAIN or BART: want to calculate (1) (kg CO2e)/school year and (2) $(\mathrm{kg} \mathrm{CO} 2 \mathrm{e}) /$ day used from train. User inputs $x \mathrm{pm}$ (passenger miles).

Caltrain or BART

Question: Have you travelled or plan to travel on airplane this year?
Radio buttons: option for yes and option for no
Question: How many mile have you travelled or plan to travel this year?
Input element: allow user to input
Help link that expands when rollover with mouse that gives the following info:
Avg Flight Mileage for Time Zones
San Jose Airport to:

New York - 2,936 miles
Seattle- 838 miles
Denver-1,299 miles
Chicago- 2,162 miles

CONVERSION FOR AIR TRAVEL: want to calculate (1) (kg CO2e)/school year and (2) (kg CO2e)/day used from air travel. User inputs x pm (passenger miles). 109\% accounts for the uplift factor

Air Travel:

$\underset{\text { month }}{\text { (1) }} \underset{0.6 \mathrm{pm}}{\mathbf{x}} \underset{0.62137 \mathrm{pm}}{1 \mathrm{pkm}} \mathbf{x} 109 \% \times \frac{0.20515 \mathrm{~kg} \text { CO2e }}{\operatorname{pkm}} \times \frac{1 \text { month }}{4 \text { weeks }} \times \frac{33 \text { weeks }}{1 \text { school } \mathrm{yr}}=\frac{\mathbf{k g} \text { CO2e }}{\text { school } \mathbf{y r}}$
(2) $\underline{x p m} \mathbf{x} \quad 1 \mathrm{pkm} \quad \mathbf{x} 109 \% \mathbf{x} \quad \underline{0.20515 \mathrm{~kg} \text { CO2e }} \mathbf{x} \underline{1 \text { month }} \mathbf{x} \quad 1$ week $=\underline{k g}$ CO2e month $0.62137 \mathrm{pm} \quad \mathrm{pkm} 4$ weeks 7 days day

OUTPUT:

Output the (1) (kg CO2e)/school year and (2) (kg CO2e)/ day accumulated from all different types of transportation

Water

The water tab gets a little complicated. First, we calculate a baseline that will count towards each user's carbon footprint by virtue of the fact that they are a member of the Santa Clara community. This water usage includes the water used for irrigation, fountains around campus, bathrooms, etc. In order to avoid double counting we subtracted out the average amount of water a full time student uses multiplied by the number of students living on campus. We then divided that total by the number of undergrad, grad, faculty, and staff that use the campus on a day to day basis. Then we multiplied by the appropriate weight given the status of the user. We then proceeded to calculate water from shower usage, toilet flushes, laundry, and hydration. We researched the kg CO2e it takes to filter and transport a gallon of water. After that we just had to look up how many gallons are used in one flush, how many gallons are used per minute of showering, how many gallons used per load of load of laundry. Then it was just a matter of multiplying the user responses to get the total gallons of water used times the carbon it takes per gallon.

Question: Choose from the following:
Radio button: option for on campus student option for full time commuter student option for part time commuter student or faculty + staff

Question: On average how long are your showers? Input element: allow user to input

Question: On average how many showers/week?

Input element: allow user to input
Question: On average how many loads of laundry/month
Input element: allow user to input
Question: Average toilet flushes/day
Input element: allow user to input
Question: Average cups of water you drink/day from tap or water fountain?
Input element: allow user to input
Question: Do you use a refillable water bottle?
Radio buttons: option for yes and option for no
Question: If you drink your water from nonrefillable plastic bottle, how many do you buy/week? Input element: allow user to input

CONVERSION FOR WATER: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from water consumption.

Info behind the conversion

Residents living on campus: $2382 \mathrm{w} /$ weight of 1
Full time commuter students: $5603 \mathrm{w} /$ weight of .75
Part time commuter students and faculty + staff: $2539 \mathrm{w} /$ weight of .5
Total for year: 121332529.86 Gallons
. 455 kg CO2 / water bottle/ day

$+(1.6$ gal $\times \underline{5 \text { flushes }} \times \underline{7 \text { days }} \times \underline{33 \text { weeks })} 2382+(. .5$ gal $\times \underline{7 \text { days }} \times \underline{33 \text { weeks })} 2382$ $=10423155.6 \mathrm{gal}$
flush day week school yr day week school yr school yr
$121,332,529.86 \mathrm{gal}-10423155.6 \mathrm{gal}=110,909,374 \mathrm{gal}$ school yr
Baseline for on campus resident:

$$
\frac{110909374 \mathrm{gal}}{10524 \text { residents }}=\frac{10538.709 \mathrm{gal}}{\text { school yr }} \frac{45.622}{\text { day }}
$$

Baseline for full time commuter students:

$$
\frac{(110909374) .75 \mathrm{gal}}{10524 \text { residents }}=\frac{7904.031 \mathrm{gal}}{\text { residents }} \quad \frac{34.216 \mathrm{gal}}{\text { day }}
$$

Baseline for part time commuter students and faculty + staff:

$$
\frac{(110909374) .5 \mathrm{gal}}{10524 \text { residents }}=\frac{5269.354 \mathrm{gal}}{\text { residents }} \quad \frac{22.811 \mathrm{gal}}{\text { day }}
$$

IF USER IS ON CAMPUS RESIDENT:

Use user input for \# shower/week, min/shower, \# load/month, \# flushes/day, \#cups water drink/day, water bottles/day

(1) $\frac{(10538.709 \mathrm{gal}}{\text { school yr }}+\frac{(\# \text { shower }}{\text { week }} \times \underset{\text { min }}{1.5 \text { gal }} x \frac{\min }{\text { shower }} \times \frac{33 \text { weeks })}{\text { school yr }}+\frac{(\underline{13.1 \text { gal }}}{\text { load }} \times \frac{\# \text { load }}{\text { month }} \times \frac{\text { month }}{4 \text { weeks }} x$
 weeks))
school yr flush day week schoolyr day cup week schoolyr
(2) (45.622 gal + (\#shower $x 1.5$ gal x min x weeks $)+(\underline{13.1}$ gal x \# load x month day week min shower 7 days load month 4 weeks

$$
\begin{aligned}
& \frac{\text { week })}{7 \text { days }}+\left(\frac{1.6 \text { gal }}{\text { flush }} \times \frac{\# \text { flushes })}{\text { day }}+\frac{(\# \text { cups }}{\text { day }} \times \frac{0.0625 \text { gal })}{\text { cup }}\right) \\
& \times \frac{\left(3.785 \times 10^{-6} \mathrm{MI}\right.}{\text { gal }} \times \frac{352 \mathrm{~kg} \mathrm{CO2e})}{\text { MI }}+\frac{\left(\# \text { bottles } \times \frac{.445 \mathrm{~kg} \mathrm{CO2e})}{\text { week }}\right.}{\text { bottle }} \times \frac{1 \mathrm{week})}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}
\end{aligned}
$$

IF USER IS FULL TIME COMMUTER STUDENT:

(1) (7904.031 gal + (\#shower $x 1.5$ gal x min $x 33$ weeks $)+(13.1$ gal $x \#$ load x month x school yr week min shower schoolyr load month 4 weeks
 weeks))
school yr flush day week school yr day cup week school yr

(2) (34.216 gal + (\#shower $x 1.5$ gal x min x weeks $)+(\underline{13.1 \text { gal } \mathrm{x} \# \text { load } \mathrm{x} \text { month } \mathrm{x}}$

> day week min shower 7 days load month 4 weeks
> week) $+(\underline{1.6 \text { gal } x ~ \# ~ f l u s h e s ~})+(\#$ cups $\times 0.0625 \mathrm{gal}))$
> 7 days flush day day cup

IF USER IS PART TIME COMMUTER STUDENT OR FACULTY + STAFF:

(1) $(5269.354$ gal + (\#shower $x 1.5$ gal x min $x \underline{33 \text { weeks })+(13.1 \text { gal } x \# \text { load } x \text { month } x ~}$ school yr week min shower school yr load month 4 weeks
 weeks))
school yr flush day week schoolyr day cup week schoolyr $x\left(\frac{3.785 \times 10^{-6} \mathrm{MI}}{\text { gal }} \times \frac{352 \mathrm{~kg} \mathrm{CO2e})}{\mathrm{MI}}+\underset{\text { week }}{(\# \text { bottles }} \times \frac{.445 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e})}{\text { bottle }} \times \frac{7 \text { days }}{\text { week }} \times \frac{33 \text { weeks })}{3 \text { school yr }}=\frac{\mathbf{k g} \text { CO2e }}{\text { school yr }}\right.$

$\underline{\text { week })}+(\underline{1.6 \mathrm{gal}} \mathrm{x}$ \# flushes $)+($ \# cups $\times \underline{0.0625 \mathrm{gal})})$
7 days flush day day cup
$\mathrm{x}\left(\frac{\left(3.785 \times 10^{-6} \mathrm{MI}\right.}{\text { gal }} \times \frac{352 \mathrm{~kg} \mathrm{CO2e})}{\mathrm{MI}}+\left(\frac{\text { \# bottles }}{\text { week }} \times \frac{.445 \mathrm{~kg} \mathrm{CO2e})}{\text { bottle }} \times \frac{1 \mathrm{week})}{7 \text { days }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}\right.\right.$

WATER BOTTLES

```
# bottles }\times.445\textrm{kg CO2e) x 7days }\times\underline{33 weeks = kg CO2e
week bottle week school yr schoolyr
# bottles x. 445 kg CO2e x 1week = kg CO2e
    week bottle 7 days day
```


OUTPUT:

Output the (1) (kg CO2e)/school year and (2) (kg CO2e)/ day accumulated from water usage depending on what type of student and what numbers are inputted.

Waste

The waste tab really reflects our creativity since it was especially perplexing to figure out a methodology. We had the tons of landfill and recycling the school uses in a given year. We then
divided that by the campus population and multiplied by weighted population factor. On average, about 17% of the school's waste is recycling(not bad!). From that approximation we decided that a student that recycles 7% of their waste are under-recycling and should have an additional amount added to their carbon footprint. On the other hand, a student that recycles above average at around 27% should have an additional amount subtracted from their footprint. The same was done for trash accumulation. If the user collected more trash than average they would have a larger footprint than someone who accumulated less trash. We then multiplied those approximations by the amount of carbon it takes to process the trash in a landfill or process recycled materials in a factory.

Question: Choose from the following:
Radio button: option for on campus student option for full time commuter student option for part time commuter student or faculty + staff

Question: From the following scale decide how much of your waste is recycled (the average person recycles around 17% of their waste)
Radio button: option for below average, option for average , option for above average
Question: From the following scale choose around how much trash you accumulate/day (a bag of sugar weighs 4 lbs. avg person accumulates 4lbs trash/day)
Radio button: option for less than 4 lbs, option for about 4 lbs, option for greater than 4 lbs

CONVERSION FOR WASTE: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from waste consumption.
239.76 tons +1212.15 tons $=1451.91$ tons waste $/ \mathrm{yr}$
 1451.91 tons
27% waste recycling if recycle above average, subtract off 10% if trash if < 4lbs trash/day
7% waste recycling if recycle below average, add on 10% if >4 lbs trash/day

IF RECYCLE BELOW AVERAGE AND AN ON CAMPUS STUDENT

(1) $\frac{((1451.91) \cdot 07 \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \times \frac{2.79 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}+\frac{((1451.91) .93 \text { tons }}{10524}$
$\mathrm{x} \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \times \underset{\text { ton }}{1.34 \mathrm{MT} \mathrm{CO2e}} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\underline{\mathbf{k g} \text { CO2e }}$
(2) $\frac{((1451.91) \cdot 07 \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{2.79 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}+\left(\frac{(1451.91) \cdot 93 \text { tons }}{10524} \mathrm{x}\right.$
$\frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\frac{\mathbf{k g} \mathbf{C O 2 e}}{\text { day }}$

IF RECYCLE AVERAGE AND ON CAMPUS STUDENT

(1) $\frac{((1451.91) \cdot 17 \text { tons }}{10524} x \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \frac{2.79 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}+\frac{((1451.91) .83 \text { tons }}{10524}$ year $\times 33$ weeks $\times 1.34$ MT CO2e $\times 1000 \mathrm{~kg})=\mathbf{k g ~ C O 2 e}$ 52 weeks school yr ton MT school yr
(2) $\frac{((1451.91) \cdot 17 \text { tons }}{10524} \mathrm{x} \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{2.79 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}+\left(\frac{(1451.91) \cdot 83 \text { tons }}{10524}\right.$ $\frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

IF RECYCLE ABOVE AVERAGE AND ON CAMPUS STUDENT

(1) $\frac{((1451.91) \cdot 27 \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \times \underset{\text { ton }}{2.79 \text { MT CO2e }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}+\frac{((1451.91) \cdot 73 \text { tons }}{10524}$
 52 weeks school yr ton MT school yr
(2) $\frac{((1451.91) \cdot 27 \text { tons }}{10524} \mathrm{x} \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \underset{\text { ton }}{2.79 \text { MT CO2e }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}+\frac{((1451.91) \cdot 73 \text { tons }}{10524} \mathrm{x}$ $\frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

IF RECYCLE BELOW AVERAGE AND FULL TIME COMMUTER STUDENT

(1) $\frac{((1451.91)(.07)(.75) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \underset{\text { ton }}{2.79 \text { MT CO2e }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}+$
 10524 52 weeks school yr ton MT school yr
(2) $\frac{((1451.91)(.07)(.75) \text { tons }}{10524} \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{2.79 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}+$
$\frac{((1451.91)(.93)(.75) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\frac{\mathrm{kg} \mathrm{CO2e}}{\text { day }}$

IF RECYCLE AVERAGE AND FULL TIME COMMUTER STUDENT

(1) ((1451.91)(.17)(.75) tons x year $x \underline{33 \text { weeks } x ~ 2.79 ~ M T ~ C O 2 e ~} \times \underline{1000 \mathrm{~kg})+}$ 10524 52 weeks school yr ton MT
$\frac{((1451.91)(.83)(.75) \text { tons }}{10524} \times \underset{52 \text { weeks }}{\text { year }} \times \frac{33 \text { weeks }}{\text { school yr }} \times \underset{\text { ton }}{\frac{1.34 \mathrm{MT} \mathrm{CO2e}}{3} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\underset{\text { school yr}}{\mathbf{k g ~ C O 2 e}}}$
 $\frac{((1451.91)(.83)(.75) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

IF RECYCLE ABOVE AVERAGE AND FULL TIME COMMUTER STUDENT

(1) $\frac{((1451.91)(.27)(.75) \text { tons }}{10524} \mathrm{x} \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \underset{\text { ton }}{2.79 \text { MT CO2e }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}+$

 $((1451.91)(.73)(.75)$ tons $x \ldots$ year $\times \underline{1}$ week $\times \underline{1.34 \mathrm{MT} \mathrm{CO2e} \times 1000 \mathrm{~kg})=\mathbf{k g ~ C O 2 e}}$ 10524 52 weeks 7 days ton MT day

IF RECYCLE BELOW AVERAGE AND PART TIME COMMUTER STUDENT OR FACULTY + STAFF

(1) $\frac{((1451.91)(.07)(.5) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \times \underset{\text { ton }}{2.79 \text { MT CO2e }} \times \frac{1000 \mathrm{~kg}}{\text { MT }}+$

10524 52 weeks school yr ton MT school yr
(2) ((1451.91)(.07)(.5) tons $\times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{2.79 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg}}{\mathrm{MT}}+$ 10524 52 weeks 7 days ton MT
$\frac{((1451.91)(.93)(.5) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\frac{\mathbf{k g} \text { CO2e }}{\mathbf{d a y}}$

IF RECYCLE AVERAGE AND PART TIME COMMUTER STUDENT OR FACULTY + STAFF
(1) $\frac{((1451.91)(.17)(.5) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \frac{2.79 \text { MT CO2e }}{\text { 2 }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}+$
 10524 52 weeks school yr ton MT school yr
(2)((1451.91)(.17)(.5) tons $x \ldots$ year $\times 1$ week $x \underline{2.79 \text { MT CO2e } \times 1000 \mathrm{~kg})+~+~}$ 10524 52 weeks 7 days ton MT
$\frac{((1451.91)(.83)(.5) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

IF RECYCLE ABOVE AVERAGE AND PART TIME COMMUTER STUDENT OR FACULTY + STAFF

(1) $\frac{((1451.91)(.27)(.5) \text { tons }}{10524} \mathrm{x} \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \frac{2.79 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}+$
$\frac{((1451.91)(.73)(.5) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\frac{\mathbf{k g} \text { CO2e }}{\mathbf{s c h o o l ~ y r}}$
(2) $\frac{((1451.91)(.27)(.5) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{2.79 \text { MT CO2e }}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\text { MT }}+$
$\frac{((1451.91)(.73)(.5) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=\frac{\mathbf{k g} \text { CO2e }}{\text { day }}$
$\frac{(1451.91)(.10) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school yr }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg}}{\mathrm{MT}}=11.73$
$\frac{(1451.91)(.10) \text { tons }}{10524} \times \frac{\text { year }}{52 \text { weeks }} \times \frac{1 \text { week }}{7 \text { days }} \times \frac{1.34 \mathrm{MT} \mathrm{CO2e}}{\text { ton }} \times \frac{1000 \mathrm{~kg})}{\mathrm{MT}}=.051$
(1) subtract off: 11.73 kg CO2e from total school yr
(2) subtract off: . $051 \mathbf{k g}$ CO2e from total day

IF 4lb TRASH AND ON CAMPUS STUDENT

Don't add on or subtract away anything
IF > 4lbs TRASH AND ON CAMPUS STUDENT
(1) add on: 11.73 kg CO2e from total school yr
(2) add on: $.051 \mathbf{k g}$ CO2e from total day

IF <4 lbs TRASH AND FULL TIME COMMUTER STUDENT
(1) subtract off: $8.80 \mathbf{k g ~ C O 2 e}$ from total
school yr
(2) subtract off: . $038 \mathbf{k g}$ CO2e from total day

IF 4 lbs TRASH AND FULL TIME COMMUTER STUDENT

Don't add on or subtract away anything
IF > 4lbs TRASH AND FULL TIME COMMUTER STUDENT
(1) add on: 8.80 kg CO2e from total school yr
(2) add on: .038 kg CO2e from total day
(1) subtract off: 5.87 kg CO2e from total school yr
(2) subtract off: . 025 kg CO2e from total day

IF 4lbs TRASH AND PART TIME COMMUTER STUDENT OR FACULTY + STAFF

Don't add on or subtract away anything

IF > 4lbs TRASH AND PART TIME COMMUTER STUDENT OR FACULTY + STAFF

(1) add on: 5.87 kg CO2e from total school yr
(2) add on: .025 kg CO2e from total day

OUTPUT:
Output the (1) (kg CO2e)/school year and (2) (kg CO2e)/ day accumulated depending on which radio button chosen and what type of student. Add up both recycling and landfill emissions

Partying

We were all of sober mind in the creation of the party tab. The party tab was one of the more fun methodologies to play around with. We were really thinking outside the box with this one. We researched how much carbon it takes to make a kg of the plastic for red cups and how much carbon it takes to produce one beer. We then ask the user how many of these cups they use on a given party night, how many beers they drink on a given party night, and how many nights a week they tend to party. Given that information we were able to calculation party emissions with the user's responses.

Question: How many nights a week do you go out?
Input element: allow user to input
Question: How many red cups do you use on an average/party night? Input element: allow user to input

Question: How many beers do you drink on average per party night? Input element: allow user to input

Question: How many nights do you pregame?
Input element: allow user to input
Question: Do you play drinking games?
Radio buttons: option for yes and option for no
Question: Do you use reusable cups?
Radio buttons: option for yes and option for no
CONVERSION FOR PARTYING: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from partying. User inputs x nights they party/week. Calculate average CO2 emissions for one party and adjust to yr and day averages.

A six pack of beer is 3.1888 kg co2, which means one beer is .5315 kg co2
(1) \underline{x} nights \mathbf{x} (\# red cups)($0.085 \mathrm{~kg} \mathrm{CO2e})+(\#$ beers $)(.5314 \mathrm{~kg} \mathrm{CO2e}) \mathbf{x} 33$ weeks $=$ kg CO2e week night 1 school yr school yr
(1) \underline{x} nights \mathbf{x} (\# red cups)($0.085 \mathrm{~kg} \mathrm{CO2e})+(\#$ beers $)(.5315 \mathrm{~kg} \mathrm{CO2e}) \mathbf{x} 1$ week $\mathbf{x}=\underline{\mathbf{k g} \text { CO2e }}$ week night 7 days day
night 7 days day

Food

The food tab also took some creativity on our part. Luckily, the food service, Bon Appetit, had created their own carbon calculator with the food they serve on a day to day basis. We then created different meals based on whether the user is a vegetarian, vegan, meat eater, or x-treme meat eater. After averaging carbon per meals in a day we had to consider the size of the meal plan. We used the difference in points between plans to subtract a percentage of carbon from users with a smaller meal plan. The Bon Appetit calculator outputted their carbon in points and with one point equal to 1 g CO 2 e , we were easily able to make our conversion. We also considered coffee since caffeine is a staple for busy students. This was accomplished with the Bon Appetit calculator as well. We then just had to multiply the user's input of coffees consumed per week.

Question: If you drink coffee please select from the following options:
Drop down: option for black coffee and option for plus cream or sugar and option for latte
Question: About how many times a week do you get coffee?
Input Element: allow user to input value
CONVERSION FOR FOOD: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from coffee.

If choose black coffee

(1) 284 points \mathbf{x} \#coffees $x \underline{1 g C O 2 e} \mathbf{x} \underline{1 \mathrm{~kg} \text { CO2e }} \mathbf{x} \underline{33 \text { week }}=\underline{\mathbf{k g} \text { CO2e }}$ coffee week point 1000 gCO e school yr schoolyr
(2) 284 points \times \#coffees $\times \underline{1 g C O 2 e} \times \underline{1 k g C O 2 e} \times \underline{\text { week }}=\underline{\mathbf{k g} \mathbf{C O} \mathbf{e}}$ day week point $1000 \mathrm{~g} \mathrm{CO2e} 7$ days day

If choose plus cream or sugar

(1) $\underline{300 \text { points }} \mathbf{x}$ \#coffees $x 1$ gCO2e $\mathbf{x} 1 \mathrm{kgCO} \mathrm{e} \times \underline{33 \text { week }}=\underline{\mathbf{k g} \mathbf{C O 2 e}}$ coffee week point 1000 g CO2e school yr schoolyr
(2) $\underline{300 \text { points }} \times$ \#coffees $\times 1$ g CO2e $\times 1 \mathrm{~kg} \mathrm{CO2e} \times \frac{\text { week }}{7}=\underline{k g ~ C O 2 e}$ day week point $1000 \mathrm{~g} \mathrm{CO2e} 7$ days day

If choose latte

(1) $\underset{\text { coffee }}{380 \text { points }} \times \frac{\text { \#coffees }}{\text { week }} \underset{\text { point }}{1 \mathrm{~g} \mathrm{CO2e}} \mathbf{x} \frac{1 \mathrm{~kg} \mathrm{CO2e}}{1000 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}} \times \frac{33 \text { week }}{\text { school yr }}=\underset{\text { school yr }}{\mathbf{k g} \text { CO2e }}$
(2) $\underline{380}$ points \times \#coffees $\times 1 \mathrm{~g} \mathrm{CO2e} \times 1 \mathrm{~kg} \mathrm{CO2e} \times \underline{\text { week }}=\mathbf{k g ~ C O 2 e}$ day week point 1000 gCO C e 7 days day

Question: Please select which meal plan you are currently on.
Radio button: option for Preferred, option for Basic, and option for Junior Senior
Question: Please select which diet best applies to you.
Radio button: option for vegan, option for vegetarian, option for meat eater, option for CARNIVORE.

Help link next to each radio button that expands when rollover with mouse that gives the following info:
Vegan: Diet that excludes ALL animal products.
Vegetarian: Diet that excludes all MEAT products
Omnivore: Diet that includes meat with at least 2 meals/day.
X-treme Meat Eater: Diet that includes meat with every meal.
CONVERSION FOR FOOD: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from food. Based on meal plan and diet.

If choose Preferred Meal Plan:

Vegan Diet

(1) 2029 points $\times \underline{1 g C O 2 e} \times 1 \mathrm{~kg} \mathrm{CO2e} \times 7$ days $\times \underline{33 \text { week }}=\underline{\mathbf{k g ~ C O 2 e}}$ day point 1000 g CO2e 1 week school yr schoolyr
(2) $\frac{2029 \text { points }}{\text { day }} \times \frac{1 \mathrm{~g} \mathrm{CO2e}}{\text { point }} \times \underline{1000 \mathrm{~g} \mathrm{CO2e} \mathrm{e}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

Vegetarian

 day point 1000 gCO e e 1 week school yr schoolyr
(2) $\frac{3427 \text { points }}{\text { day }} \times \frac{1 \mathrm{~g} \mathrm{CO2e}}{\text { point }} \times \frac{1 \mathrm{~kg} \mathrm{CO2e}}{1000 \mathrm{~g} \mathrm{CO2e}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

Omnivore

 day point 1000 g CO2e 1 week school yr schoolyr
(2) $\frac{6904 \text { points }}{\text { day }} \underset{\text { point }}{1 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}} \times \underset{1000 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}}{1 \mathrm{~kg} \mathrm{CO2e}}=\underline{\mathbf{k g ~ C O 2 e}}$ day point 1000 g CO 2 e day

X-treme Meat Eater

 day point $1000 \mathrm{~g} \mathrm{CO2e} 1$ week school yr schoolyr
 day point $1000 \mathrm{~g} \mathrm{CO2e}$ day

If choose Basic Meal Plan

-based on percentage difference in points
Vegan Diet
 day point 1000 g CO2e 1 week school yr schoolyr
(2) $[\underline{2029-.15(2029)] p o i n t s ~} \mathbf{x} \underline{1 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}}=\underline{\mathbf{k g} \mathrm{CO} \mathbf{e}}$

$$
\text { day } \quad \text { point } 1000 \text { g CO2e day }
$$

Vegetarian

(1) $[3427-.15(3427)]$ points $\mathbf{x} \underline{1 g \text { CO2e }} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO2e}} \mathbf{x} \underline{7 \text { days }} \mathbf{x} \underline{33 \text { weeks }}=\underline{\mathbf{k g} \text { CO2e }}$ day point 1000 g CO 2 e 1 week school yr schoolyr
(2) $[3427-.15(3427)]$ points $\times 1 \mathrm{~g} \mathrm{CO2e} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}}=\underline{\mathbf{k g} \mathrm{CO} \mathbf{e}}$ day point 1000 g CO2e day

Omnivore
(1) $[6904-.15(6904)]$ points $\mathbf{x} 1 \mathrm{~g} \mathrm{CO2e} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}} \mathbf{x} \underline{7 \text { days }} \times \underline{33 \text { weeks }}=\underline{\mathbf{k g} \mathbf{C O 2 e}}$ day point 1000 g CO2e 1 week school yr schoolyr
(2) $[6904-.15(6904)]$ points $\mathbf{x} \underline{1 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}}=\underline{\mathbf{k g} \text { CO2e }}$ day point 1000 g CO 2 e day

X-treme Meat Eater
(1) $[7964-.15(7964)]$ points $\mathbf{x} \underline{1 \mathrm{~g} \mathrm{CO2e}} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO2e}} \mathbf{x} \underline{7 \text { days }} \mathbf{x} \underline{33 \text { weeks }}=\underline{\mathbf{k g} \text { CO2e }}$ day point 1000 g CO2e 1 week school yr school yr
(2) $\frac{[7964-.15(7964)] \text { points }}{\text { day }} \times \frac{1 \mathrm{~g} \mathrm{CO2e}}{\text { point }} \times \frac{1 \mathrm{~kg} \mathrm{CO2e}}{1000 \mathrm{~g} \mathrm{CO2e}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

If choose Basic Meal Plan

-based on percentage difference in points
Vegan Diet
(1) $[2029-.42(2029)]$ points $\mathbf{x} \underline{1 g \text { CO2e }} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}} \mathbf{x} \underline{7 \text { days }} \mathbf{x} \underline{33 \text { weeks }}=\underline{\mathbf{k g ~ C O} \mathbf{e}}$ day point 1000 g CO2e 1 week school yr school yr
(2) $\frac{[2029-.42(2029)] \text { points }}{\text { day }} \times \frac{1 \mathrm{~g} \mathrm{CO2e}}{\text { point }} \times \frac{1 \mathrm{~kg} \mathrm{CO2e}}{1000 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

Vegetarian
(1) $[3427-.42(3427)]$ points $\mathbf{x} \underline{1 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}} \mathbf{x} \underline{7 \text { days }} \mathbf{x} \underline{33 \text { weeks }}=\underline{\mathbf{k g} \mathbf{C O 2 e}}$

day	point	$1000 \mathrm{~g} \mathrm{CO2e}$	1 week
(2) $\frac{[3427-.42(3427)] \text { points }}{\text { day }} \times \underset{\text { point }}{1 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}} \times \underset{1000 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}}{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}}$	$=\underline{\mathbf{k g ~ C O 2 e}}$		

Omnivore

(1) [6904-. 42(6904)] points $\times 1 \mathrm{~g} \mathrm{CO2e} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}} \times 7$ days $\times \underline{33 \text { weeks }}=\underline{\mathbf{k g} \text { CO2e }}$ day point $1000 \mathrm{~g} \mathrm{CO2e} 1$ week schoolyr schoolyr

X-treme Meat Eater
(1) $[7964-.42(7964)]$ points $\mathbf{x} \underline{1 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}} \mathbf{x} \underline{1 \mathrm{~kg} \mathrm{CO2e} \mathbf{x} 7 \text { days } \mathbf{x} \underline{33 \text { weeks }}=\mathbf{k g ~ C O 2 e} .}$ day point $1000 \mathrm{~g} \mathrm{CO2e} 1$ week school yr schoolyr
(2) $\frac{[7964-42(7964)] \text { points }}{\text { n }} \frac{1 \mathrm{~g} \mathrm{CO2e}}{\operatorname{xan}} \frac{1 \mathrm{~kg} \mathrm{CO2e}}{1000 \mathrm{~g} \mathrm{CO} 2 \mathrm{e}}=\underline{\mathbf{k g ~ C O 2 e}}$

OUTPUT: Output the (1) (kg CO2e)/school year and (2) (kg CO2e)/ day depending on plan and diet chosen

Energy

There is so much that went into the energy tab, that it's hard to know where to begin. Like the water and waste tab, we created an energy baseline that all campus users bear since they are members of the community. This was accomplished by first taking the total campus-wide usage of energy and subtracting out the energy from the dormitories. We then of course multiplied by the appropriate weighted population factor. We also did this for gas usage. If the user lived on campus we only counted the air conditioning and communal lighting energy costs from the dormitory in which they live. The energy audit covered the rest of their energy usage from the dormitories. The energy audit accounts for the different appliances the user has plugged in and for how long they are plugged in. Then it is just a matter of converting the kwh to carbon with a conversion factor from Silicon Valley Power. In order to calculate the energy used for off campus users we got averages from electric and gas bills.

Question: Choose from the following:
Radio button: option for on campus student option for full time commuter student option for part time commuter student or faculty + staff

Question:

From the following list of appliances, electronics, lighting, etc, input how many of each item is in your dorm room and for how many hours a day the item is in use.

If you own an item not listed below please be sure to fill in extra fields: what is the item and watts. You can find the wattage on the bottom of most appliances. Be sure to divide by 1000 if the wattage is given in kilowatts.

ITEM
Refrigerator
microwave
Clock radio
Coffee maker
Ipod dock
Stereo sound system
Computer desktop
Computer monitor 15"
Computer, laptop
Printer
TV
DVD/CD player
Air conditioner
Portable fan
Space heater
Halogen floor lamp
Incandescent light bulb
Compact fluorescent light bulb
Vacuum cleaner
Other (ALLOW USER INPUT)
\# of ITEMS
User input

Watts 160
1000
10
1200
100
150
225
35
60
100
115
30
1,100
115
1000
300
75
20
1440
User input

USAGE: hrs/day
User input
User input
User input
User input
User input
User input
User input User input
User input
User input
User input
User input
User input
User input
User input
User input
User input
User input
User input
User input

Question: if you're an on campus resident choose from the following dorms:
Drop down: Swig, Sobrato, Sanfilippo, Walsh/McLaughlin, Graham, Dunne, Casa, Campisi, St. Clare, Nobili, Bellarmine

ELECTRICITY FROM COMMUNAL LIGHTING

Swig: population 408

$\frac{(16037.67) \cdot 10 \mathrm{kwh}}{\text { week }} \times \frac{33 \text { weeks }}{\text { school yr }}=\frac{52924.128 \mathrm{kWh}}{\text { school yr }}$

Sobrato: population 282

(22289.59). $26 \mathrm{kwh} \times 33$ weeks $=191244.786 \mathrm{kWh}$
week school yr school yr

Sanfilippo: population 201

(4871.47). $10 \mathrm{kwh} \times \underline{33 \text { weeks }}=\underline{16075.779 \mathrm{kWh}}$ week school yr school yr

Walsh/McLaughlin: population 239
(8520.72). $10 \mathrm{kwh} \times \underline{33 \text { weeks }}=\underline{28118.35 \mathrm{kwh}}$ week school yr school yr

Graham: popultion 245

(8256.18). $10 \mathrm{kwh} \times \underline{33 \text { weeks }}=\underline{27245.225 \mathrm{kwh}}$ week school yr school yr

Dunne: population 287
(12063.22). $10 \mathrm{kwh} \times 33$ weeks $=\underline{39808.622 \mathrm{kwh}}$ week school yr school yr

Casa: population 319
 week school yr school yr

Campisi: population 195

(10783.56). 26 kwh $\times \underline{33 \text { weeks }} \mathrm{x}=\underline{92522.82 \mathrm{kwh}}$ week school yr school yr

St. Clare: population 35

(2786.199). $10 \mathrm{kwh} \times 33$ weeks $=9194.43 \mathrm{kwh}$ week school yr school yr

Nobili: population 67
(5572.396). $10 \mathrm{kwh} \times \underline{33 \text { weeks }}=\underline{18388.82 \mathrm{kwh}}$ week school yr school yr

Bellarmine: population 81

```
(3446.634).10 kwh x 33 weeks = 11 373.858 kwh
    week school yr school yr
```


ELECTRICITY FROM APARTMENT COMMUNAL LIGHTING

$\frac{918.9 \mathrm{kWh}}{\text { month }} \times \frac{1}{52} \times \frac{1}{4 \text { meenth }} \times \underline{33 \text { weeks }}=\frac{145.79 \mathrm{kWh}}{\text { school } \mathrm{yr}}$ school yr APT KWH
CALCULATION FOR ENERGY AUDIT OF DORM ROOM: want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from appliances in room. User inputs \# of items, and usage of each appliance.

Do this calculation for every appliance, inputting appropriate watts from table above

(1) \# of items \mathbf{x} watts $\mathbf{x} . \underline{001 \mathrm{~kW} \mathbf{x}} \underline{\text { hrs used } \mathbf{x}} \underline{0.354224 \mathrm{~kg} \text { CO2e } \mathbf{x}} \underline{7 \text { days } \mathbf{x}} \underline{33 \text { weeks }}=\underline{\mathbf{k g}}$ CO2e
watt day kWh week school yr school yr
(2) \# of items \mathbf{x} watts $\mathbf{x} \frac{.001 \mathrm{~kW}}{\text { watt }} \mathbf{x} \frac{\text { hrs used }}{\text { day }} \mathbf{x} \frac{0.354224 \mathrm{~kg} \mathrm{CO2e}}{\mathrm{kWh}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

CONVERSION FOR ENERGY BASELINE:

Want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from being member of university. Dependent upon whether living on campus, full time commuter student, and part time commuter student or faculty + staff
$\frac{29,542,315 \mathrm{kWh}-668392.187 \mathrm{kWh}}{\text { school yr }}=\frac{28873922.81 \mathrm{kWh}}{\text { school } \mathrm{yr}}$

IF USER IS ON CAMPUS RESIDENT:

Get dorm $\mathbf{k W h}$ from the above calculations that specifically calculate the communal electricity/dorm. Dorm populations accompany dorm $\mathbf{k W h}$ above.
(1) $\frac{(28873922.81 \mathrm{kWh}}{10524}+\frac{\text { dorm } \mathrm{kWh})}{\text { population }} \mathbf{x} \frac{0.354224 \mathrm{~kg} \mathrm{CO2e}}{\mathrm{kWh}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { school } \mathbf{~ y r}}$
(2) $\left(\frac{28873922.81 \mathrm{kWh}}{10524}+\frac{\text { dorm } \mathrm{kWh}}{\text { population }}\right) \times \frac{0.354224 \mathrm{~kg} \mathrm{CO2e}}{\mathrm{kWh}} \mathbf{x} \frac{\mathbf{1}}{33 \text { weeks }} \times \frac{1 \text { week }}{7 \text { day }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

IF USER IS FULL TIME COMMUTER STUDENT:

Get apt kwh from the above calculations that calculate the communal electricity/apt
(1) $\left.\frac{((28873922.81) .75 \mathrm{kWh}}{10524}+\mathrm{apt} \mathrm{kWh}\right) \times \frac{0.354224 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}}{\mathrm{kWh}}=\frac{\mathbf{k g ~ C O 2 e}}{\mathbf{s c h o o l ~ y r}}$
(2) $\left.\frac{((28873922.81) .75 \mathrm{kWh}}{10524}+\mathrm{apt} \mathrm{kWh}\right) \times \frac{0.354224 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}}{\mathrm{kWh}} \mathbf{x} \frac{\mathbf{1}}{33 \text { weeks }} \mathbf{x} \frac{1 \text { week }}{7 \text { day }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

IF USER IS PART TIME COMMUTER STUDENT OR FACULTY + STAFF:
(1) $\left.\frac{((28873922.81) .5}{10524} \mathrm{kWh}+\mathrm{apt} \mathrm{kWh}\right) \times \frac{0.354224 \mathrm{~kg} \mathrm{CO2e}}{\mathrm{kWh}}=\underline{\mathbf{k g ~ C O 2 e}}$
(2) $\left.\frac{((28873922.81) .5}{10524} \mathrm{kWh}+\mathrm{apt} \mathrm{kWh}\right) \mathbf{x} \frac{0.354224 \mathrm{~kg} \text { CO2e }}{\mathrm{kWh}} \underset{33 \text { weeks }}{\mathbf{1}} \mathbf{x} \frac{1 \text { week }}{7 \text { day }}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

CONVERSION FOR GAS BASELINE:

Want to calculate (1) (kg CO2e)/school yr and (2) (kg CO2e)/day used from gas. Dependent upon whether living on campus, full time commuter student, and part time commuter student or faculty + staff

APT THERMS

31.83 therms $\times 1 \times 1$ month $\times \underline{33 \text { weeks }=29.178 \text { therms } ~}$ month $9 \quad 4$ weeks school yr school yr

FOR ON CAMPUS STUDENTS
(1) $\underline{1,008,941 \text { therms }} \times 1$ year $\times \underline{33}$ weeks $\times 11.7$ lbs CO2e $\times \underline{1}$ kilogram $=\underline{k g}$ CO2e 10524 52 weeks school year therm 2.204 lbs school yr
(2) $\frac{1,008,941 \text { therms }}{10524} \times \frac{1 \text { year }}{52 \text { weeks }} \times \frac{\text { week }}{7 \text { days }} \times \frac{11.7 \text { lbs CO2e }}{\text { therm }} \times \frac{1 \text { kilogram }}{2.204 \mathrm{lbs}}=\frac{\mathbf{k g ~ C O 2 e}}{\text { day }}$

FOR FULL TIME COMMUTER STUDENTS
Apt therms value is given above
(1)((939439). 75 therms + apt therm) $\times 1$ year $\times 33$ weeks $\times \underline{11.7 \text { lbs CO2e } \times \underline{1} \text { kilogram }=}$ $10524 \quad 52$ weeks school year therm 2.204 lbs

kg CO2e

school yr
(2) ((939439). 75 therms + apt therm) $\times 1$ year \times week $\times \underline{11.7 \text { lbs CO2e } \times \underline{1} \text { kilogram }=}$ $10524 \quad 52$ weeks 7 days therm 2.204 lbs
kg CO2e day

FOR PART TIME COMMUTER STUDENTS OR FACULTY + STAFF

(1) ((939439). 5 therms $+\underline{10524}+\underline{\text { apt therm })} \times \frac{1 \text { year }}{52 \text { weeks }} \times \frac{33 \text { weeks }}{\text { school year }} \times \underline{11.7 \text { lbs CO2e }} \times \frac{1 \text { kilogram }}{2.204 \mathrm{lbs}}=$

kg CO2e

school yr
(2) ($\frac{939439) .5 \text { therms }}{10524}+\underline{\text { apt therm) }} \times \frac{1 \text { year }}{52 \text { weeks }} \times \frac{\text { week }}{7 \text { days }} \times \frac{11.7 \text { lbs CO2e }}{\text { therm }} \times \frac{1 \text { kilogram }}{2.204 \text { lbs }}=$
kg CO2e day

OUTPUT

Output the (1) (kg CO2e)/school year and (2) (kg CO2e)/ day accumulated from all different types of appliances and also add on the energy baseline and add on the gas baseline

