Protectionism and the Business Cycle

Alessandro Barattieri
UQAM, Collegio Carlo Alberto

Matteo Cacciatore
HEC Montréal, NBER

Fabio Ghironi
University of Washington
CEPR, EACBN, NBER

West Coast Workshop in International Finance
Santa Clara University, November 3, 2017
Motivation

- Rising concerns about possible use of trade restrictions

- Debate about costs and benefits of trade policy as a macroeconomic policy tool
 - Boost output, rebalance external accounts, or address distributional effects of trade
 - Influential scholars argued that temporary tariffs may be beneficial in a liquidity trap, thanks to the inflationary effect of higher import costs (e.g., Eichengreen, 2016)

- We study the effects of protectionism on macroeconomic fluctuations both empirically and theoretically
Contribution

1. Estimate effects of temporary trade barriers using country-level and panel VARs
 - Quarterly/monthly data on product-level antidumping investigations (which typically lead to the imposition of tariffs)
 - Annual data on applied tariff rates

2. Transmission of tariff shocks:
 - SOE with key macro/trade ingredients: physical capital, nominal rigidities, endogenous trade structure (firm heterogeneity + sunk/fixed entry costs)
 - Baseline scenario mirrors the empirical analysis: normal times under a flexible exchange rate
 - Model counterfactuals where protectionism advocated as potentially beneficial: (i) liquidity trap and (ii) fixed exchange rate regime
Empirical analysis: temporary trade barriers act as a negative supply shock

- Recessionary, inflationary, with (at best) a small positive effect on the trade balance/GDP

Macro and micro dynamics behind the contractionary effects of tariffs

- Macro level: expenditure switching vs. decline in real income and investment (coupled with contractionary monetary policy response)

- Micro level: reallocation of market shares towards less efficient domestic producers

Protectionism remains contractionary even in a liquidity trap or under a peg
Literature

- Empirical work on the cyclicality of temporary trade barriers
 - Bown (2013) and Bown and Crowley (2013, 2014)

- Earlier theoretical literature on the macro effects of trade policy

- Border adjustment tax and departures from Lerner’s symmetry

- Dynamic consequences of trade integration (permanently lower trade costs)
 - Trefler (2005), Barattieri (2014), Cacciatore (2014) among many others
Empirical Analysis
Temporary Trade Barriers

- Low applied tariffs but frequently changing temporary trade barriers (TTBs)
 - Antidumping duties, global safeguards, and countervailing duties

- Antidumping (AD) duties are the primary policy exceptions to WTO rules
 - Account for 80% – 90% of all TTBs across countries

- Turkey and India: largest and most active users; Canada among developed SOE
 - Up to 6% of imported products affected by TTBs in Turkey (≈ 1% of GDP)
 - 2% in Canada (0.5% of GDP; higher prior to 2001)
Global Antidumping Database

- GAD (Bown, 2016): product-level data on AD investigations and related tariffs
- Possible to build time series for AD policy actions at any time frequency

Opening of AD investigation
- Publicly announced
- Agents can forecast tariff duties

AD tariffs can be retroactive

Petition by industry producers
- **Regulation**: qualified support + evidence about dumped imports

Outcome
- **Large majority** of investigations end up with tariffs
- Tariffs are proportional to the dumped margins
- Tariffs remain in place for **several years**
Empirical Strategy

- **Quarterly and monthly VARs** for Canada and Turkey (India for robustness)

- **Baseline trade-policy measure**: \# of HS-6 digits products for which an AD investigation begins in a given month or quarter

- **Standard macro variables**:
 - **Quarterly data**: real GDP growth, inflation, and trade balance/GDP
 - **Monthly data**: also include nominal interest rate and nominal exchange rate growth (IP rather than GDP)
Data: New Antidumping Initiatives in Canada

[Graph showing Antidumping Initiatives and GDP growth over time]
Understanding Magnitudes

- Consider 2001:Q1
 - AD initiatives in the steel sector worth \(\sim 30\% \) of sectoral imports
 - Steel sector output was 1.1\% of GDP (including IO linkages)

- All AD initiatives were successful

- Median imposed tariff equal to 56\%
Empirical Strategy

- **Structural VAR**

\[Y_t = \Theta + \sum_{i=1}^{p} \Phi_i Y_{t-i} + A^{-1}u_t \]

\[E(u_t u'_t) = I_N \]

- \(p \) determined with standard information criteria

- **Identification (matrix A):**
 \# of AD investigations is predetermined within a month/quarter
 - Decision lags: coordination issues among producers and regulation
 - AD investigations reflect unfair foreign competition
More on Identification

- Bown and Crowley (2013): countercyclical, lagged response of TTBs to macroeconomic shocks (up to 2008)

- **Not a challenge for identification:**
 1. Analysis at monthly frequencies (decision lags realistically exceed a quarter)
 2. VAR lag structure captures AD response to previous macro shocks
 3. In our samples, $\text{corr} (\Delta y_t, AD_t) \approx 0$
 4. Reduced-form VAR: very weak covariance between trade-policy and macro shocks
 5. IRFs not consistent with demand/financial shocks (realistic drivers of business cycles in our sample period)
Quarterly VAR: Canada

- Antidumping Initiatives
- GDP Growth
- Inflation
- NX over GDP
Quarterly VAR: Turkey

Antidumping Initiatives

GDP Growth

Inflation

NX over GDP
Monthly estimates yield similar results

- Monthly Canada
- and
- Monthly Turkey

Results are also similar when considering India

 Variety of robustness checks

- Additional controls

- Focus only on AD investigations that end up with tariffs

- Different recursive ordering: AD initiatives respond to all macro shocks contemporaneously
Monthly VAR and Robustness

- Monthly estimates yield similar results
 - Monthly Canada and Monthly Turkey

- Results are also similar when considering India

- Variety of robustness checks
 - Additional controls
 - Focus only on AD investigations that end up with tariffs
 - Different recursive ordering: AD initiatives respond to all macro shocks contemporaneously
Panel VAR

- AD investigations only apply to a subset of imports

- More comprehensive trade policy measure (only available at annual frequency): import-weighted average of the applied tariff rates

- Panel VAR using harmonized data for fifteen small open economies over the period 1996-2014
 - All the countries had flexible exchange rates and did not hit the ZLB

- Continue to assume that trade policy responds with a one-period delay to macroeconomic shocks
Panel VAR

- **Tariff**
- **GDP Growth**
- **Inflation**
- **NX over GDP**
The Model
Key Features

- Small open economy model (two-country model in which Home is of measure zero relative to Foreign)

- Two vertically integrated production stages
 - Non-tradable intermediate input \((Y_t^I) \) produced with capital \((K_t) \) and labor \((L_t) \)
 - Tradable and non-tradable final consumption sectors (use \(Y_t^f \))

- Firm heterogeneity and endogenous producer entry in the tradable sector (Ghironi and Melitz, 2005)

- Trade policy captured by an ad-valorem import tariff

- Incomplete international asset markets and nominal rigidities
Preferences

Household $h \in [0, 1]$, maximizes

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t(h)^{1-\gamma}}{1-\gamma} - \frac{L_t(h)^{1+\omega}}{1+\omega} \right]$$

$$C_t = \left[(1 - \alpha_N) \frac{1}{\phi_N} \left(C_t^T \right)^{\frac{\phi_{N-1}}{\phi_N}} + \alpha \frac{1}{\phi_N} \left(C_t^N \right)^{\frac{\phi_{N-1}}{\phi_N}} \right]^{\frac{\phi_N}{\phi_N-1}}$$

$$C_t^T = \left[(1 - \alpha_X) \frac{1}{\phi_T} \left(C_{D,t}^T \right)^{\frac{\phi_{T-1}}{\phi_T}} + \alpha_X \frac{1}{\phi_T} \left(C_{X,t}^T \right)^{\frac{\phi_{T-1}}{\phi_T}} \right]^{\frac{\phi_T}{\phi_T-1}}$$

Number of tradable varieties is endogenous

$$C_{D,t}^T = \left[\int_{\omega \in \Omega} \left(C_{D,t}^T(\omega) \right)^{\frac{\theta_{T-1}}{\theta_T}} d\omega \right]^{\frac{\theta_T}{\theta_{T-1}}}$$

and

$$C_{X,t}^T = \left[\int_{\omega \in \Omega^*} \left[C_{X,t}^T(\omega) \right]^{\frac{\theta_{T-1}}{\theta_T}} d\omega \right]^{\frac{\theta_T}{\theta_{T-1}}}$$

Ad-valorem import tariff

$$P_{X,t}^* = \left\{ \int_{\omega \in \Omega_t} \left[(1 + \tau_{IM}^t) P_{X,t}^*(\omega) \right]^{1-\theta_T} d\omega \right\}^{1/(1-\theta_T)}$$
Intermediate Input Producers

- Homogenous intermediate input:
 \[Y_t^I = Z_t K_t^\alpha L_t^{1-\alpha} \]

- \(L_t \) is a composite of differentiated labor inputs supplied by households:
 \[
 L_t \equiv \left[\int_0^1 (L_t(h))^{(\eta-1)/\eta} \, dh \right]^{\eta/(\eta-1)}
 \]

 where \(L_t(h) \equiv \) labor hired from household \(h \)

- Capital rented in a competitive market
Tradable Sector

- Endogenous \# of monopolistically competitive firms \((N_{D,t})\) with heterogenous productivity \((z)\)
 - Time to build:
 \[N_{D,t} = (1 - \delta)(N_{D,t-1} + N_{E,t-1}) \]

- Sunk entry cost \(f_{E,t}\) and per-period fixed export cost \(f_{X,t}\)

- Flexible prices (we also consider price stickiness, PCP and LCP)

- **Standard Melitz-type selection of tradable producers into exporting:**
 - Relatively more productive firms export:
 \(z > z_{X,t}\) to cover fixed export costs
 - Number of exporting firms:
 \[N_{X,t} = \left[1 - G(z_{X,t}) \right] N_{D,t} \]

- Free entry condition determines \(N_{D,t}\)

- Additional Model Details
Households and Monetary Policy

- Households can invest in **three assets**:
 1. Non-contingent nominal bonds in Home and Foreign currency
 2. Shares in a mutual fund of domestic tradable-sector firms
 3. Physical capital accumulation

- Household sets $w^n_t(h)$ subject to a **quadratic wage-adjustment cost**:
 $$\frac{w^n_t(h)}{P_t} = \mu^w_t(h) \frac{L_\omega}{C^{-\gamma}}$$

- Nominal interest rate follows a feedback rule
 $$1 + i_{t+1} = \max \left\{ 1 + i^{*lb}, (1 + i_t)^{\varrho_i} \left[(1 + i) (1 + \bar{\tau}_C t)^{\varrho_\pi} (\bar{Y}_{gt})^{\varrho_Y} \right]^{1 - \varrho_i} \right\}$$

- Calibrate the model using standard values in the literature
Households and Monetary Policy

- Households can invest in **three assets**:
 1. Non-contingent nominal bonds in Home and Foreign currency
 2. Shares in a mutual fund of domestic tradable-sector firms
 3. Physical capital accumulation

- Household sets \(w^n_t(h) \) subject to a **quadratic wage-adjustment cost**:

\[
\frac{w^n_t(h)}{P_t} = \mu^w_t(h) \frac{L^\omega_t}{C_t^{\gamma}}
\]

- Nominal interest rate follows a feedback rule

\[
1 + i_{t+1} = \max \left\{ 1 + i^{\text{zlb}}, (1 + i_t)^{\phi_i} \left[(1 + i) (1 + \tilde{\pi} C_t)^{\phi_{\pi}} (\tilde{Y}_{gt})^{\phi_Y} \right]^{1 - \phi_i} \right\}
\]

- Calibrate the model using standard values in the literature
Protectionism in Normal Times
Protectionism in Normal Times

- Temporary increase in $\tau^t = 5\%$ ($\rho_{\tau^t} = 0.75$ to match panel-VAR estimates)
Micro and Macro Forces: Intuition

- For a given nominal exchange rate ε_t
 1. Expenditure switching toward Home goods and trade surplus
 2. P_t increases: directly through $\tau_t^{IM} + \text{realloction of market shares}$

$$P^T_t = \left[\omega_{D,t}^T \left(\hat{P}^T_{D,t} \right)^{1-\phi_T} + \omega_{X,t}^T \left(\varepsilon_t \frac{\hat{P}^T_{D}^*}{\hat{z}^*_{X, t}} \left(1 + \tau_t^{IM} \right) \right)^{1-\phi_T} \right]^{\frac{1-\phi_N}{1-\phi_T}}$$

- ε_t appreciates but not enough to offset τ_t^{IM}

- Higher P_t:
 - Reduces real income: lower investment and decline in firm entry
 - Contractionary monetary policy response
Micro and Macro Forces

- **Alternative models:** (i) financial autarky; (ii) no firm dynamics; (iii) no capital/no firm dynamics
Counterfactual Scenarios
Counterfactual Scenarios

- Use the model to study scenarios where temporary trade barriers advocated as potentially beneficial

 1. Is protectionism expansionary when countries are in a liquidity trap (ZLB)?
 2. Can protectionism be beneficial under a fixed exchange rate?

- Same trade policy shock considered in normal times
Protectionism in a Liquidity Trap

- Evidence and theoretical analysis suggest that protectionism is inflationary

- Through this channel, τ_{t}^{IM} may help lift the economy out of a liquidity trap

- We perform the following exercise:

1. At $t = 0$, risk-premium shock $\Lambda_{a,t}$ depresses output and generates deflation (binding ZLB)

\[
1 + \Lambda_{at} = (1 + i_{t+1}) E_t \left(\frac{\beta_{t,t+1}}{1 + \pi_{t+1}} \right)
\]

\[
1 + \psi a_{*,t+1} + \Lambda_{at} = (1 + i_{t+1}^*) E_t \left(\frac{\beta_{t,t+1}}{1 + \pi_{t+1}^*} \frac{Q_{t+1}}{Q_t} \right)
\]

- Interpretation for Λ_{at}: shock to the demand for safe/liquid assets

2. At $t = 1$, unanticipated tariff increase
Protectionism in a Liquidity Trap

- Temporary increase in $\tau_{t}^{IM} = 5\%$ at the ZLB

\[IM_t = 5\% \]
Protectionism under a Fixed Exchange Rate

- Widespread diffusion of pegs, crawling pegs, and very narrow bands (Reinhart and Rogoff, 2004)

- Recent experience of Ecuador (dollarized economy) illustrates the issue
 - Broad range of temporary tariffs in 2015-2016 to fight a balance-of-payments crisis
 - Trade balance effectively improved but real GDP further declined, together with consumption and investment

- In contrast to typical conclusion of textbook models, we find that protectionism remains contractionary under a peg
Protectionism under a Fixed Exchange Rate

- **Baseline vs no capital/no firm dynamics**

![Graphs showing GDP, Inflation, and Real Exchange Rate under Baseline and No Capital/No Firm Dynamics](image-url)
Conclusions

1. Structural VARs using trade-policy and macro data at different frequency
 - Temporary trade barriers act as a negative supply shock
 - At best a small positive effect on the trade balance

2. Small-open economy model with key macro/trade ingredients reproduces VAR evidence
 - Both macro and micro dynamics behind the contractionary effects of tariffs

3. Policy takeaway: protectionism remains a bad idea—at least for small open economies
 - Even when in a liquidity trap and regardless of exchange rate arrangements
 - Detrimental economic effects even when abstracting from retaliation from trade partners
Data: Antidumping Investigations in Turkey
Monthly VAR: Canada

- Antidumping Initiatives
- Industrial Production
- Inflation
- Net Exports
- Nominal Exchange Rate
- Interest Rate
Monthly VAR: Canada

- **Antidumping Initiatives**
- **Industrial Production**
- **Inflation**
- **Net Exports**
- **Nominal Exchange Rate**
- **Interest Rate**
Monthly VAR: Turkey

- Antidumping Initiatives
- Industrial Production
- Inflation
- Net Exports
- Nominal Exchange Rate
- Interest Rate
Monthly VAR: Turkey

Antidumping Initiatives

Industrial Production

Inflation

Net Exports

Nominal Exchange Rate

Interest Rate
Data: Applied Tariff Rates
Data: Applied Tariff Rates

AUS BRA CAN CHL
COL ISL KOR MYS
NOR NZL PHL PRY
TUR URY ZAF
Producer Currency Pricing

![Graphs showing various economic indicators over time.](image)

- Consumption
- GDP
- Investment
- Inflation
- Current Account
- Real Exchange Rate
- Number of Producers
- Number of Exporters
- Average Firm Productivity
Tradable Sector (cont.)

- Producer z faces domestic and export demand:

$$Y_{D,t}^T(z) = \left(\frac{P_{D,t}^T(z)}{P_{D,t}^T} \right)^{-\theta_T} Y_{D,t}^T$$

$$Y_{X,t}^T(z) = \left[(1 + \tau_{t}^{IM^*}) \frac{P_{X,t}^T(z)}{P_{X,t}^T} \right]^{-\theta_T} Y_{X,t}^T^*$$

- Prices: constant markups over marginal cost

$$\frac{P_{D,t}^T(z)}{P_{D,t}^T} = \frac{\theta_T}{(\theta_T - 1)} \varphi_t \frac{z}{\rho_{X,t}^T}$$

$$\frac{P_{X,t}^T(z)}{P_{X,t}^T} = (1 + \tau_t) \frac{\rho_{D,t}^T(z)}{Q_t}$$

- Firm exports if

$$d_{X,t}^T(z) = \left[Q_t \rho_{X,t}^T(z) - (1 + \tau_t) \frac{\varphi_t}{\rho_{X,t}^T} \right] Y_{X,t}^T(z) - \varphi_t f_{X,t} > 0$$

- Number of exporting firms:

$$N_{X,t} = [1 - G(z_{X,t})] N_{D,t}$$

$$z_{X,t} = \inf \{ z : d_{X,t}^T(z) > 0 \}$$
Producer z faces domestic and export demand:

$$Y_{D,t}^T(z) = \left(\frac{P_{D,t}^T(z)}{P_{D,t}^T} \right)^{-\theta_T} Y_{D,t}^T$$

$$Y_{X,t}^T(z) = \left[(1 + \tau_t^{IM}) \frac{P_{X,t}^T(z)}{P_{X,t}^T} \right]^{-\theta_T} Y_{X,t}^T$$

Prices: constant markups over marginal cost

$$\frac{P_{D,t}^T(z)}{P_{D,t}^T} = \frac{\theta_T}{(\theta_T - 1)} \frac{\varphi_t}{z}$$

and

$$\frac{P_{X,t}^T(z)}{P_{X,t}^T} = (1 + \tau_t) \frac{\rho_{D,t}^T(z)}{Q_t}$$

Firm exports if

$$d_{X,t}^T(z) = \left[Q_t \rho_{X,t}^T(z) - (1 + \tau_t) \frac{\varphi_t}{z} \right] Y_{X,t}^T(z) - \varphi_t f_{X,t} > 0$$

Number of exporting firms:

$$N_{X,t} = [1 - G(z_{X,t})] N_{D,t}$$

$$z_{X,t} = \inf \{ z : d_{X,t}^T(z) > 0 \}$$
The representative Home household’s period budget constraint is:

\[
A_{t+1} (h) + \varepsilon_t A_{*,t+1} (h) + \frac{\psi}{2} \varepsilon_t P^*_t \left(\frac{A_{*,t+1} (h)}{P^*_t} \right)^2 + P_t C_t (h) + P_t l_{K,t} (h) + \tilde{\varepsilon}_t (N_{D,t} + N_{E,t}) x_{t+1} (h) = \\
(1 + i_t) A_t (h) + (1 + i^*_t) A_{*,t} (h) \varepsilon_t + \left[1 - \frac{v_w}{2} \left(\frac{w^n_t (h)}{w^n_{t-1} (h)} - 1 \right)^2 \right] w^n_t (h) L_t (h) + \\
P_t r_K, t K_t (h) + (\tilde{d}_t^T + \tilde{e}_t) N_{D,t} x_t (h) + T_t (h),
\]
The representative Home household’s period budget constraint is:

\[A_{t+1}(h) + \varepsilon_t A_{*,t+1}(h) + \frac{\psi}{2} \varepsilon_t P_t^* \left(\frac{A_{*,t+1}(h)}{P_t^*} \right)^2 + P_tC_t(h) + P_t I_{K,t}(h) + \tilde{e}_t(N_{D,t} + N_{E,t})x_{t+1}(h) = \]

\[(1 + i_t)A_t(h) + (1 + i^*_t)A_{*,t}(h) \varepsilon_t + \left[1 - \frac{v_w}{2} \left(\frac{w_{t}^n(h)}{w_{t-1}^n(h)} - 1 \right) \right] w_t^n(h) L_t(h) + \]

\[+ P_t r_{K,t} K_t(h) + (\tilde{d}_t^T + \tilde{e}_t) N_{D,t} x_t(h) + T_t(h), \]
Calibration

- Symmetric calibration with standard values in the literature

- Set parameters that directly affect trade volumes and monetary policy to match Canadian/U.S. data
 - Home bias: $\alpha_N \implies \text{trade-to-GDP} = 50\%$
 - Size of the tradable sector: $\alpha_T \implies \text{manufacturing output share} = 30\%$
 - Iceberg trade costs: $\tau = \tau^* = 0.3$
 - Average import tariffs: $\tau^{IM} = \tau^{IM*} = 0.02$

- Interest rate rule using estimates in Kichian (2015): $\phi_i = 0.5$, $\phi_\pi = 2.80$, $\phi_Y = 0$
Local Currency Pricing

- Consumption
- GDP
- Investment
- Inflation
- Current Account
- Real Exchange Rate
- Number of Producers
- Number of Exporters
- Average Firm Productivity
Protectionism under a Fixed Exchange Rate

- **Alternative models:** (i) financial autarky; (ii) no firm dynamics; (iii) no capital/no firm dynamics