The Pricing of Sovereign Risk Under Costly Information

Grace Weishi Gu Zachary Stangebye

UC Santa Cruz U Notre Dame

WCWIF, Nov 3, 2017
Motivation

- Attention paid to sovereign nations is not constant
 - Emerging market fund managers use ‘flags’
 - Attention increases during crises
Motivation

Sovereign Spreads versus Google Search Volume Index:

[Graph showing the relationship between Sovereign Spreads and Google Search Volume Index over time.]
Motivation

Figure: Quarterly ASVI for the Search Term “Ukraine IMF”
Motivation

Research question:
What is the role of forecasters/investors’ attention in the pricing of sovereign debt?

Why important:

- Fit well for less informative EM sovereign bond markets
- Provide a richer lender-side theory → Generate non-trivial results for spread dynamics, default risk inference, and policy implications
- Generate endogenous time-varying volatility
Role of private information for sovereign debt pricing

- Cole and Kehoe, 1998; Sandleris, 2008; Catao, Fostel, and Kapur, 2009; Phan, 2015; Pouzo and Presno, 2015; Blot, Ducoudre, and Timbeau, 2016
- Use investors’ attention allocation problem

Endogenous investor attention

- Sims, 2003; Reis, 2006; Barber and Odean, 2007; Andrei and Hasler, 2015; Mackowiak and Wiederholt, 2009, 2014, 2015
- Financial assets & intl finance: Andrei and Hasler, 2014; Bacchetta and van Wincoop, 2010; van Nieuwerburgh and Veldkamp, 2009, 2010
- Interact with sovereign’s states and its debt pricing
- Estimate info cost by targeting Google search volume index on relevant search phrases (Da, Engelberg, and Gao, 2011)
Our Contributions Relative to Literature (optional)

- **Time-varying volatility**
 - Bloom, 2009; Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez, and Uribe, 2011; Justiniano and Primiceri, 2011; Curran, 2015; Seoane, 2015; Johri et al., 2015
 - Endogenize and amplify time-variation in sovereign spread volatility

- **Default-risk inference**
 - Bi and Traum, 2012; Lizarazo, 2013; Stangebye, 2015; Bocola, 2016; Bocola and Dovis, 2016; Cimadomo, Claeys, and Poplawski-Ribeiro, 2016
 - Provide a new layer of uncertainty premium that is state contingent
 - sovereign spread = Default risk + Observed states’ future uncertainty premium + Unobserved info uncertainty premium
 - Bias in econometric estimates of default risk from yield data
Model Environment

- Like many sovereign default models:
 1. Small open economy, stochastic endowment
 2. Govt. maximizes household utility, and issues 1-period non-state-contingent defaultable bonds to risk-averse foreigners
 3. Default \implies No debt; endowment loss; financial autarky with return probability θ

- New in this model:
 1. Observed growth shock s (Aguiar and Gopinath, 2006) + Unobserved default output cost shock m (one-time, i.i.d., known marginal distribution)
 2. Both info can affect borrower’s default decisions
 3. Forecasters’ costs in terms of attention to obtain relevant info about m
 4. Forecasters’ endogenous optimal attention choice \implies choose a signal x to help investors infer m: ρ_{mx}
 5. Investors, given x and ρ_{mx}, form their bond demand function
Model Environment

Like many sovereign default models:

1. Small open economy, stochastic endowment
2. Govt. maximizes household utility, and issues 1-period non-state-contingent defaultable bonds to risk-averse foreigners
3. Default ⇒ No debt; endowment loss; financial autarky with return probability θ

New in this model:

1. Observed growth shock s (Aguiar and Gopinath, 2006) + Unobserved default output cost shock m (one-time, i.i.d., known marginal distribution)
2. Both info can affect borrower’s default decisions
3. Forecasters’ costs in terms of attention to obtain relevant info about m
4. Forecasters’ endogenous optimal attention choice → choose a signal x to help investors infer m: ρ_{mx}
5. Investors, given x and ρ_{mx}, form their bond demand function
Model Environment

- Like many sovereign default models:
 1. Small open economy, stochastic endowment
 2. Govt. maximizes household utility, and issues 1-period non-state-contingent defaultable bonds to risk-averse foreigners
 3. Default \implies No debt; endowment loss; financial autarky with return probability θ

- New in this model:
 1. Observed growth shock s (Aguiar and Gopinath, 2006) + Unobserved default output cost shock m (one-time, i.i.d., known marginal distribution)
 2. Both info can affect borrower’s default decisions
 3. Forecasters’ costs in terms of attention to obtain relevant info about m
 4. Forecasters’ endogenous optimal attention choice \implies choose a signal x to help investors infer m: ρ_{mx}

- Investors, given x and ρ_{mx}, form their bond demand function
Model Environment

- Like many sovereign default models:
 1. Small open economy, stochastic endowment
 2. Govt. maximizes household utility, and issues 1-period non-state-contingent defaultable bonds to risk-averse foreigners
 3. Default \implies No debt; endowment loss; financial autarky with return probability θ

- New in this model:
 1. Observed growth shock s (Aguiar and Gopinath, 2006) + Unobserved default output cost shock m (one-time, i.i.d., known marginal distribution)
 2. Both info can affect borrower’s default decisions
 3. Forecasters’ costs in terms of attention to obtain relevant info about m
 4. Forecasters’ endogenous optimal attention choice \implies choose a signal x to help investors infer m: ρ_{mx}
 5. Investors, given x and ρ_{mx}, form their bond demand function
Model: Timing at t

Sovereign chooses B_{t+1} to max expected value over M_{t+1}.

M_{t+1} and signal x_t realize.

Bond policy does not depend on M_{t+1}.

Investors offer a bond demand schedule $B_{Dt+1}(x_t, q_t, s_t, B_t)$.

s_t Realizes.

Forecasters choose optimal attention and signal accuracy $\rho_{xm,t}$

Sovereign decides to repay B_t or default.

Market clears with bond price q_t such that $B_{Dt+1} = B_{t+1}$
Model: Sovereign’s Problem (optional)

- Before m' (or m_{t+1}) realizes:

 $$V(s, B, m) = \max \{ V_R(s, B), V_D(s, m) \}$$

 $$V_R(s, B) = \max_{B'} E_{m'} \left\{ U \left[y(s) - B + q(B'|s, m')B' \right] + \beta E_{s'} V(s', B', m') \right\}$$

 $$V_D(s, m) = U[\tilde{y}(s)] + \beta E_{s', m'}[\theta V(s', 0, 1) + (1 - \theta) V_D(s', 1)]$$

 where $q(B'|s, m')$ is provided by investors’ problem, and \tilde{y} is penalized output for consumption.

- Growth process:

 $$y_t = e^{g_t} y_{t-1} \quad \text{where} \quad s(y_t, g_t)$$

 $$g_t = (1 - \rho) \mu_g + \rho g_{t-1} + \sigma \epsilon_t \quad \text{where} \quad \epsilon \sim N(0, 1)$$

- Default cost:

 $$\tilde{y}_t = y_t e^{-\psi + m_t}$$
Model: Sovereign’s Problem (optional)

After m' realizes:

- Default probability:
 \[
 \mathcal{D}(m, B) = \{ s \in S : V_R(s, B) < V_D(s, m) \},
 \]
 \[
 \delta(m', s, B') = \int_{s' \in \mathcal{D}(m', B')} f(s, s') ds'
 \]

- Default decision tomorrow:
 \[
 d(m', s', B') = \begin{cases}
 1 & \text{if } V_R(s', B') < V_D(s', m') \\
 0 & \text{if } V_R(s', B') \geq V_D(s', m')
 \end{cases}
 \]
Model: Forecasters’ Problem

Optimal attention/signal accuracy before \(m' \) realizes:

\[
\min_{\rho_{mx}} \quad E_x E_{s',m'} I_{s,x} [d' - E_{s',m'} I_s(d')]^2 + \kappa I(\rho_{mx})
\]

\[
s.t. \quad I(\rho_{mx}) = \frac{1}{2} \log_2 \left(\frac{1}{1 - \rho_{mx}^2} \right)
\]
Model: Investors’ Problem & Market Clearing

- **Optimal Investment** \(|x(m') \), after \(m' \) realizes:

\[
\max_{B'_D} E_{s', m'}[s, x][U(c')]
\]

\[
s.t. \quad c' = [\bar{w} - qB'_D](1 + r) + [1 - d(m', s', B')]B'_D
\]

where \(U(c) = \frac{c^{1-\gamma}}{1-\gamma} \)

- **Market Clearing**, after \(m' \) realizes:

Bond market clears with the price \(q(s, m', B') \) such that \(B'_D = B' \)
Proposition

When $\sigma_m = 0$, the model becomes that of Aguiar et al (2016) with permanent shocks and short-term debt.

- Nest standard sovereign default model, produce consistent results:
 1. High growth \rightarrow High borrowing/low spreads
 2. Countercyclical net exports
 3. Default: Series of good shocks followed by surprise bad shock
New Mechanism

Optimal Attention

Default risk too low

Default anyways

Debt-to-GDP
New Mechanism

- Endogenous cyclical variations in spread volatility:

 At crisis times, bond prices contain inferred info about m' realization

 \rightarrow Spread volatility \uparrow in crises
Table: Parameterization

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter by Simulation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sovereign discount factor</td>
<td>$\beta = 0.811$</td>
<td>Annual default frequency of 1.5%</td>
</tr>
<tr>
<td>Known Default cost</td>
<td>$\phi = 0.0226$</td>
<td>Ave Debt-to-output ratio 12.6%</td>
</tr>
<tr>
<td>Investor wealth</td>
<td>$\bar{w} = 2.5$</td>
<td>Ave spread 6.5%</td>
</tr>
<tr>
<td>Unobs shock std dev</td>
<td>$\sigma_m = 0.0153$</td>
<td>Ave spread std dev of 5.5%</td>
</tr>
<tr>
<td>Unit info cost</td>
<td>$\kappa = 0.000522$</td>
<td>Frac of Crisis Attn Periods 7.1%</td>
</tr>
</tbody>
</table>

- Using Ukraine data from 2004-2014 at a quarterly frequency
Results:
Policy Functions & Dynamics
Information Acquisition Policy Functions: across g

$$
\rho(B_{t+1}; Y_t, g_t)
$$

$g_t = \mu_g + 1.5\sigma_g$

$g_t = \mu_g - 1.5\sigma_g$
Dynamics before Defaults: ρ_{mx}
Results:

Time-varying Volatility
Time-varying Volatility Measurement
Crisis Volatility Ratio (CVR)

- Define top 2.5% of the spread-change distribution as "jump" periods
- Compute the volatility 5 periods (i.e., quarters) before a jump event and 5 periods after (excluding the jump period itself)

\[
CVR = \frac{1}{|\hat{T}|} \sum_{t \in \hat{T}} \frac{\hat{\sigma}_{t:t+5}}{\hat{\sigma}_{t-6:t-1}}
\]
Time-varying Volatility

Time-varying volatility (CVR):

Table: Simulated statistics: the model and the data

<table>
<thead>
<tr>
<th>Data (Ukraine)</th>
<th>Benchmark Model</th>
<th>$\kappa = \infty$</th>
<th>$\sigma_m = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.67</td>
<td>2.86</td>
<td>1.33</td>
<td>1.27</td>
</tr>
</tbody>
</table>
Time-Varying Volatility (optional)
Those Sensitive to κ Changes (optional)
Results:
Optimal Transparency
Transparency: Trade-offs

How do investor information costs affect sovereign?

1. Cheaper information \implies Lower risk premium (esp. during crises)

2. Cheaper information \implies More volatile prices (esp. during crises)

Model suggests optimum in middle, i.e., some opacity optimal
Transparency: Trade-offs

How do investor information costs affect sovereign?

1. Cheaper information \implies Lower risk premium (esp. during crises)

2. Cheaper information \implies More volatile prices (esp. during crises)

Model suggests optimum in middle, i.e., some opacity optimal
Transparency: Welfare Comparative Statics

Certainty Equivalent Consumption: $g_t = \bar{g}$ and $B_t = 0$

![Graph showing the relationship between Information Cost and Certainty Equivalent Consumption](image-url)
Conclusion

Key contributions:

▶ Explore the role of costly information for sovereign debt pricing, via forecasters/investors’ attention allocation problem

▶ Endogenize and amplify time-variation in sovereign spread volatility

Main results:

▶ Time-varying spread volatility

▶ Transparency: Some opacity optimal

▶ Time-varying spread composition: without considering endogenous info acquisition, default risk estimates can be underestimated during crises
Motivation

Figure: Comparison of SVI and Extreme Returns
Motivation

Figure: Comparison of Benchmark Search Term to Alternate Search Terms
Motivation

Figure: Benchmark Search Language versus Most Common Alternatives

Figure: Blue: English (Benchmark), Yellow: Russian, Red: Chinese
Results

Figure: Equilibrium Bond Demand Functions

\[q_t(B_{t+1}; Y_t, g_t, 1) \]

\[B_{t+1}/Y_t \]

\[g_t = \mu_g + 1.5 \sigma_g \]

\[g_t = \mu_g - 1.5 \sigma_g \]
Results

Figure: Equilibrium Bond Demand Functions
Results

Figure: Equilibrium Bond Policy Functions

\[g_t = \mu_g + 1.5\sigma_g \]
\[g_t = \mu_g - 1.5\sigma_g \]
Results

Figure: Benchmark Behavior Around Default
Results

Figure: Benchmark Behavior Around Default
Risk Premium Difference: Baseline

- Spread = (1) Default risk + (2) Observed states’ uncertainty premium
 + (3) Unobserved info uncertainty premium

No-Information Spread Crisis at $t = 0$ and $x_t = 0$