Optimal Macropirudential and Monetary Policy in a Currency Union

Dmitriy Sergeyev†

June 7, 2016

Abstract
I solve for optimal macroprudential and monetary policies for members of a currency union in an open economy model with nominal price rigidities, demand for safe assets, and collateral constraints. Monetary policy is conducted by a single central bank, which sets a common interest rate. Macroprudential policy is set at a country level through the choice of reserve requirements. I emphasize two main results. First, with asymmetric countries and sticky prices, the optimal macroprudential policy has a country-specific stabilization role beyond optimal regulation of financial sectors. This result holds even if optimal fiscal transfers are allowed among the union members. Second, there is a role for global coordination of country-specific macroprudential policies. This is true even when countries have no monopoly power over prices of internationally traded goods or assets. These results build the case for coordinated macroprudential policies that go beyond achieving financial stability objectives.

*I would like to thank the ECB for financial support through the Lamfalussy fellowship. For useful comments and conversations I thank Philippe Bacchetta, Julien Bengui, Gianluca Benigno, Giancarlo Corsetti, Luigi Iovino, Oleg Itskshoki, Tommaso Monacelli, Nicola Pavoni, Alessandro Rebucci, Ricardo Reis, Margarita Rubio, Jon Steinsson, Michael Woodford, and workshop participants at the Bank of Finland, the NBER IFM Program Meeting, the CEPR IMF Meeting.

†Bocconi University, Department of Economics, e-mail: dmytro.sergeyev@unibocconi.it
1 Introduction

Macroprudential regulation—policies that target financial stability by emphasizing the importance of general equilibrium effects—has become an important tool of financial regulation in recent years (Hanson et al., 2011). For example, the 2010 Basel III accord, an international regulatory framework for banks, introduced a set of tools that require financial firms to hold larger liquidity and capital buffers, which could depend on the credit cycle (BSBC, 2010).

Macroprudential regulation may be in conflict with traditional monetary policy that stabilizes inflation and output (Stein, 2013, 2014). On the one hand, variation in the monetary policy rate shapes private incentives to take on risks, use leverage, and short-term debt financing. On the other hand, changes in macroprudential regulation constrain financial sector borrowing, which affects aggregate output.

In contrast, regional macroprudential policies may help achieve traditional monetary policy objectives in a currency union. Monetary policy cannot fully stabilize asymmetric shocks in a currency union, because fixed nominal exchange rate and a single monetary policy rate are constraints that prevent full stabilization. Macroprudential regulation at a regional level can help mitigate asymmetric shocks, because tighter financial regulation can affect local business cycles.

The goal of this paper is to solve for optimal union-wide monetary and regional macroprudential policies in an environment where these policies interact. I address the optimal policy problem by solving a model that combines a standard New Keynesian model with a recent literature on macroprudential regulation of the financial sector, which I then extend to a currency union setting.

The first step is to define a fundamental market failure that justifies policy interventions. I consider a model environment, which is a variant of the model proposed in Stein (2012), with the following key features. Households value safe securities above and beyond their pecuniary returns because these securities are useful for transactions. This is formally introduced via a safe-assets-in-advance constraint. Financial firms can manufacture a certain amount of these securities by posting durable goods as collateral. The resulting endogenous collateral constraint on safe debt issuance, which features durable goods price, leads to a negative pecuniary externality (a fire-sale externality). Financial firms issue too many safe securities, which leads to social welfare losses. This provides a role for macroprudential policy to limit issuance of safe debt by financial firms.

Financial regulation can address this externality using a number of tools. In this paper, I study reserve requirements (with interests paid on reserves) applied universally

1See Claessens (2014) for a recent review of various macroprudential tools.
to all riskless liabilities of all financial firms. I follow Kashyap and Stein (2012) and Woodford (2011), who argue that this tool can address financial stability concerns in a closed economy. Universal reserve requirements resemble traditional reserve requirements and the liquidity coverage ratio, introduced in the Basel III accord. Traditional reserve requirements policy orders banks to keep a minimum amount of central bank reserves relative to their deposits. The liquidity coverage ratio broadens the scope of traditional reserve requirements by obliging various types of financial firms (and not just traditional banks) to hold a minimum amount of liquid assets relative to various liabilities, and not just deposits. The macroprudential policy tool in this paper differs from the liquidity coverage ratio, in that financial firms are required to hold central bank reserves only.

In a closed economy version of the model, optimal monetary and macroprudential policies are not in conflict. Optimal monetary policy achieves the flexible price allocation, and optimal macroprudential policy only corrects the fire-sale externality. However, if any of the two policies is suboptimal, there is a scope for the other policy to address both inefficiencies.

The proposed model is extended to a currency union setting along the lines of Obstfeld and Rogoff (1995) and Farhi and Werning (2013). Households have preferences over traded and non-traded goods. The safe-assets-in-advance constraint is applied to both traded and non-traded goods. Durable goods are produced by local financial firms out of non-traded goods. The last assumption allows local macroprudential policy to affect output of non-traded goods. Only safe securities are traded internationally.

The international dimension of the model adds three additional externalities that affect welfare. First, the price of durable goods, which enters the collateral constraint, depends on the traded and non-traded goods composition of aggregate consumption. Private agents do not internalize their effect on the durable goods price through their effect on the composition of aggregate consumption. This introduces an additional negative pecuniary externality. This type of pecuniary externality is emphasized in the literature on prudential capital controls (Bianchi, 2011). Second, the relative price of traded to non-traded goods is present in the safe-assets-in-advance constraint. This creates a positive pecuniary externality. Third, in the presence of sticky prices, fixed exchange rate, and non-traded goods, an increase in safe debt issuance by financial firms affects the households pattern of spending. This effect generates another macroeconomic externality. Similar macroeconomic externality underlies benefits of fiscal transfers (Farhi and Werning, 2012). All of these international externalities will affect the trade-offs faced by local financial regulators.

I emphasize two main results in this paper. First, optimal macroprudential policy is used to stabilize business cycles. When monetary and macroprudential policies are set
optimally in a coordinated way across monetary union members, optimal macroprudential policy is country-specific, and it depends on the amount of slack in a country. Optimal monetary policy sets average across countries labor wedge to zero. However, the central bank cannot replicate flexible price allocation in each country. This provides a stabilization role for regional financial regulation. Optimal macroprudential policy trades off its financial stability objective, mitigation of pecuniary externalities, and stabilization of inefficient business cycle fluctuations due to presence of sticky prices.

Optimal macroprudential policy is used to stabilize business cycles even when fiscal transfers are allowed among the union members, and these transfers are set optimally. Optimal fiscal transfers equalize the social marginal value of traded goods across countries. However, in general, the fiscal transfers cannot achieve a flexible price allocation in every country. As a result, macroprudential policy are partly used to stabilize inefficient business cycle fluctuations. This result emphasizes that optimal regional macroprudential policy must be directed toward business cycle stabilization even when some regional stabilization tools are available.

The second main results underscores the benefits of global coordination of regional macroprudential policies. There are three sources of gains from coordination stemming from the three externalities that arise in the international context. Intuitively, a tighter financial regulation in a particular country reduces the supply of safe assets in this country. This affects the composition of consumption of traded and non-traded goods in this country and in all other counties of the union. Variation in consumption of traded and non-traded goods changes the collateral constraints, the amount of goods that can be bought with safe debt, and the size of labor wedge in all other countries. As a result, local macroprudential policy has international spillovers that are not internalized by the local regulator. This results in the benefits of coordination. The logic behind this result does not require countries to have any monopoly power over prices of internationally traded goods or assets.

Related Literature. The elements of the model are related to several strands of literature. The model builds on the recent paper by Stein (2012) who argues that the fire-sale externality creates a role for macroprudential interventions.\(^2\) The idea that it is useful to use safe and liquid securities for transactions, and the financial sector can create such securities, is rationalized in Gorton and Pennacchi (1990); Dang et al. (2012). Woodford (2011) introduces a model similar to Stein (2012) into a standard closed-economy New

\(^2\)Stein (2012) relies on the earlier literature which emphasizes fire-sales. See, for example, Shleifer and Vishny (1992); Gromb and Vayanos (2002); Lorenzoni (2008). A number of recent papers suggested that a system of Pigouvian taxes can be used to bring financial sector incentives closer to social interests (Bianchi, 2011; Jeanne and Korinek, 2010).
Keynesian model and shows that optimal monetary policy must partly address the fire-sale externality when macroprudential policy is suboptimal. In a related model, Caballero and Farhi (2015) show that unconventional monetary policy can be more effective than traditional monetary policy in fighting the shortage of safe assets. In this paper, I extend the model with a special role for safe assets to an international setting following the New Open Economy Macro literature.¹ I build on the models of Obstfeld and Rogoff (1995) and Farhi and Werning (2013).

The results in this paper are connected to four strands of literature. First, the optimal currency area literature deals with the inability of traditional monetary policy to fully stabilize asymmetric shocks in a currency union. This literature proposes that factors mobility (Mundell, 1961), higher level of openness (McKinnon, 1963), and fiscal integration (Kenen, 1969) are necessary for stabilization of asymmetric shocks. More recent contributions emphasize the importance of regional fiscal purchases (Beetsma and Jensen, 2005; Gali and Monacelli, 2008), distortionary fiscal taxes (Ferrero, 2009), fiscal transfers (Farhi and Werning, 2013), and capital controls (Schmitt-Grohe and Uribe, 2012). Adao et al. (2009); Farhi et al. (2014) show that with a sufficient number of fiscal tools the flexible price allocation can be achieved in a monetary union. However, it is possible that a sufficient number of policy tools is not available to policy makers. The current paper complements this literature by analyzing regional macroprudential policy as a potential macroeconomic stabilization tool.

Second, a number of papers solve for monetary and macroprudential policies in a closed economy environment with aggregate demand externality due to nominal rigidities and pecuniary externality due to collateral constraints. Farhi and Werning (forthcoming) and Korinek and Simsek (2016) present models in which constrained monetary policy and the presence of the aggregate demand externality provide an active stabilization role for macroprudential policy. The authors show that when the endogenous collateral constraints are present in these models, macroprudential policy trades off the mitigation of pecuniary externality and the stabilization of aggregate economy due to aggregate demand externality. In a model with aggregate demand and pecuniary externalities, Woodford (2016) compares optimal monetary, macroprudential, and quantitative easing policies and concludes that quantitative easing policy can be a useful policy tool even when the zero lower bound constraint does not bind. Cesa-Bianchi and Rebucci (2016) analyze monetary and macroprudential policy in a model with nominal rigidities, collateral constraints, and monopolistic competition friction in the banking sector. In contrast, in this paper, I study a model with aggregate demand and pecuniary externalities extended to a

¹See, for example, Obstfeld and Rogoff (1995), Corsetti and Pesenti (2001), Benigno and Benigno (2003) for early contributions and Corsetti et al. (2010) for a recent overview.
monetary union setting.

Third, there is a growing literature that studies macroprudential and monetary policy in a small open economy. Benigno et al. (2013), Bianchi (2011), Bianchi and Mendoza (2010), Jeanne and Korinek (2010) study macroprudential capital controls in models where foreign borrowing by a country is limited by a collateral constraint. Fornaro (2012) compares different exchange rate policies, and Ottonello (2013) solves for optimal exchange rate policy in a model with wage rigidity and occasionally binding borrowing constraints. Otrok et al. (2012) compare different monetary and macroprudential policies in an environment with sticky prices and collateral constraints. Farhi and Werning (forthcoming) solves for optimal capital control and monetary policy under sticky prices and collateral constraints in a small open economy. In my environment, there is an explicit financial sector that can be a source of the fire-sale externality even without international capital flows. This allows me to separate capital controls and financial sector regulation policies. In addition, I am interested in deriving optimal policy in a currency union instead of a small open economy.

Finally, there are papers that address joint conduct of monetary and macroprudential policies in a currency union. Beau et al. (2013) and Brzoza-Brzezina et al. (2015) compare effects of several specifications of monetary and macroprudential policies on macroeconomic variables, and Rubio (2014) does it for welfare. Quint and Rabanal (2014) solve for the best monetary and macroprudential policies in the class of simple policy rules that are predetermined functions of macroeconomic variables. In this paper, I solve for optimal monetary and macroprudential policies and derive implications for coordination of these policies.

The rest of the paper is organized as follows. Section 2 presents a closed economy model with sticky prices and nonpecuniary demand for safe assets. Section 3 extends the model to a currency union setting. Section 4 concludes.

2 A 2-period Closed Economy Model

I first present a closed-economy model that introduces specific modeling assumptions in the most transparent way. Section 3 extends the model to a multi-country setting.

The economy goes on for two dates, $t = 0, 1$. Uncertainty affects only preferences over durable goods in period 1, the state of the world is denoted by s_1 (all endogenous variables in period 1 can depend on s_1). There are three types of goods in the economy: durable goods, (final) consumption goods and a continuum of differentiated intermediate goods. The economy is populated by a continuum of identical multi-member households with a unit mass, a continuum of final-good producing firms with a unit mass, and the
government. Any state-contingent security is traded between periods 0 and 1.

2.1 Households

Each household consists of four types of agents: a firm, a banker, a consumer and a worker. Household preferences are

$$
\mathbb{E} \left\{ u(c_0) - v(n_0) + \beta \left[U(c_1, \xi_1) + X_1(s_1)g(h_1) - v(n_1) \right] \right\}
$$

(1)

where n_t is labor supply in $t = 0, 1$; c_t is consumption which can be bought on credit in $t = 0, 1$; ξ_1 is consumption in period 1 that can be bought with safe assets only, h_1 is consumption of durable goods. $u(\cdot)$ is strictly increasing and concave, $v(\cdot)$ is strictly increasing and convex, $g(\cdot)$ is strictly increasing, concave, and $-g''(h_1)h_1/g'(h_1) < 1$. Random variable $X_1(s_1)$ takes on two values $X_1 \in \{1, \theta\}$ with corresponding probabilities μ and $1 - \mu$. Utility from consumption of perishable goods in period 1 is given by

$$
U(c_1, \xi_1) = u(c_1 + \xi_1) + \nu u(\xi_1),
$$

where ν is the parameter that controls demand for goods bought with safe securities.

A worker competitively supplies n_t units of labor and receives income $W_t n_t$, where W_t is the nominal wage in period t. A firm is a monopolist and it uses a linear technology to produce differentiated good j

$$
y_t^j = A_t n_t^j
$$

The firm hires labor on a competitive market at nominal wage W_t, but pays $W_t \cdot (1 + \tau_t^L)$, where τ_t^L is the labor tax (or subsidy if negative). Price P_t^j of differentiated good period 0 is sticky, however, price P_t^j is flexible. One can assume that the price was set before period 0 conditional on expectations about future economic conditions, and the economic conditions turn out to be different from expected. The final goods producer’s demand for each variety is $y_t(P_t^j/P_t)^{-\epsilon}$, where $P_t = (\int (P_t^j)^{1-\epsilon} dj)^{1/(1-\epsilon)}$ is the price of final goods. The profits of the firm producing variety j

4The multi-member household construct allows to study situations in which different agents have different trading opportunities but keeps the simplicity of the representative household. See, for example Lucas (1990).

5The fact that preferences are not symmetric over the two periods is without loss of generality. Assuming that household enters period 0 with an endowment of safe assets and endowment of durable goods allows to make preferences symmetric without changing the results.

6Under this assumption on preferences, the overall production of consumption goods can be determined without reference to the supply of liquid assets (see Woodford, 2003 for details).
is

\[\Pi_0^j = \left(P_0^j - \frac{(1 + \tau_0^j) W_0}{A_0} \right) y_0 \left(\frac{P_0^j}{P_0} \right)^{-\epsilon}, \]

\[\Pi_1(s_1) = \left(P_1(s_1) - \frac{(1 + \tau_1^j) W_1(s_1)}{A_1} \right) y_1(s_1) \left(\frac{P_1(s_1)}{P_1(s_1)} \right)^{-\epsilon}. \]

A banker buys \(k_0 \) units of final goods in period 0 and immediately produces \(h_1 = G(k_0) \) units of durable goods that he sells to consumers in the next period at flexible nominal price \(\Gamma_1(s_1) \). To finance the purchase of final goods the banker issues safe bonds with face value \(D^b_1 \), and he receives \(D^b_1 / (1 + i_0) \), where \(i_0 \) is the nominal interest rate on safe bonds. In addition to safe debt, the banker can issue any state contingent security, including equity. The banker is required that at least fraction \(z_0 \) of his safe liabilities is covered by central bank reserves. Formally, the banker buys \(R^b_1 \) reserves by paying \(R^b_1 / (1 + i^r_0) \), where \(i^r_0 \) is the interest rate on reserves to satisfy

\[z_0 \leq \frac{R^b_1}{D^b_1}. \]

For banker’s safe debt to be safe, this debt must be guaranteed to be repaid in the worst state of the economy in period 1. Formally, this implies

\[D^b_1 \leq \min_{s_1} \{ \Gamma_1(s_1) \} G(k_0) + R^b_1, \]

where \(\min_{s_1} \Gamma_1(s_1) \) is the smallest possible price of durable goods in period 1.

A consumer decides on the assets allocation of the household: he buys any state-contingent security that bank issues, and he also buys \(D^c_1 \) safe bonds, and pays \(D^c_1 / (1 + i_0) \). A consumer also buys final goods \(c_t \) on credit in both periods, and final goods \(c_1 \) in period 1 with safe assets. Formally,

\[P_1 c_1 \leq D^c_1, \]

where \(P_1 \) is the nominal price in \(t = 1 \). This inequality states that consumption \(c_1 \) must be purchased using risk-free assets \(D^c_1 \). There is a long tradition in macroeconomic literature to assume that part of consumption goods must be bought with nominal liabilities of a central bank (Svensson, 1985; Lucas and Stokey, 1987) because of transaction frictions.

\[^7 \text{In this simple model, there is not going to be inflation risk. Thus it is not necessary to specify if the securities must be safe in real or nominal terms.} \]
I assume that not only central bank liabilities, but also other safe assets can be used to purchase these goods. These securities include government and private safe bonds. I will call this constraint the “safe-assets-in-advance (SAIA) constraint.”

Consolidated household budget constraints in periods 0 and 1 are

\[T_0 + P_0 c_0 + \frac{D_c^1}{1 + i_0} + \frac{R^b_1}{1 + i_0^s} + P_0 k_0 \leq \frac{D_c^1}{1 + i_0} + W_0 n_0 + \Pi_0, \]

\[P_1 (c_1 + c_1) + T_1 + \Gamma_1 h_1 + D^b_1 \leq D^c_1 + R^b_1 + W_1 n_1 + \Gamma_1 G(k_0) + \Pi^j_1, \]

where \(P_0 \) is the price of perishable goods in period 0; \(T_0, T_1 \) are lump-sum taxes.\(^9\)

If the interest rate on reserves is strictly smaller than the interest rate on other safe securities \((i_0^r < i_0) \), the bankers optimally choose not to hold more reserves than required \((R^b_1 = z_0 D^b_1) \). As a result, the collateral constraint and the budget constraints in both periods can be written as

\[\tilde{D}^b_1 \leq \min \{ \Gamma_1(s_1) \} G(k_0), \]

\[T_0 + P_0 c_0 + \frac{D_c^1}{1 + i_0} + P_0 k_0 \leq \tilde{D}_1^b (1 - \tau_0^b) + W_0 n_0 + \Pi_0, \]

\[P_1 (c_1 + c_1) + T_1 + \Gamma_1 h_1 + \tilde{D}^b_1 \leq D^c_1 + W_1 n_1 + \Gamma_1 G(k_0) + \Pi^j_1, \]

where \(\tilde{D}^b_1 \equiv D^b_1 - R^b_1 \) is bankers safe debt liabilities net of reserves deposited at the central bank, and \(\tau_0^b \equiv z_0 / (1 - z_0) \cdot (i_0 - i_0^r) / (1 + i_0^r) \). Constraints (4)-(6) do not separately depend on \(i_0^r \) and \(z_0 \) but only through their combination expressed by \(\tau_0^b \), which can be interpreted as the Pigouvian tax on safe debt issuance. I will call \(\tau_0^b \) a “macroprudential tax.” If the interest rate on reserves are equal to the interest rate on other safe securities \((i_0^r = i_0) \), a banker may choose to hold excess reserves in which case the reserve requirements constraint does not bind, but the constraints faced by the household are still identical to (4)-(6) with \(\tau_0^b = 0 \).

A household maximizes (1) subject to (3)-(6) by choosing consumption \(c_0, c_1, c_1, h_1 \), safe debt position \(D^c_1, \tilde{D}_1^b \), labor supply \(n_0, n_1 \), investment in production of durable goods \(k_0 \) and price \(P_1^j \) (price \(P_0^j \) is exogenously fixed).

Household optimality conditions with respect to consumption, asset allocation, and

\(^8\)See Krishnamurthy and Vissing-Jorgensen (2012a,b) for recent evidence that the U.S. treasuries and some financial sector liabilities command both safety and liquidity premia.

\(^9\)Note that this representation of the budget constraint does not feature state-contingent securities issued by banks and state-contingent securities bought by the consumers. This is without loss of generality because bankers and consumers are members of multi-member households. It can be thought that bankers issue state-contingent securities within its household.

9
labor supply can be summarized as follows
\[
u'(c_0) = (1 + i_0)\beta E_0 \left\{ \frac{P_0}{P_1} u'(c_1 + \xi_1) \left[1 + \frac{\nu u'(c_1)}{u'(c_1 + \xi_1)} \right] \right\}, \quad (7)
\]
\[
\frac{\Gamma_1(s_1)}{P_1} = \frac{X_1(s_1) g'(h_1)}{u'(c_1 + \xi_1)}, \quad (8)
\]
\[
\frac{W_0}{P_0} = \frac{v'(n_0)}{u'(c_0)}, \quad (9)
\]
\[
\frac{W_1}{P_1} = \frac{v'(n_1)}{u'(c_1 + \xi_1)}. \quad (10)
\]

Equation (7) is the Euler equation for safe bonds. It is similar to the standard Euler equation except for the presence of the second term in the square brackets. I will call this term a safety yield and denote it by \(\tau_A \equiv \nu u'(\xi_1)/u'(c_1 + \xi_1)\). This term introduces a wedge in the safe bonds Euler equation. This effectively adds more discounting to the model.\(^\text{10}\)

With this term, not only current monetary policy \(i_0\) and future consumption \(c_1 + \xi_1\) affect current level of consumption \(c_0\), but also the supply of safe assets in the economy.

Equation (8) represents the demand for durable goods: period 1 real price of durable goods equals the ratio of durable goods marginal utility over perishable goods marginal utility in period 1. Optimality conditions (9) and (10) are labor supply schedules in both periods.

The Lagrange multiplier on the SAIA constraint expressed in utility units is \(\eta_1 = \nu u'(\xi_1)/u'(c_1 + \xi_1)\). It is positive (the constraint binds) if the marginal utility \(u'(\cdot)\) is positive. The bankers’ optimal choice of investment in durable goods production and issuance of safe assets implies
\[
u'(c_0) = \beta G'(k_0) E_0 u'(c_1 + \xi_1) \left\{ \frac{\Gamma_1}{P_1} + \xi_0 \frac{\min_{s_1} \{\Gamma_1\}}{P_1} \right\}, \quad (11)
\]

where \(\xi_0 \geq 0\) is the Lagrange multiplier on the collateral constraint (4) expressed in units of utility. Optimality condition (11) equates the cost of using one unit of consumption good, marginal utility of consumption, to the marginal benefit of investing which consists of two parts. First, a unit of investment produces \(G'(k_0)\) units of durable goods which are sold to households at real price \(\Gamma_1/P_1\). Second, after investing a unit into durable goods production, the banker relaxes its collateral constraint (6). The benefit of the relaxation is

\(^{10}\)The recent literature, for example, Giannoni et al. (2015), McKay et al. (2015), has emphasized that the standard New Keynesian models greatly overstate the impact of announcements about future monetary policy — the forward guidance puzzle. Campbell et al. (2016) show that in a New Keynesian model augmented with non-pecuniary preferences for safe and liquid bonds and calibrated to the U.S. data, the strength of forward guidance policy is similar to the one found in empirical studies. These results from additional discounting in the Euler equation due to the wedge introduced by the liquidity preferences.
proportional to the Lagrange multiplier ζ_0.

The bankers’ optimal choice of safe debt issuance relates the Lagrange multiplier to other equilibrium objects as follows

$$E_0 \left[\frac{u'(c_1 + c_1)}{P_1} \right] (1 + \zeta_0) = \frac{1 - \tau^B_0}{1 + i_0} \cdot \frac{u'(c_0)}{P_0}. \quad (12)$$

This expression equates the marginal cost of issuing a unit of safe debt (the left-hand side) to the benefit of raising additional funds in period 0 (the right-hand side). The marginal cost consists of two parts: the cost of repayment in period 1 and the costs of making the collateral constraint tighter. By changing the macroprudential tax τ^B_0, the financial regulator affects the marginal cost of safe debt issuance, which affects the incentives to invest in durable goods production. This, in turn, changes the aggregate demand in the economy.

Optimal choice of prices for intermediate goods in a symmetric equilibrium in which all firms set the same price P_1 leads to

$$P_1 = \frac{\epsilon}{\epsilon - 1} \cdot \frac{W_1(1 + \tau^L_1)}{A_1}. \quad (13)$$

The expression states that the firm sets its period-1 price equal to a markup over its marginal costs.

2.2 Final Goods Firms

Final goods are produced by competitive firms that combine a continuum of varieties $j \in [0, 1]$ using the CES technology

$$y_t = \left(\int y_t^\epsilon dj \right)^{\frac{1}{\epsilon - 1}},$$

with elasticity $\epsilon > 1$. Each firm solves in $t = 0, 1$

$$\max_{y_t} P_t y_t - \int P_t y_t dj,$$

Optimal choice of inputs leads to differentiated goods demand $y_t^j = y_t(P_t^j / P_t)^{-\epsilon}$ and the aggregate price index is defined as $P_t = (\int (P_t^j)^{1-\epsilon} dj)^{1/(1-\epsilon)}$.\footnote{It must be noted that the formulation of final goods firm’s problem implicitly assumes that they sell goods at a single price to those who buy goods on credit and to those who buy goods with safe assets. This}
2.3 Government

The government consists of financial regulation, monetary and fiscal authorities.

Financial regulation policy. The financial regulation authority chooses the level of reserve requirements \(z_0 \) and the interest on reserves \(i^r_0 \), which is equivalent to choosing \(\tau^b_0 \). It rebates the proceeds to the fiscal authority.

Monetary policy. The monetary authority sets the nominal interest rate \(i_0 \) on safe assets and targets inflation rate \(\Pi^* = P_1 / P_0 \) which is assumed not to depend on state \(s_1 \). To motivate the monetary authority control over the nominal price level in period 1 and the nominal interest rate between periods 0 and 1, one can assume that fraction \(\kappa \in [0, 1] \) of purchases has to be made with monetary authority nominal liabilities \(M_0, M_1 \) that do not pay nominal interest (cash).\(^{12}\) Formally, \(\kappa P_0 c_0 = M_0, \kappa P_1 (c_1 + \xi_1) = M_1 \). Because consumers want to economize on cash holdings when the safe nominal interest rate is strictly positive, there is demand for cash which depends on nominal interest rate. By setting nominal interest rate \(i_0 \), the monetary authority is ready to satisfy any demand for cash in period 0. The price level in period 1 is \(P_1 = M_1 / [\kappa (c_1 + \xi_1)] \). When announcing the price level for period 1, the monetary authority adjusts \(M_1 \) to keep the price level fixed at the announced level. Allowing \(\kappa \) and \(M_0, M_1 \) to go to zero so that ratios \(M_0 / \kappa, M_1 / \kappa \) stay positive and finite, the government determines price \(P_1 \), but there is no need to explicitly consider equilibrium in the cash market. This limit is sometimes called “a cashless economy.”

Fiscal Policy. The fiscal authority sets lump sum taxes \(T_0, T_1 \), and proportional labor taxes \(\tau^L_0, \tau^L_1 \). The fiscal authority corrects monopolistic competition friction in period 1 by setting \(\tau^L_1 = -1 / \epsilon \). The labor tax in period 0 will not affect the equilibrium conditions because the period-0 price is assumed to be exogenously fixed.

The government issues \(D^S_1 \) of safe securities. This amount consists of safe government bonds and the reserves purchased by the banks. Note that under the assumption that the financial regulator sets the interest rate on reserves \(i^r_0 \) and the reserve requirement \(z_0 \), the quantity of reserves must adjust to satisfy banks reserves demand. The identity of the authority that issues public safe securities does not matter for equilibrium as long as the consolidated government budget constraint is satisfied. However, it matters whether the overall amount of public safe securities \(D^S_1 \) reacts to changes in the economy. For assumption rules out an equilibrium in which final goods producers sell their output at different prices to those who buy with credit and to those who buy with safe assets.

\(^{12}\)See Mankiw and Weinzierl (2011) for similar treatment of monetary policy in a 2-period model.
example, if the reserve requirement constraint binds \((R_1^b = z_0D_1^b)\), the total amount of reserves demanded by the banks is an endogenous variable, which may affect the overall public safe securities supply. I assume that the government targets the overall public safe securities supply \(D_1^g\), which implies that any equilibrium variation in the amount of outstanding reserves is offset by the mirror change in the supply of safe public bonds.

The consolidated government budget constraints in both periods are

\[
0 = T_0 + \tau_0^b \frac{\hat{D}_1^b}{1 + i_0} + \frac{D_1^g}{1 + i_0} + \tau_0^L W_0 n_0, \tag{14}
\]

\[
D_1^g = T_1 + \tau_1^L W_1 n_1. \tag{15}
\]

2.4 Auxiliary Variables

It will prove useful to introduce a number of new variables which will simplify notation. \(d_1^c \equiv D_1^c / P_1\) is the real household demand for safe assets, \(\tilde{d}_1^b \equiv \hat{D}_1^b / P_1\) is the real private supply of safe assets by bankers, \(d_1^g \equiv D_1^g / P_1\) is the real public supply of safe assets, \(\gamma_1 \equiv \Gamma_1 / P_1\) is the price of durable goods expressed in units of period-1 consumption goods, \(w_t \equiv W_t / P_t\) is the real wage, and \(r_0 \equiv (1 + i_0)P_0 / P_1\) is the safe real interest rate. Let us define the durable goods price elasticity as

\[
e_\Gamma \equiv -\frac{\partial \log \gamma_1}{\partial \log h_1} = -\frac{\gamma_1''(h_1)h_1}{\gamma_1'(h_1)}.\]

The elasticity is positive and, as was assumed earlier, less than one. It can depend on the durable goods consumption. The labor wedge is defined as

\[
\tau_0 \equiv 1 - \frac{v'(n_0)}{A_0 u''(c_0)}.\]

The labor wedge is zero when a marginal benefit of consumption equals a marginal cost of working. The labor wedge equals zero if prices are flexible (economy is stabilized). It is positive when equilibrium labor and consumption are too small (a recession). It is negative when labor and consumption are too high (a boom).

2.5 Equilibrium

An equilibrium specifies consumption \(c_0, c_1, c_1\), labor \(n_0, n_1\), investment in durable goods \(k_0\), durable goods consumption \(h_1\), real safe debt supply by bankers and the government \(\hat{d}_1^b, d_1^g\), safe debt demand \(d_1^c\) by consumers, real wage \(w_t\), nominal interest rate \(i_0\), government lump-sum taxes \(T_0, T_1\), labor taxes \(\tau_0^L, \tau_1^L\), and macroprudential tax \(\tau_0^b\) such
that households and firms maximize, the government budget constraints are satisfied as equalities in every period, final goods markets clear

\[k_0 + c_0 = A_0 n_0, \]
\[c_1 + \xi_1 = A_1 n_1, \]
durable goods market clears

\[h_1 = G(k_0), \]
and safe assets market clears

\[d_1 = \bar{d}_1 + d_1^S. \]

The complete set of equilibrium conditions (4)-(19) can be simplified as follows. First, because prices are flexible in period 1, household labor supply (10), firms choice of prices (13), and goods clearing condition (17) imply \(A_1 u'(A_1 n_1) = v'(n_1) \): a marginal benefit of working is equal to a marginal cost of working. This expression determines equilibrium amount of labor only as a function of productivity \(A_1 \) in period 1. I denote it by \(n_1^* \), and the corresponding level of output by \(y_1^* = A_1 n_1^* \). Second, because the SAIA constraint binds in equilibrium, consumption bought with safe assets \(\xi_1 \) is determined by the amount of safe assets acquired in the previous period. This implies that consumption \(c_1 \) and \(\xi_1 \) do not depend on the realization of preferences over durable goods \(X_1(s_1) \). Third, the only period-1 endogenous variable that depends on realization of \(s_1 \) is the price of durable goods. Equation (8) implies that there are only two possible realizations of the price:

\[\gamma(X_1 = 1) = g'(h_1)/u'(y_1^*) \quad \text{and} \quad \gamma(X_1 = \theta) = \theta g'(h_1)/u'(y_1^*) = \theta \gamma(X_1 = 1). \]

It is intuitive that allocations in period 1 do not depend on the realization of state \(s_1 \). Realization of \(s_1 \) directly affects durable goods price \(\gamma_1 \) by changing the marginal utility of durable goods. However, the realization of this price only redistributes resources between bankers and consumers. Because bankers and consumers belong to a large household, they effectively pool their resources together in the end of period 1. Thus, the allocation in period 1 is not affected.

The SAIA constraint binds in equilibrium (\(\xi_1 = \bar{d}_1 + d_1^S \)) because marginal utility of consumption bought with safe assets is always positive. Taking this into account, Euler equation (7) links three endogenous variables: consumption \(c_0 \), real interest rate on safe debt \((1 + i_0) / \Pi^* \) and safe debt supply \(\bar{d}_1 \):

\[u'(c_0) = \beta \frac{1 + i_0}{\Pi^*} u'(y_1^*) \left[1 + v u'(\bar{d}_1 + d_1^S) / u'(y_1^*) \right]. \]
Household demand for durable goods (8), bankers’ choice of investment in durable goods (11), and durable goods market clearing condition (18) lead to

$$u'(c_0) = \beta g' [G(k_0)] G'(k_0) [\mu + (1 - \mu)\theta + \zeta_0\theta],$$ \hspace{1cm} (21)

where multiplier \(\zeta_0\), given by (12), can be rewritten taking into account safe assets Euler equation (20) as follows

$$\zeta_0 = \left(1 - \tau B_0\right) \frac{u'(c_0)}{u'(y_1^*)} \cdot \frac{\Pi^*}{\beta (1 + i_0)} - 1 \geq 0.$$ \hspace{1cm} (20)

Next, collateral constraint (4) can be expressed in real terms, taking into account equilibrium durable goods price (8), as follows

$$\tilde{d}_1^b \leq \theta g' [G(k_0)]/u'(y_1^*) G(k_0).$$ \hspace{1cm} (22)

Note that the minimal real durable good price \(\gamma_1 = \theta g'[G(k_0)]/u'(y_1^*)\) depends on the level of investment in durable goods production. This price in the collateral constraint is a source of pecuniary externality that affects welfare. I will call it a fire-sale externality.

Equations (20)-(22), together with complementarity slackness conditions on the last inequality, describe equilibrium. This system determines the remaining unknown endogenous variables \(c_0, k_0, \tilde{d}_1^b\).

2.6 Ramsey Planning Problem

The financial regulation and monetary authorities face all of the equilibrium conditions (4)-(19) as constraints when choosing their optimal policies. The full system of equilibrium conditions was reduced to system (20)-(22).\(^{13}\) Note that the full set of equilibrium conditions can be unambiguously recovered from (20)-(22).

Following the public finance literature (Lucas and Stokey, 1983), I further drop certain variables and constraints from the optimal policy problem. First, given quantities \(c_0, k_0, \tilde{d}_1^b\), optimality with respect to choice of investment in durable goods (21) can be dropped because it can be used to express optimal macroprudential tax \(\tau_0^b\) when the collateral constraint binds. We will see that whenever the planner’s optimal choice of investment in durable goods does not lead to binding collateral constraints, the planner’s optimum will coincide with the private one. Finally, (20) can be dropped because it can

\(^{13}\)In addition, the collateral and liquid-assets-in-advance constraints are accompanied by the complementarity slackness conditions.
be used to back out the nominal interest rate.

Proposition 1. An allocation c_0, k_0, d_1^b form part of an equilibrium if and only if condition (22) holds.

I now solve the Ramsey problem by choosing the competitive equilibrium that maximizes the social welfare. Formally, the planner solves

$$
\max_{\{c_0, k_0, d_1^b\}} u(c_0) - v\left(\frac{c_0 + k_0}{A_0}\right) + \beta \left[u(A_1n_1^*) - v(n_1^*) + (\mu + (1 - \mu)\theta) g(G(k_0)) + vu(d_1^b + d_1^g) \right]
$$

s.t. : \[\tilde{d}_1^b \leq \theta \frac{g'(G(k_0))}{u'(A_1n_1^*)} G(k_0).\]

The representation of the planner’s objective takes into account that only preferences over durable goods depend on realization of s_1, which in expectation is $E X_1(s_1) = \mu + (1 - \mu)\theta$. The planner’s optimal behavior leads to

$$
\tau_0 = 0, \\
\tilde{\zeta}_0 = \tau_A, \\
u'(c_0) = \beta g'G(k_0) [\mu + (1 - \mu)\theta + \tilde{\zeta}_0 (1 - \epsilon_{\Gamma})],
$$

where $\tilde{\zeta}_0 \geq 0$ are the Lagrange multiplier on the collateral constraint expressed in units of period-1 consumption goods. The first equation states that the labor wedge equals zero (the economy is stabilized). The second line states that in planner’s optimum the collateral constraints binds. Moreover, the multiplier on the collateral constraint equals the liquidity wedge τ_A. The third equation is the choice of investment in durable goods production. Compared to private optimal choice of investment in durable goods (21), the planner’s optimal condition reveals that she internalizes the impact of durable goods investment on future durable goods price, which is formally represented by term $1 - \epsilon_{\Gamma}$ on the right-hand side of the equation. As a result, the planner invests less compared to bankers.

The externality stems from the fact that a banker does not internalize all costs that he imposes on other bankers when he issues more safe debt. Additional resources from issuing safe debt are invested in production of durable goods. Higher durables production reduces the minimal durable goods price that enters the collateral constraints of all the bankers. As a result, the collateral constraints are tightened for all bankers in the economy, which is the cost that the banker does not internalize.

I next characterize the implementation of the constrained efficient allocation. Comparison of planner’s optimality with private optimality condition (21) leads to following
result.

Proposition 2. Constrained efficient allocation can be implemented by setting the macroprudential tax and the nominal interest rate so that

$$
\tau_0^b = \frac{\epsilon \Gamma \tau_A}{1 + \tau_A} \text{ and } \tau_0 = 0.
$$

(23)

When monetary and macroprudential policies are chosen optimally, the economy is stabilized (the labor wedge equals zero) and the financial regulation reduces welfare losses due to pecuniary externality. Macroprudential tax τ_0^b is proportional to durable goods price elasticity and the safety yield. When durable goods price elasticity $\epsilon \Gamma$ is zero, the macroprudential tax is also zero because private investment decisions do not affect future price of durable goods. In addition, in the absence of safety wedge, $\tau_A = 0$, the planner also sets the macroprudential tax to zero. This is because the collateral constraint does not bind when the safety yield is zero. If the yield is not zero, its higher value leads to higher macroprudential tax because safety yield is proportional to the social marginal cost of safe debt issuance.\(^{14}\)

Equation (23) reveals how optimal macroprudential policy reacts to changes in the economy when monetary policy is optimal (or prices are flexible). Recall that the safety yield equals marginal utility from consumption bought with safe assets in period 1 over marginal utility of total consumption in period 1: $\tau_A = \nu u'(\tilde{d}^b_1 + d^g_1) / u' (y^*_1)$. Consider different sources of variation in τ_A. First, smaller values of productivity A_0 and A_1, which can be interpreted as a persistent negative productivity shock, change equilibrium output y_0 and safety wedge τ_A. Smaller A_0 reduces output, consumption, and investment in period 0. This results in lower issuance of safe debt which increases the safety wedge. Smaller A_1 reduces output and consumption in period 1. This reduces the safety yield. The net effect depends on the model parameters. Figure 1 shows a numerical example in which a decline in productivity in the two periods reduces the safety yield and the macroprudential tax.\(^{15}\)

Next, consider how a smaller value of θ (a smallest realization of utility from durable goods) changes equilibrium output y_0 and safety yield τ_A. A smaller value of θ has a direct negative effect on output in period 0 because it reduces investment in durable goods as the collateral value of durable goods falls. Hence private issuance of safe debt de-

\(^{14}\)Technically, the Lagrange multiplier on the collateral constraint in the Planner’s problem equals the safety yield.

\(^{15}\)In the numerical examples presented in Figures 1 and 2, the following functional forms and numerical values are used $u(c) = \log(c)$, $G(k_0) = A^h k_0^{\alpha_h}$, $g(h_1) = \psi_h h^{1-\epsilon \Gamma} / (1 - \epsilon \Gamma)$, $v(n) = \psi_n n^{1+\rho_n} / (1 + \rho_n)$, $\beta = 0.9879$, $\nu = 0.004$, $\psi_h = 0.3$, $\epsilon \Gamma = 0.9$, $\psi_n = 5$, $\rho_n = 0.1$, $A^h = 1$, $\alpha_h = 0.9$, $d^g = 0.38$. In the example of Figure 1, $\theta = 0.7$. In the example of Figure 2, $A_0 = A_1 = 8$.

17
creases, increasing the safety yield. The marginal utility of consumption in period 1 is not affected by θ because period 1 consumption is pinned down by y^*_1. The macroprudential tax increases. Figure 2 illustrates that a lower value of θ reduces output in period 0 and increases optimal macroprudential tax.

These two examples show that different shocks that reduce output in period 0 lead to substantially different changes in optimal macroprudential tax.

2.7 Macroprudential and Monetary Policy Interaction

The results in Proposition 2 do not depend on the fact that the two policies are set cooperatively. This is because both policies are chosen to maximize the same objective subject to the same constraints.16 If the macroprudential policy is chosen optimally, it is optimal for

16Paoli and Paustian (2013) show that there is a scope for coordination between the two policy choices when the objectives of monetary and macroprudential authorities differ.
the monetary policy to set flexible price allocation (the labor wedge is zero).17 However, if one of the two policies is suboptimal, the other policy will have an additional role.

It is sometimes proposed that monetary policy should be directed towards financial stability objectives because macroprudential policy may not be chosen optimally. For example, Stein (2013, 2014) argues that some market participants may evade macroprudential regulation leading to inability of the financial regulators to set optimal policy. However, monetary policy has a universal effect on all market participants. Symmetrically, one can argue that sometimes monetary policy may not be set optimally, for example, due to the zero lower bound or because a country belongs to a monetary union, which precludes control over the nominal interest rate. In this case, the macroprudential policy should be directed toward the stabilization of inefficient business cycle fluctuations due to sticky prices. The model of this section can be used to analyze these two situations. The following proposition describes the optimal monetary policy when macroprudential policy is not set optimally and the optimal macroprudential policy when monetary policy is not set optimally.

Proposition 3. (i) Optimal monetary policy when the macroprudential tax is set at $\tau_b \neq \frac{\epsilon \Gamma \tau_A}{(1 + \tau_A)}$ is such that

$$\tau_0 = \frac{1}{Z_1} \left(\frac{\epsilon \Gamma \tau_A}{1 + \tau_A} - \tau_b \right),$$

where $Z_1 > 0$ is a variable that depends on the optimal allocation;

(ii) optimal macroprudential tax when monetary policy is set such that $\tau_0 \neq 0$ is

$$\tau_b = \frac{1}{1 - \tau_0} \left(\frac{\epsilon \Gamma \tau_A}{1 + \tau_A} - \tau_0 Z_2 \right),$$

where $Z_2 > 1$ is a variable that depends on the optimal allocation.

Proof and the formal expressions for Z_1, Z_2 are in Appendix A.1.3. The first part of Proposition 3 states that the optimal monetary policy takes into account the deviation of macroprudential tax from its optimum. Formally, the planner solves a problem in which she has an additional constraint: banker’s optimality condition with respect to investment in durable goods. The optimal monetary policy generates a recession ($\tau_0 > 0$) if the financial regulator sets the macroprudential tax below the optimal level, $\tau_b < \frac{\epsilon \Gamma \tau_A}{(1 + \tau_A)}$. Intuitively, if the tax τ_b is not high enough, monetary authority generates

17It must be noted that the separation between optimal monetary and macroprudential policies, i.e., the fact that monetary policy sets the labor wedge to zero and macroprudential policy corrects pecuniary externality, relies on the specific price setting assumption: all firms costlessly set prices one period ahead. In models that allow for costs of price setting (Rotemberg, 1982) or non-trivial price dispersion across firms (Calvo, 1983), these nominal rigidities lead to additional welfare losses. As a result, there is going to be a non-trivial policy trade-off even when both monetary and macroprudential policies are set optimally.
a recession in the whole economy to reduce banks incentives to issue safe debt and invest in durables production. If the macroprudential tax is above its optimum, the monetary authority generates an inefficient boom to undo overly strict financial regulation.

The second part of proposition 3 shows that the optimal macroprudential tax not only mitigates the losses of the fire-sale externality (the first term in the brackets of equation (25)), but also corrects the so-called “aggregate demand externality” due to sticky prices. The second term in brackets formally represents this externality. Intuitively, when prices are sticky, additional purchases of perishable goods either by bankers or by consumers increase aggregate demand and, hence, contemporaneous output because prices are sticky. Higher output makes agents richer and induce them to spend more, which increases output further. An individual agent does not internalize this. Proposition 2 shows that monetary policy can correct this externality and macroprudential policy only addresses the fire-sale externality. Proposition 3, however, states that macroprudential policy optimally addresses both externalities when monetary policy is not set optimally. For example, when a country is in an inefficient recession, $\tau_0 > 0$, the optimal macroprudential tax is reduced to induce the bankers to invest more in durables production.\(^{18}\)

Finally, there is a feedback effect. Because the planner wants to stabilize the economy (close the labor wedge τ_0), she makes bankers invest and issue more safe assets (if $\tau_0 > 0$). This increases losses due to the pecuniary fire-sale externality which the regulator wants to also undo. This effect is formally expressed by the presence of multiplier $1/ (1 - \tau_0)$. The pecuniary and aggregate demand externalities interact in a nonlinear way to determine the optimal macroprudential tax τ_{b0} in the sense that the first term in brackets of equation (25) is multiplied by $1/ (1 - \tau_0)$.

3 A 2-period Model of Currency Union

This section extends the model presented in the previous section to a multi-country setting, and presents the main results of the paper.

The international extension of the model features traded and non-traded goods as in Obstfeld and Rogoff (1995) and Farhi and Werning (2013). Non-traded goods are produced with labor, while there is inelastic supply of traded goods. Durable goods are produced with non-traded goods and are consumed only locally. Labor is immobile across countries. Agents can trade only safe bonds across borders. Only non-traded goods prices in period 0 are sticky, all of the other prices are flexible. There is a continuum of countries of measure one.

\(^{18}\)Formally, because $Z_2 > 1$, it must be that $\tau_{b0} < \frac{\epsilon_f \tau_A}{1 + \tau_A}$ when $\tau_0 > 0$.\(^{18}\)
The following household preferences extend the closed-economy preferences (1) by adding traded and non-traded goods

\[
\mathbb{E}\left\{ U\left(c_{NT,0}^i, c_{T,0}^i\right) - v\left(n_0^i\right) + \beta U\left(c_{NT,1}^i + c_{NT,1}^i, c_{T,1}^i + c_{T,1}^i\right) - \beta v\left(n_1^i\right) + \beta X_1(s_1)g\left(h_1\right) + \beta v^i\left(c_{NT,1}^i, c_{T,1}^i\right)\right\}
\]

(26)

where superscript \(i\) is the country index, \(c_{NT,t}^i, c_{T,t}^i\) is country \(i\) household consumption of non-traded (NT) and traded (T) goods in period \(t\), and \(c_{NT,1}^i, c_{T,1}^i\) is non-traded and traded goods consumption in period 1 that must be purchased with safe assets. \(U(\cdot, \cdot)\) is strictly increasing and concave.

Household’s consolidated budget constraint in period 0 is

\[
T_0^i + P_{NT,0}^i c_{NT,0}^i + P_{T,0}^i c_{T,0}^i + \frac{D_{1,0}^c}{1 + i_0} + P_{NT,0}^i k_{NT,0}^i \
\leq P_{T,0}^e c_{T,0}^i + \tilde{D}_{1}^{b,j} + \left(1 - \tau_{0}^{b,j}\right) + W_{1}^i n_{0}^i + \Pi_{0}^i(j),
\]

(27)

where \(P_{NT,0}^i\) is the sticky price index of non-traded goods in country \(i\) in period 0, \(P_{T,0}^i\) is the flexible price of traded goods in period 0, \(c_{T,0}^i\) is the household endowment of traded goods in period 0, \(k_{NT,0}^i\) is the input in production of durable goods, \(D_{1,0}^c\) is country \(i\) consumer nominal purchases of safe debt, \(\tilde{D}_{1}^{b,j}(s_0)\) is country \(i\) banker nominal issuance of safe debt net of reserves held at the central bank, \(i_0\) is safe debt nominal interest rate, \(\Pi_{0}^i(j)\) are the profits of non-traded goods firm that produces differentiated good \(j\)

\[
\Pi_{0}^i(j) = \left(P_{NT,0}^i(j) - \frac{1 + \tau_{0}^{L,i}}{A_{0}^{L,i}}\right) y_{0}^{i} \left(\frac{P_{NT,0}^i(j)}{P_{NT,0}^i}\right)^{-\epsilon}.
\]

Budget constraint (27) is an international extension of the closed-economy budget constraint (5).

Household budget constraint in period 1 is

\[
P_{NT,1}^i \left(c_{NT,1}^i + c_{NT,1}^i\right) + P_{T,1}^i \left(c_{T,1}^i + c_{T,1}^i\right) + T_1^i + \Gamma_1^i h_1^i + \tilde{D}_{1}^{b,j} \
\leq P_{T,1}^e c_{T,1}^i + D_{1}^{d,i} + W_{1}^i n_{1}^i + \Gamma_1^i G\left(k_{NT,0}^i\right) + \Pi_{1}^i(j).
\]

(28)

where \(P_{NT,1}^i, P_{T,1}^i, \Gamma_1^i\) are non-traded, traded and durable goods nominal prices in period 1, \(W_{1}^i\) is the nominal wage, \(\Pi_{1}^i(j)\) are the profits of the firm that produces non-traded goods
\[\Pi_i^j = \left(p_{NT,1}^i(j) - \frac{1 + \tau_i^L j}{A_i^j} \right) y_1^j \left(\frac{p_{NT,1}^i(j)}{p_{NT,1}^i} \right)^{-\epsilon}. \]

Traded goods nominal prices \(P_{T,0}, P_{T,1} \) and nominal interest rate \(i_0 \) have no country superscripts reflecting the fact that countries belong to a monetary union.

Country \(i \) banker constraint on the issuance of safe debt is

\[\tilde{D}_1^{b,i} \leq \min \{ \Gamma_i \} G \left(k_{NT,0}^i \right), \quad (29) \]

Part of traded and non-traded consumption in period 1 must be purchased with safe assets. The following constraint extends the closed-economy safe-assets-in-advance constraint (3) to incorporate traded and non-traded goods

\[p_{NT,1}^i c_{NT,1}^i + P_{T,1} c_{T,1}^i \leq D_c^i. \quad (30) \]

A typical household in country \(i \) maximizes (26) subject to (27)-(30) by choosing consumption of traded and non-traded goods \(c_{NT,0}^i, c_{T,0}^i, c_{NT,1}^i, c_{T,1}^i, \xi_{NT,1}^i, \xi_{T,1}^i \), consumption of durable goods \(h_1^i \), safe assets portfolio \(D_c^i, \tilde{D}_1^{b,i} \), labor supply \(n_0^i, n_1^i \), investment in production of durable goods \(k_{NT,0}^i \), and period-1 non-traded goods price \(p_{NT,1}^i \).

The household’s optimality conditions with respect to consumption are\(^{19}\)

\[\frac{U_{NT,0}^i}{p_{NT,0}^i} = \frac{U_{T,0}^i}{P_{T,0}^i}, \quad (31) \]
\[\frac{U_{NT,1}^i}{p_{NT,1}^i} = \frac{U_{T,1}^i}{P_{T,1}^i}, \quad (32) \]
\[\frac{U_{NT,1}^i}{U_{NT,1}^i} = \frac{U_{T,1}^i}{U_{T,1}^i}. \quad (33) \]

The first two equations characterize optimal intraperiod consumption choices in both periods. The last equation describes optimal choice between traded and non-traded goods

\(^{19}\) \(U_{NT,0}^i, U_{T,0}^i, U_{NT,1}^i, U_{T,1}^i \) are partial derivatives of household preferences with respect to \(c_{NT,0}^i, c_{T,0}^i, c_{NT,1}^i, c_{T,1}^i, \xi_{NT,1}^i, \xi_{T,1}^i \).
bought with safe debt. Household optimal labor supply satisfies

\[\frac{v'(n_i)}{U_{NT,0}} = \frac{W_i(s_0)}{P_{NT,0}} \]
\[\frac{v'(n_i)}{U_{NT,1}} = \frac{W_i}{P_{NT,1}}. \]

(34)
(35)

Durable goods demand is described by

\[\frac{X_1(s_1)g'(h_i)}{U_{T,1}} = \frac{\Gamma_i}{P_{T,1}}. \]

(36)

Household optimal choice of safe bonds is summarized by the following Euler equation

\[U_{T,0} = \beta E_0 \frac{1 + i_0}{P_{T,1}/P_{T,0}} U_{T,1} \left(1 + \frac{v_i U_{T,1}}{U_{T,1}} \right), \]

(37)

Optimal choice of investment in durable goods leads to

\[U_{NT,0} = \beta E_0 U_{T,1} C_{NT,0}(k_{NT,0}) \left(\frac{\Gamma_i}{P_{T,1}} + \zeta_i \min_{s_1} \frac{\Gamma_i}{P_{T,1}} \right), \]

(38)

where the Lagrange multiplier on the collateral constraint is pinned down using the optimality with respect to safe bonds issuance by bankers

\[\zeta_i = \frac{1 - \tau_{b,i}}{1 + i_0} \cdot \frac{U_{T,0}/P_{T,0}}{\beta E_0 U_{T,1}/P_{T,1}} - 1 \geq 0. \]

(39)

Optimal choice of prices for intermediate goods in period 1 leads to

\[P_{NT,1} = \left(1 + \tau_{i,1} \right) \frac{e}{e - 1} \cdot \frac{W_i}{A_1}. \]

(40)

Note that optimality conditions (34)-(40) are analogues to the closed-economy case, and conditions (31)-(33) result from the international dimension of the model.

3.1 Government

The government consists of a union-wide monetary authority, national fiscal and financial regulation authorities. The monetary authority sets the nominal interest rate on safe bonds \(i_0 \) and period-1 price of traded goods \(P_{T,1} \), so that the price level does not depend...
on state s_1. A financial regulator in country i sets the level of reserve requirements z_i^0 and country-specific interest rate on reserves i_0^0, which is equivalent to setting macroprudential tax τ^b_0 on local issuance of safe debt. It rebates the proceeds to the local fiscal authority. Local fiscal authority sets lump sum taxes T_0^i, labor taxes τ^L_0, and issues safe bonds $D_1^{S,i}$. The consolidated government budget constraints in both periods in country i are

$$T_0^i + \tau^L_0 W_0^i n_0^i + \tau^b_0 \tilde{D}_1^{b,i} / (1 + i_0) + D_1^{S,i} / 1 + i_0 = 0,$$

$$T_1^i + \tau^L_1 W_1^i n_1^i = D_1^{S,i}.$$

The government budget constraint in period 0 states that the revenue from lump-sum taxes T_0^i (transfers if negative), revenue from labor taxes $\tau_0^L W_0^i n_0^i$, revenue from reserve requirement policy $\tau^b_0 \tilde{D}_1^{b,i} / (1 + i_0)$, and revenue from issuing government safe debt $D_1^{S,i} / (1 + i_0)$ must add up to zero. The budget constraint in period 1 requires the fiscal authority to repay its safe debt $D_1^{S,i}$ by collecting lump-sum taxes T_1^i and proportional labor taxes $\tau^L_1 W_1^i n_1^i$.

Fiscal authority in country i corrects monopolistic competition friction in period 1 by setting $\tau^L_1 = -1/\epsilon$. The choice of labor tax τ^L_0 does not affect equilibrium.

3.2 Auxiliary Variables

Similarly to the closed-economy model, I introduce real variables and several wedges. First, I express period-1 nominal non-traded goods and durable goods prices in units of traded goods as follows: $p_1^i \equiv p_{NT,1}^i / P_{T,1}$; workers nominal wages in units of traded goods as $w_i \equiv W_i^i / P_{T,1}$, and the interest rate on safe debt deflated by traded goods inflation $r_0 \equiv (1 + i_0) P_{T,0} / P_{T,1} - 1$. Second, I express nominal quantities in units of traded goods: $\tilde{d}_1^{b,i} \equiv \tilde{D}_1^{b,i} / P_{T,1}$, $d_1^{S,i} \equiv D_1^{S,i} / P_{T,1}$, $d_1^{c,i} \equiv D_1^{c,i} / P_{T,1}$. Finally, the labor wedge and safety yield are defined as

$$\tau^i_0 \equiv 1 - \frac{w'(n_0^i)}{A^i U_{NT,0}^i}, \quad \tau^i_A \equiv \frac{\nu^i U_{T,1}^i}{U_{T,1}^i}.$$

20Similarly to the closed-economy case, I motivate the monetary authority control over the nominal price level of traded goods in period 1 and the nominal interest rate between periods 0 and 1 by assuming that fraction $\kappa \in [0, 1]$ of traded goods purchases has to be bought with monetary authority nominal liabilities M_0, M_1 that do not pay interest (cash): $\kappa P_{T,0} \int c_{T,0}^i di = M_0, \kappa P_{T,1} \int \left(c_{T,1}^i + c_{T,1}^0\right) di = M_1$. Making κ, M_0, M_1 tend to zero in a way that keeps $M_0 / \kappa, M_1 / \kappa$ finite and bounded from zero allows the monetary authority to have a control over nominal variables $P_{T,1}, i_0$ but does not require explicit treatment of cash.
3.3 Equilibrium

An equilibrium specifies consumption \(c_{NT,i}, c_{T,i}, n_i\), investment in durable goods \(k_{NT,0}^i\), durable goods production \(h_1^i\), real (in terms of traded goods) safe debt supply by bankers and the government \(\hat{d}_1^b, \hat{d}_1^g\), real safe debt demand \(d_1^c\), real wages \(w_i\), traded and non-traded goods prices \(\{P_{NT,i}, P_{T,i}\}\), real interest rate \(r_0\), government lump-sum taxes \(T_{i0}, T_{i1}\), and labor taxes \(\tau_{L0}, \tau_{L1}\) in every country \(i \in [0, 1]\) such that households and firms optimize, the government budget constraints are satisfied, final non-traded goods markets in both periods clear in every country

\[
\begin{align*}
k_{NT,0}^i + c_{NT,0}^i &= A_0^i n_0^i, \quad (43) \\
c_{NT,1}^i + c_{NT,1}^i &= A_1^i n_1^i, \quad (44)
\end{align*}
\]

traded goods market clears in both periods

\[
\begin{align*}
\int c_{T,0}^i di &= \int e_0^i di, \quad (45) \\
\int (c_{T,1}^i + c_{T,1}^i) di &= \int e_1^i di, \quad (46)
\end{align*}
\]
durable goods markets clear in every country

\[
h_1^i = G(k_{NT,0}^i), \quad (47)
\]

and international safe assets market clears

\[
\int \hat{d}_1^c di = \int \hat{d}_1^g di + \int \hat{d}_1^b di. \quad (48)
\]

3.4 Equilibrium Characterization

This section simplifies the complete set of equilibrium conditions (27)-(48) before turning to the optimal policy characterization. First, let me introduce the following assumption

Assumption 1. Utility function \(U(c_{NT}, c_T)\) has the following form

\[
U(c_{NT}, c_T) = \log \left(c_{NT}^{a} c_T^{1-a} \right).
\]

This assumption states that the intratemporal elasticity of substitution between traded and non-traded goods and the intertemporal elasticity of substitution both equal to one. This special case is similar to the one discussed in Cole and Obstfeld (1991) and it makes the analysis more tractable. Intratemporal optimality conditions (31)-(33) and assumption
1 can be used to express consumption of traded goods as follows: $c_{T,0}^i = (1 - a) / a \cdot c_{NT,0}^i p_{NT,0} / p_{T,0}$, $c_{T,1}^i = (1 - a) / a \cdot p_{T,1} c_{NT,1}^i$, $c_{T,1}^i = (1 - a) / a \cdot p_{T,1} c_{NT,1}^i$.

The flexibility of prices in period 1, household labor supply (35), firms choice of prices (40), goods clearing condition (44) in period 1, and assumption 1 imply $v'(n_{1}^i) = A_{i}^1 U_{NT,1}^i$. This expression determines equilibrium amount of labor only as a function of productivity A_{i}^1. I denote it as $n_{i}^*, \text{ the corresponding level of output is denoted } y_{NT,1}^i \equiv A_{i}^1 n_{i}^*$.

Note that equilibrium labor and output in period 1 do not depend on the realization of state s_1.

Household budget constraint (27), government budget constraint (41), and non-traded goods market clearing condition can be combined to express country i consolidated budget constraint in period 0

$$1 - a / a c_{NT,0}^i p_{NT,0} - e_{T,0}^i = \frac{\bar{d}_{b,i} + d_{g,i} - d_{c,i}^i}{1 + r_{0}}. \tag{49}$$

It states that country i excess consumption of traded goods (the left-hand side) must be financed by issuing safe bonds on the international market. Similarly, (28), (42), and (44) can be combined to express country-wide budget constraint in period 1

$$y_{NT,1}^i p_{1} c_{NT,0}^i = (1 - a / a - e_{T,1}^i) = d_{i}^c - \bar{d}_{1}^b - d_{1}^g. \tag{50}$$

It shows that excess consumption of traded goods in period 1 results from the accumulation of safe claims on other countries. The household Euler equation and the market clearing conditions imply

$$\frac{1}{c_{NT,0}^i} = (1 + r_{0}) \beta \frac{p_{NT,0}^i}{p_{T,0}^i p_{1}} \left(\frac{1}{y_{NT,1}^i} + \frac{\nu_{i}^i}{\zeta_{NT,1}^i} \right), \tag{51}$$

Durable goods demand (36) and supply (38) lead to

$$\frac{a}{c_{NT,0}^i} = \beta g' \left[G \left(k_{NT,0}^i \right) \right] G' \left(k_{NT,0}^i \right) \left(\mu + (1 - \mu) \theta_{i}^i + \zeta_{0}^i \theta_{i}^i \right), \tag{52}$$

where $\zeta_{0}^i = \left(1 - \tau_{0}^{b,i} \right) \left\{ \nu_{i} y_{NT,1}^i / c_{NT,1}^i + 1 \right\} - 1 \geq 0$ is the Lagrange multiplier on the collateral constraint in country i. The real interest rate on safe debt expressed in units of traded goods is related to price level of traded goods as follows

$$P_{T,0} = \frac{1 + r_{0}}{1 + i_{0}} P_{T,1}. \tag{53}$$
Recall that the central bank has a control over \(i_0\) and \(P_{T,1}\). The last expression states that price \(P_{T,0}\) is related to real interest rate \(r_0\) and monetary policy choices \(i_0, P_{T,1}\).

Finally, collateral constraint (29) and safe-assets-in-advance constraint (30) can be simplified as follows

\[
\dd_{1}^{b,i} \leq \theta^i G'\left(\frac{G(k_i^{NT,0})}{a/y_{NT,1}}\right)G(k_i^{NT,0})p_i^{1}, \quad (54)
\]

\[
\frac{\xi_{NT,1}^{c_i} p_i^{1}}{\alpha} \leq d_1^{c,i}. \quad (55)
\]

Collateral constraint (54) is analogous to the closed-economy case with the only difference that the relative price of non-traded to traded goods multiplies the right-hand side of the constraint. This is because the real price of durable goods depends not only on the level of consumption in period 1 but also on the consumption composition between traded and non-traded goods, which is captured by price \(p_1^{1}\). Equation (54) took into account Assumption 1 and intraperiod optimality conditions.

Equations (45), (46), (49)-(55), and the complementarity slackness conditions on the last two inequalities, describe the equilibrium. This system determines the remaining unknown endogenous variables \(\{c_{NT,0}, \xi_{NT,1}, k_{NT,0}, \dd_{1}^{b,i}, d_1^{c,i}, p_i^{1}\}, r_0, P_{T,0}\). There are two cross-country equations to determine interest rate \(r_0\) and price level \(P_{T,0}\), which are common across countries. There are six conditions for every country \(i\) to determine six country-level endogenous variables \(c_{NT,0}, \xi_{NT,1}, k_{NT,0}, \dd_{1}^{b,i}, d_1^{c,i}, p_i^{1}\).

3.5 Ramsey Planning Problem

The financial and monetary authorities face all equilibrium conditions (27)-(48) as constraints when choosing their optimal policies. The full system of equilibrium conditions was reduced to system (45), (46), (49)-(55). Note that the full set of equilibrium conditions can be unambiguously recovered from (45), (46), (49)-(55).

I further drop certain variables and constraints from the optimal policy problem. First, given quantities \(\{c_{NT,0}, \xi_{NT,1}, k_{NT,0}, \dd_{1}^{b,i}, d_1^{c,i}\}\) and prices \(r_0, P_{T,0}, \{P_{NT,0}, p_i^{1}\}\), the optimal condition with respect to choice of investment in durable goods (52) can be dropped because it can be used to express optimal macroprudential tax \(r_0^{b,i}\) when the collateral constraint binds. (53) can be dropped because it can be used to express the ratio of the nominal interest rate and price of traded goods in period 1.

Proposition 4. An allocation \(\{c_{NT,0}, \xi_{NT,1}, k_{NT,0}, \dd_{1}^{b,i}, d_1^{c,i}\}\) and prices \(r_0, P_{T,0}, \{P_{NT,0}, p_i^{1}\}\) form part of an equilibrium if and only if conditions (45), (46), (49), (50), (54) and (55) hold.
After taking into account intratemporal consumption choice by the household, the household objective in country i can be simplified as in the following lemma.

Lemma 1. Country i indirect household utility is

\[
V^i \left(c_{NT,0}^i, \xi_{NT,1}^i, k_{NT,0}^i, P_{NT,0}^i, P_t^i \right) = \log c_{NT,0}^i - v^i \left(n_0^i \right) + \beta \left\{ v^i \log \xi_{NT,1}^i + X_i^1(s_1) g \left(k_{NT,0}^i \right) \right\} + (1 - a) \log \left(\frac{P_{NT,0}^i}{P_T^i} \right) + \beta (1 - a) (1 + v^i) \log p_1^i + O^i, \tag{56}
\]

where \(O^i \) is the term which depends only on exogenous variables and model parameters, and \(n_0^i = (c_{NT,0}^i + k_{NT,0}^i) / A_0^i. \)

3.5.1 Local Planner

I start by solving a local planner problem. In this case, the planner maximizes local welfare taking international prices as given. I will later compare this solution to a union wide planner’s solution. The two solutions will turn out to be different.

Formally, the local planner maximizes the expectation of (56) subject to country budget constraints (49) and (50), banker’s collateral constraint (54), safe-assets-in-advance constraint (55), and Euler equation (51) by choosing allocation \(c_{NT,0}^i, \xi_{NT,1}^i, k_{NT,0}^i, \tilde{d}_{1}^i, d_1^i \) and price \(p_1^i \) conditional on prices \(r_0, P_T^i \). The solution to the planner’s problem is derived in Appendix A.2.4. The following Lemma presents the implementation of the planner’s solution.

Proposition 5. Constrained Pareto efficient allocation in country i, given international prices, can be implemented by setting the macroprudential tax to

\[
\tau_0^{b,i} = \frac{1}{1 - \tau_A^i} \left(\tau_A^i c_{NT,0}^i - \frac{\tau_0^i Z_2^i + Z_3^i \tilde{d}_1^{b,i} - Z_3^i a d_1^{c,i} - a}{1 - \tau_0^i Z_4^i} \right), \tag{57}
\]

where \(Z_2^i > 1, Z_3^i > 0, Z_4^i > 0 \) are variables that depend on the optimal allocation.

Proof and expressions for \(Z_2^i, Z_3^i, Z_4^i \) are in Appendix A.2.4. The interpretation of this formula highlights the externalities that the planner takes into when choosing the optimal macroprudential tax. There are five terms in the parentheses. They correspond to five externalities. With only the first two terms, the optimal macroprudential tax (57) would look

\[\text{Because indirect utility function depends on country-specific parameters that do not enter this function as arguments, I add index } i \text{ to } V^i(\cdot).\]
like the optimal tax \((25)\) that the planner sets in a closed economy when monetary policy is not set optimally. In this case, the planner mitigates fire-sale externality, like in Stein \((2012)\), and tries to close the labor wedge that creates the aggregate demand externality \((Farhi and Werning, forthcoming; Korinek and Simsek, 2016)\).

The last three terms represent externalities that arise in the international context. The third term in the parentheses reflects a negative pecuniary externality due to the presence of non-traded goods relative to traded goods price in the bankers collateral constraint \((54)\). Intuitively, when a banker in country \(i\) issues additional safe debt, he reduces the equilibrium price \(p^i_1\) of non-traded to traded goods in period 1, see equation \((50)\). This tightens the collateral constraint for all the other banks in country \(i\). The banker does not internalize this cost. As a result, the local planner wants to increase its tax \(\tau^0_{b,i}\) which is reflected in the positive sign on the third term in \((57)\). Similar externality is often used to justify prudential capital controls \((Bianchi, 2011)\). The affect of this externality on the macroprudential tax is proportional to the amount of safe debt issued by bankers in country \(i\).

The fourth term in \((57)\) reflects the positive pecuniary externality due to the presence of the price of non-traded relative to traded goods in the SAIA constraint \((55)\). As noted above, additional safe debt issuance by a banker in country \(i\) reduces price \(p^i_1\). This relaxes the SAIA constraint for all consumers in country \(i\). This is a benefit that the banker does not internalize. As a result of this externality, the local planner wants to set smaller prudential tax: the term corresponding to this externality has a negative sign in \((57)\). The effect of this externality on prudential tax is proportional to the amount of safe securities held by consumers.

The last term in the parenthesis reflects the externality due to fixed price of traded goods which results from country \(i\) membership in the currency union. Intuitively, additional issuance of safe debt by a banker in country \(i\) (which is partially bought by foreigners) increases the amount of traded goods that consumers in country \(i\) can buy in period 0. Because the relative price of non-traded to traded goods is fixed in period 0, consumers in country \(i\) not only increase consumption of traded goods but also non-traded goods. Because the nominal price of non-traded goods is also fixed in period 0, higher consumption increases output of non-traded goods. Higher level of non-tradable production makes agents in country \(i\) richer. This effect is not internalized by the banker in country \(i\). The local planner wants the bankers to internalize this effect by making macroprudential tax a bit lower if the labor wedge is positive. \(Farhi and Werning (2012)\) use this externality to justify the role of fiscal transfers policy in a monetary union. The contribution of this externality to the optimal macroprudential tax is proportional to the labor wedge \(\tau^0_i\) and to the relative expenditure share of non-traded to traded goods \(a/(1−a)\). The contribution
of this effect vanishes with \(a \) gets close to 0 (the economy becomes relatively open). However, it becomes large when \(a \) tends to 1 because a small change in traded goods available for consumption in period 0 leads to a large change in non-traded goods consumption and production.

3.5.2 Global Planner

In this section, I solve the global planner’s problem and show that global planner chooses a different allocation compared to the independent local planners. Global planner optimally chooses union-wide monetary and regional macroprudential policies. Formally, the global planner maximizes a weighted average, with Pareto weights \(\{ \omega^i \} \), of country-specific welfare functions (56) subject to constraints (45)-(55) by choosing allocation \(\{ c_{NT,0}^i, k_{NT,0}^i, \xi_{NT,1}^i, \bar{d}_1^i, d_1^i \} \) and prices \(r_0, P_{T,0}, \{ p_1^i \} \).

The full characterization of the global planner problem is in Appendix A.2.5. The following proposition summarizes the optimal monetary and macroprudential policy implementation.

Proposition 6. At a constrained Pareto efficient equilibrium

(i) average (across countries) labor wedge is zero

\[
\int \omega^i \tau_0^i di = 0,
\]

(ii) optimal choice of \(\{ c_{NT,0}^i, k_{NT,0}^i, \xi_{NT,1}^i, \bar{d}_1^i, d_1^i, p_1^i \} \) and \(r_0 \) is implemented by setting macroprudential tax

\[
\tau_0^{b,i} = \tau_0^{b,i} \bigg|_{\text{local}} + \frac{\bar{\psi}_0}{1 - \tau_0^i} Z_5^i,
\]

where \(Z_5^i > 0, \tau_0^{b,i} \bigg|_{\text{local}} \) is the expression identical to local prudential tax (57), and \(\bar{\psi}_0 \) can be both positive or negative.

Proof and expressions for \(Z_5^i \) and \(\bar{\psi}_0 \) are in Appendix A.2.5. The first part of proposition 6 show that the monetary authority sets the average labor wedge across countries to zero. This result is similar to the one derived in Farhi and Werning (2012). The linearized version of this condition would equalize the average output gap to zero (Benigno, 2004; Gali and Monacelli, 2008). If all of the countries are symmetric, the monetary authority stabilizes all economies with just one policy tool.

The second part of the proposition characterizes the implementation of macroprudential policy. This characterization highlights that the global planner’s optimal macroprudential tax deviates from local planner’s tax. Specifically, the deviation is proportional
to $\tilde{\varphi}_0$ that captures the net effect of all of the spillovers of local prudential policy on the other countries. There are three sources of international spillovers related to the three externalities arising in the international context, which were discussed in Proposition 5. Let’s consider each of these spillovers.

First, when the independent country i regulator sets slightly higher local macroprudential tax $\tau^{b,i}_0$, she tightens the collateral constraints in the other countries of the monetary union. This creates a negative externality that the global planner wants to correct by lowering local prudential tax. The intuition for this externality is as follows. Higher prudential tax $\tau^{b,i}_0$ leads to a smaller supply of private safe debt $\tilde{d}^{b,i}_1$ by banks in country i. As a result, in equilibrium, all of the other countries in the union reduce their purchases of safe debt issued internationally. Hence consumers in these countries will be repaid less (in terms of traded goods) in period 1, leading to an increase in the demand for and hence the price of traded goods (relative to nontraded) in period 1. Thus, the price of nontraded goods relative to traded goods p^{j}_1 drops in all countries $j \neq i$. This tightness the collateral constraints in these countries and reduces their welfare. The global planner takes this externality into account by lowering prudential tax relative to the optimal choice of the local regulator in country i.

Second, when the independent country i regulator sets slightly higher local tax $\tau^{b,i}_0$, she relaxes the SAIA constraints in the other countries of the monetary union. This creates a positive externality. As in the case of the previous externality, higher tax $\tau^{b,i}_0$ reduces price p^{j}_1 in all countries $j \neq i$. This relaxes the SAIA constraint (55) and increases welfare in these countries. The global planner takes this externality into account and makes the local prudential tax higher because of this effect.

Finally, tighter prudential regulation in country i increases production of non-traded goods in the other countries of the union, which increases or decreases social welfare in those countries depending on the sign of the labor wedge. The intuition goes as follows. Higher prudential tax in country i reduces private safe debt issuance in country i, and the other countries in the union buy less safe debt issued internationally in equilibrium. The agents in these countries spend the freed resources on purchases of traded and non-traded goods in period 0. Because non-traded goods prices are fixed in period 0, higher demand for non-traded goods in countries $j \neq i$ in period 0 increases the output of these goods making the agents richer. If the labor wedge is positive (a country is in recession), the increase in output of non-traded goods increases welfare. Thus, the country i regulator imposes a positive externality on the other countries of the union when the labor wedge is positive in those countries. As a result, the global regulator wants to increase local prudential taxes because of this effect.

To formally present these three externalities, I solve for optimal policy in a special
case with symmetric countries. In general, the expression for $\tilde{\psi}_0$ in equation (58) is cumbersome and it depends on the allocation in each country of the monetary union. When countries are ex-ante and ex-post identical, this expression can be greatly simplified as follows:

$$\tilde{\psi}_0 = \frac{(1 + r_0)\beta}{c_{T,1}} \left(-\nu \frac{\tilde{d}_1^b}{d_1^c} + \nu a + (1 + \tau_A) a \tau_0 \right), \quad (59)$$

where none of the variables feature index i because all countries are identical. The derivation of this formula is presented in the proof of Proposition 6. Note that with symmetric countries and optimal monetary policy the labor wedge must be set to zero. However, if monetary policy is not set optimally, for example, the zero lower bound in the whole monetary union is binding, the labor wedge may not be zero. The three terms in the brackets of the formula correspond to the three international spillovers of macroprudential policies that were discussed above.

This formula allows to analyze the net effect of these externalities. First, if monetary policy is set optimally, $\tau_0 = 0$, then variable $\tilde{\psi}_0$ is positive if and only if the private supply of safe debt is sufficiently small relative to holdings of safe debt: $\tilde{d}_1^b < ad_1^c$. When this condition holds, the welfare losses due to the spillover that works through the collateral constraint is smaller than the welfare gains associated with the spillover that works through the SAIA constraint. As a result, the global planner wants to set tighter financial regulation policy relative to what the local planner sets. Alternatively, when the private supply of safe debt is high enough, i.e., $\tilde{d}_1^b > ad_1^c$, the global regulator sets a smaller prudential tax relative to the local regulator.

When the whole monetary union ends up in the zero lower bound, and monetary policy cannot close the labor wedge, the third source of international spillovers is active even in the case with symmetric countries. If, for example, the labor wedge is positive, then the global regulator wants to set somewhat tighter macroprudential policy, which is formally represented by the third term in formula (59). That is, instead of easing financial conditions, the global regulator wants to tighten macroprudential policy. This counter-intuitive policy prescription can be easily understood by realizing that the correct comparison here is between global and local optimal prudential policies. Local regulators already use easier financial regulation policy to reduce the labor wedge. However, from the point of view of the global regulator, the local regulators use too much of this stimulus. This is why the global solution prescribes slightly higher level of prudential taxes.

22I call countries ex-ante identical when their fixed prices of non-traded goods are equal, i.e., $P_{NT,0}^i = P_{NT,0}$ for all i. I call countries ex-post identical when all of the country-specific parameters are the same.
3.5.3 Additional Policy Tools

The results presented so far were derived under the assumption that there are no other policy tools. In this section, I study how the optimal choice of additional tools affects the optimal macroprudential policy. Specifically, I allow the authorities in different countries to use fiscal transfers and portfolio taxes in a coordinated manner.

Fiscal transfers. First, I assume the local fiscal authority lump-sum taxes are represented as the sum of two terms: $T^i_t + \hat{T}^i_t$, where T^i_t is a local lump-sum tax and \hat{T}^i_t is a cross-border transfer. The cross-border transfers sum to zero $\hat{T}^i_t d_i = 0$. (60)

The addition of fiscal transfers changes the country-wide budget constraints and adds (60) in both periods as new constraints to the global planner problem. The new country-wide budget constraints are

$$c^i_{NT,0} \frac{P^i_{NT,0}}{P^i_{T,0}} \cdot \frac{1 - a}{a} - e^i_{T,0} + \frac{\phi^i_{c,i} - \phi^i_{b,i} - \phi^i_{g,i}}{1 + r_0} + \hat{T}^i_0 = 0,$$

$$y^i_{NT,1} P^i_1 \frac{1 - a}{a} - e^i_{T,1} + \phi^i_{b,i} + \phi^i_{g,i} - \phi^i_{c,i} + \hat{T}^i_1 = 0,$$

where $\hat{T}^i_t \equiv \hat{T}^i_t / P^i_{T,t}$ are transfers expressed in units of traded goods. The next proposition summarizes the implementation of the global planner’s solution.

Proposition 7. At a constrained Pareto efficient equilibrium with optimally chosen fiscal transfers, monetary and macroprudential policies,

(i) average across countries labor wedge is zero

$$\int \omega^i \tau^i_0 di = 0,$$

(ii) marginal social value of traded goods are equalized across countries in both periods;

(iii) the allocation can be supported by the following macroprudential tax

$$\tau^i_{0,b,i} = \frac{1}{1 - \tau^i_0} \left(\frac{\tau^i_A e^i_T}{1 + \tau^i_A} - \tau^i_0 Z^i_2 + Z^i_6 \right),$$

where $Z^i_2 > 0, Z^i_6$ are the variables that depend on the optimal allocation.

Proof and expressions for Z^i_2, Z^i_6 are in Appendix A.2.6. The first part of the propo-
tion states that optimal monetary policy equalizes labor wedges across countries in period 0. The second part states that optimal fiscal transfers policy equalizes social marginal value of traded goods in every country. Note that without optimal fiscal transfers this is not necessarily the case. The last part of the proposition represents the implementation of optimal allocation through appropriate choice of macroprudential tax. The first two terms in the square brackets are exactly like in formulas (57) and (58): optimal financial regulation corrects fire-sale externality and tries to close the labor wedge. The third term Z^i_{6}, which can be either positive or negative, represents the combined effect of the international externalities in country i and all other countries in the union. The last part of the proposition highlights that optimal macroprudential policy takes macroeconomic stabilization into account even if the fiscal transfers are allowed and they are chosen optimally. The reason for this is that the addition of fiscal transfers is not enough to close the labor wedge in each individual economy.

Fiscal transfers and portfolio taxes. Assume now that in addition to fiscal transfers, the global planner can tax consumers holdings of safe assets differently across countries. Specifically, assume that when a consumer in country i buys D^c_{i1} units of safe debt, he must pay $(1 + \tau^c_{i0})D^c_{i1}/(1 + i_0)$, where τ^c_{i0} is a portfolio tax. The fiscal revenue of this policy is rebated to the local fiscal authority.

The introduction of this policy effectively brings back the local monetary policy, because both bankers and consumers face country-specific safe interest rates. Formally, the global planner will not face the Euler equation as one of its constraints. The following proposition summarizes the optimal financial regulation policy when transfers and portfolio taxes are chosen optimally.

Proposition 8. At a constrained Pareto efficient equilibrium with optimal fiscal transfers and portfolio taxes, the optimal macroprudential policy depends on the labor wedge as follows

$$\tau^i_{b0} = \frac{1}{1 - \tau^i_0} \left(\frac{\tau^i_A e^i - \tau^i A Z^i_2}{1 + \tau^i_A} \right),$$

where $Z^i_2 > 0$ is a variable that depends on the optimal allocation.

Proof is in Appendix A.2.7. The proposition states that macroprudential policy must be directed towards stabilization of the economy even if portfolio taxes are added to planner’s tools. Compared to the optimal prudential tax without fiscal transfers and portfolio taxes (57), the above expression does not feature the last two terms present in (57). This is because portfolio taxes and fiscal transfers allow the planner to set her marginal value.
of safe assets equal to the private marginal value of safe assets. This frees macroprudential tax \(\tau^b_i \) from addressing the pecuniary externalities associated with the relative price of traded and non-traded goods in the collateral and the SAIA constraints. However, in general, the addition of portfolio taxes does not help fully stabilize every country in the union, which leaves some stabilization role for macroprudential policy.

3.6 Countries Outside of Monetary Union

The focus of the analysis so far was on policy for members of the currency union. In this section, I solve for optimal monetary and macroprudential policy in counties outside of the monetary union.

Countries outside of the monetary union have control over their monetary policy. In each of these countries, for example, country \(i \), the central bank sets local price of traded goods in period 1, i.e., \(P^i_{1,1} \), and the level of safe nominal interest rate \(i^0_i \) between periods 0 and 1. The nominal exchange rate is then given by \(E^i_t = \frac{P^i_{1,1}}{P^i_{1,0}} \), where \(P^i_{1,t} \) is the traded goods price in period \(t \) in the countries that belong to the currency union.

Due to the potential presence of the nominal exchange rate risk in period 1, safe assets issued in the currency union may not be safe in countries outside of the currency union. In the analysis below, I assume that period 1 monetary policy in the currency union and outside of it is perfectly predictable, which removes exchange rate risk completely. As a result, safe debt in the currency union is also safe outside of it.\(^2\)

I next solve for optimal monetary and macroprudential policy in countries that do not belong to a currency union. I first study the local policy maker’s problem. Then, I show that there are gains from coordination of macroprudential policies even for the countries outside of the union.

Optimal monetary and macroprudential policy can be written as a Ramsey planning problem. Repeating steps similar to those in section 3.5, I can reduce the whole set of equilibrium conditions to a smaller set that uniquely defines some of the equilibrium variables as in the following lemma.

Lemma 2. An allocation \(\{c^i_{NT,0}, c^i_{NT,1}, k^i_{NT,0}, d^b_i, d^c_i\} \) and prices \(p^i_0, p^i_1 \) (given safe real interest rate \(r_0 \) expressed in units of traded goods) form part of an equilibrium if and only if conditions (49), (50), (51), (54), (55) (where \(P^i_{1,t} \) is replaced with \(P^i_{T,t} \)) hold.

The proof is in Appendix A.2.8. The local planner in country \(i \), which is outside of the currency union, maximizes the expectations of indirect household utility function \(V^i \left(c^i_{NT,0}, c^i_{NT,1}, k^i_{NT,0}, p^i_0, p^i_1 \right) \), expressed in equation (56), conditional on country \(i \) budget

\(^{2}\)The assumption may be a reasonable approximation of the countries with relatively transparent and predictable monetary policies.
constraints (49) and (50), banker’s collateral constraint (54), safe-assets-in-advance constraint (55), and Euler equation (51) by choosing allocation $c_{NT,0}^i, z_{NT,1}^i, k_{NT,0}^i, d_1^{bi}, d_1^{ci}$, and prices p_0^i, p_1^i taking r_0 as given.

Proposition 9. Constrained Pareto efficient allocation in country i with independent monetary policy and flexible exchange rate can be implemented by setting the macroprudential tax and nominal interest rate so that

$$\tau_{0}^{i} = \frac{\tau_{A}^{i} e_{T}^{i}}{1 + \tau_{A}^{i}} + Z_{3}^{i} d_{1}^{bi} - Z_{3}^{i} d_{1}^{ci}, \text{ and } \tau_{0}^{i} = 0,$$

(62)

where $Z_{3}^{i} > 0$ are variables that depend on the optimal allocation.

Proof and expressions for Z_{3}^{i} are in Appendix A.2.9. The proposition states that when monetary and macroprudential policies are optimal, the monetary policy fully stabilizes the economy in the sense that the labor wedge equals zero. Macroprudential policy addresses the three pecuniary externalities associated with safe debt issuance similar to those for the countries in the monetary union. Because the labor wedge equals zero, the financial regulation policy is not used to stabilize the local business cycle.

There are gains from coordinating macroprudential policies even for the countries outside of monetary union. To formally show it, I solve the global regulator problem who maximizes the following objective

$$\int_{i \in \mathcal{I}} \omega^{i} E_{0} V^{i} \left(c_{NT,0}^{i}, z_{NT,1}^{i}, k_{NT,0}^{i}, \frac{p_{0}^{i}}{P_{T,0}}, p_{1}^{i}\right) di + \int_{i \notin \mathcal{I}} \omega^{i} E_{0} V^{i} \left(c_{NT,0}^{i}, z_{NT,1}^{i}, k_{NT,0}^{i}, p_{0}^{i}, p_{1}^{i}\right) di,$$

where $\mathcal{I} \subseteq [0, 1]$ is a set of countries that belong to the currency union. The planner chooses $\{c_{NT,0}^{i}, z_{NT,1}^{i}, k_{NT,0}^{i}, d_1^{bi}, d_1^{ci}, p_{0}^{i}, p_{1}^{i}\}_{i \in [0, 1]}$, $\{p_{0}^{i}\}_{i \notin \mathcal{I}}$, and $P_{T,0}, r_0$ subject to the equilibrium conditions listed in Proposition 4 and Lemma 2.

Proposition 10. At a constrained Pareto efficient equilibrium

(i) average (across countries in the currency union) labor wedge and labor wedge in every country outside of the currency union are zero

$$\int_{i \in \mathcal{I}} \omega_{i} \tau_{0}^{i} di = 0,$$

$$\tau_{0}^{i} = 0, \quad i \notin \mathcal{I},$$

(ii) optimal choice of $\{c_{NT,0}^{i}, z_{NT,1}^{i}, k_{NT,0}^{i}, d_1^{bi}, d_1^{ci}, p_{1}^{i}\}_{i \in [0, 1]}, \{p_{0}^{i}\}_{i \notin \mathcal{I}}, P_{T,0}, r_0$ is implemented by
setting macroprudential tax

\[
\tau_{0}^{b,i} = \frac{1}{1 - \tau_{0}^{i}} \left[\tau_{A}^{i} e_{i}^{\epsilon} - \tau_{0}^{i} Z_{2}^{i} + Z_{3}^{i} \cdot \left(\tilde{d}_{1}^{b,i} - a_{1} d_{1}^{c,i} \right) - \frac{a}{1 - a} \tau_{0}^{i} Z_{4}^{i} + \tilde{\psi}_{0} Z_{5}^{i} \right], \; i \in \mathcal{I},
\]

\[
\tau_{0}^{b,i} = \frac{\tau_{A}^{i} e_{i}^{\epsilon}}{1 + \tau_{A}^{i}} + Z_{3}^{i} \cdot \left(\tilde{d}_{1}^{b,i} - a_{1} d_{1}^{c,i} \right) + \tilde{\psi}_{0} Z_{5}^{i}, \; i \notin \mathcal{I},
\]

where \(Z_{2}^{i}, Z_{3}^{i}, Z_{4}^{i}, Z_{5}^{i} > 0 \), \(\tilde{\psi}_{0} \) can be both positive or negative.

The proof is in Appendix A.2.10. The first part of the proposition states that in a global optimum, monetary policies are still chosen to set the average labor wedge across the countries of the currency union and labor wedge in each individual country outside of monetary union to zero. As a result, even after taking international spillovers into account, economies outside of currency union are stabilized in the sense of closing the labor wedge.

The second part of the proposition states that there are gains from coordination of local macroprudential policies both inside and outside of the currency union. This is formally represented by terms featuring \(\tilde{\psi}_{0} \) (see Appendix A.2.10 for the formal expression of this variable). Note that \(\tilde{\psi}_{0} \) is the same for all of the countries. Term \(\tilde{\psi}_{0} \) aggregates economic conditions in all of the countries, including the potential slack (positive labor wedge) inside the currency union. For example, macroprudential policy outside of currency union depends on the amount of slack in countries inside of currency union.

4 Conclusion

When monetary and macroprudential policies are set optimally in a currency union, local macroprudential policy has a regional macroeconomic stabilization role beyond the correction of the fire-sale externality in the financial sector. There are gains from setting macroprudential policy in a coordinated manner.

The proposed model considered only macroprudential regulation. One direction for future research is to consider unconventional monetary policy tools. For example, directed purchases of regional risky assets by the central bank in exchange of newly created reserves can also be used to stabilize local business cycles.
References

A Appendix

A.1 A 2-period Closed Economy Model

This section presents closed economy derivations and proofs omitted from the main text.

A.1.1 Household Problem Solution

The Lagrangian for the household problem is

\[
\mathcal{L}_0 = \mathbb{E} \left\{ u(c_0) - v(n_0) + \beta [u(c_1 + \xi_1) + X_1 g(h_1) + \nu u(\xi_1) - v(n_1)]
\right. \\
- \frac{\lambda_0}{P_0} \left[T_0 + P_0 c_0 + \frac{D_0^c}{1 + \iota_0} + P_0 k_0 - \frac{D_1^c}{1 + \iota_1} (1 - \tau_0^\beta) - W_0 n_0 - \Pi_0^i \right] \\
- \beta \frac{\lambda_1}{P_1} \left[P_1 (c_1 + \xi_1) + T_1 + \Gamma_1 h_1 + \tilde{D}_1^b - D_1^c - W_1 n_1 - \Gamma_1 G(k_0) - \Pi_1^i \right] \\
- \beta \frac{\lambda_1}{P_1} \zeta_0 \left[\tilde{D}_1^b - \min_{s_1} \{ \Gamma_1 \} G(k_0) \right] \\
- \beta \frac{\lambda_1}{P_1} \eta_1 [P_1 \xi_1 - D_1^i] \right\},
\]

where

\[
\Pi_0^i = \left(p_0^i - \frac{(1 + \tau_0^i) W_0}{A_0} \right) y_0 \left(\frac{p_0^i}{P_0} \right), \quad \Pi_1^i (s_1) = \left(p_1^i - \frac{(1 + \tau_1^i) W_1}{A_1} \right) y_1 \left(\frac{p_1^i}{P_1} \right)^{-e}.
\]

The first order conditions are

\[
\begin{align*}
\partial c_0 : u'(c_0) &= \lambda_0, \\
\partial c_1 : u'(c_1 + \xi_1) &= \lambda_1, \\
\partial \xi_1 : u'(c_1 + \xi_1) + \nu u'(\xi_1) &= \lambda_1 (1 + \eta_1), \\
\partial D_0^c : \frac{\lambda_0}{P_0(1 + \iota_0)} &= \beta \mathbb{E}_0 \frac{\lambda_1}{P_1} (1 + \eta_1), \\
\partial D_1^c : \frac{\lambda_0}{P_0(1 + \iota_0)} (1 - \tau_0^\beta) &= \beta \mathbb{E}_0 \frac{\lambda_1}{P_1} (1 + \xi_0), \\
\partial n_0 : v'(n_0) &= \lambda_0 \frac{W_0}{P_0}, \\
\partial n_1 : v'(n_1) &= \lambda_1 \frac{W_1}{P_1}, \\
\partial h_1 : X_1 g'(h_1) &= \lambda_1 \frac{\Gamma_1}{P_1}, \\
\partial k_0 : \lambda_0 &= \beta G'(k_0) \mathbb{E}_0 \left\{ \lambda_1 \frac{\Gamma_1}{P_1} + \lambda_1 \xi_0 \frac{\min_{s_1} \{ \Gamma_1 \}}{P_1} \right\}, \\
\partial P_1 : P_1 &= (1 + \tau_1^i) \frac{e}{e - 1} \frac{W_1}{A_1}.
\end{align*}
\]
where the last condition takes into account that in symmetric equilibrium all of the firms set identical prices: $P_1 = P_1$. The complementarity slackness conditions are

$$
CSC_1 : \bar{D}^b_i \leq \min_{s_1} \{ \Gamma_1 \} G(k_0), \; \zeta_0 \geq 0, \; [\bar{D}^b_i - \min_{s_1} \{ \Gamma_1 \} G(k_0)] \zeta_0 = 0,
$$

$$
CSC_2 : P_1 \xi_1 \leq D^c_i, \; \eta_1 \geq 0, \; [P_1 \xi_1 - D^c_i] \eta_1 = 0.
$$

The first order condition can be simplified as follows

$$
\zeta_0 = (1 - \tau_0^b) \frac{1}{1 + i_0} \cdot \frac{u'(c_0) / P_0}{E_0[u'(c_1 + \xi_1) / P_1]} - 1 \geq 0,
$$

$$
\bar{D}^b_i \leq \min_{s_1} \{ \Gamma_1 \} G(k_0), \; [\bar{D}^b_i - \min_{s_1} \{ \Gamma_1 \} G(k_0)] \zeta_0 = 0,
$$

$$
\eta_1 = \frac{\nu u'(\xi_1)}{u'(c_1 + \xi_1)} \geq 0, \; P_1 \xi_1 \leq D^c_i, \; [P_1 \xi_1 - D^c_i] \eta_1 = 0,
$$

$$
u'(c_0) = (1 + i_0) \beta E_0 \left\{ \frac{P_0}{P_1} u'(c_1 + \xi_1) \left[1 + \frac{\nu u'(\xi_1)}{u'(c_1 + \xi_1)} \right] \right\},
$$

$$
\frac{v'(n_0)}{u'(c_0)} = \frac{W_0}{P_0},
$$

$$
\frac{v'(n_1)}{u'(c_1 + \xi_2)} = \frac{W_1}{P_1},
$$

$$
u'(c_0) = \beta G'(k_0) E_0 \left\{ X_1 g'(h_1) + \zeta_0 \min_{s_1} \{ X_1 g'(h_1) \} \right\}.
$$

The optimality conditions, the market clearing conditions, and the fact that only durable goods price is affected by s_1 lead to the following full set of equilibrium equations

$$
\zeta_0 = (1 - \tau_0^b) \left\{ \frac{\nu u'(\xi_1)}{u'(A_1 n_1^i)} + 1 \right\} - 1 \geq 0,
$$

$$
\bar{d}^b_i \leq \frac{\theta \frac{G(k_0)}{u'(A_1 n_1^i)}}{u'(A_1 n_1^i)} G(k_0),
$$

$$
\left[\bar{d}^b_i - \frac{\theta \frac{G(k_0)}{u'(A_1 n_1^i)}}{u'(A_1 n_1^i)} G(k_0) \right] \zeta_0 = 0,
$$

$$
\eta_1 = \frac{\nu u'(\xi_1)}{u'(A_1 n_1^i)} \geq 0, \; \xi_1 \leq d^g + \bar{d}^b_i, \; [\xi_1 - d^g - \bar{d}^b_i] \eta_0 = 0,
$$

$$
\frac{u'(c_0)}{\Pi^*} = \left[u'(A_1 n_1^i) + \nu u'(\xi_1) \right],
$$

$$
\frac{u'(A_1 n_1^i)}{A_1} = \frac{v'(n_1)}{A_1},
$$

$$
u'(c_0) = \beta G'(k_0) G'(k_0) (\mu + (1 - \mu) \theta + \zeta_0 \theta),
$$

$$
y_0 = A_0 n_0,
$$

$$
y_0 = c_0 + k_0.
$$

A.1.2 Equilibrium Determination

Collateral constraint (22) may be slack depending on the severity of financial regulation policy. I will discuss the equilibrium determination assuming that the collateral constraint binds. However, I solve for the
optimal policy allowing for the constraint to possibly be slack.

Equilibrium in period 0 can be conveniently described by plotting equations (20), (21), (22), where the last one holds as equality. Figure 3 plots the equations. \(P \equiv \{ \theta, \nu, A_0, \tau_0^B \} \) represents all of the variables that agents in the model take as given.

Panel (a) represents equation (21) as an intersection of supply and demand for durable goods. The downward sloping demand curve is the household optimal choice of durable goods described by equation (8), while the upward sloping supply curve is banker’s optimality with respect to investment in durable goods (11). These curves are plotted for a given level of consumption \(c_0 \), policy rate \(i_0 \), as well as various variables \(P \). Banker’s optimal durable supply depends positively on consumption \(c_0 \) and negatively on interest rate \(i_0 \), this can be formally seen from (21). Intuitively, higher consumption in period 0 reduces opportunity cost of investing, and higher interest rate on safe bonds reduces benefits of issuing liquid bonds which acts to reduce investment in durable goods. Thus, when durable goods supply equals durable goods demand, higher consumption increases durable goods output and decreases their price, while an increase in the interest has the opposite effect. (22), assuming it holds as equality, defines bankers safe debt supply as a function of consumption \(c_0 \), interest rate \(i_0 \), and variables \(P \). When elasticity of durable goods price is smaller than one, the safe debt supply is positively related to investment in durable goods production and the liquid debt supply is positively related to consumption \(c_0 \) and negatively to \(i_0 \)

\[
\frac{\partial \tilde{d}_1^P}{\partial k_0} = \theta \frac{G'(k_0)}{u' \left(A_1 n_1 \right)} G'(k_0) \left[1 - \epsilon \Gamma \right] > 0, \text{ if } \epsilon \Gamma < 1.
\]

Panel (b) of figure 3 plots the safe assets demand and supply schedules as functions of consumption \(c_0 \). The supply is positively related to consumption \(c_0 \). The demand for safe assets, given by \(\xi_1 \), is positively related to both consumption \(c_0 \) and interest rate \(i_0 \), as can be formally seen from (20). Intuitively, given interest rate \(i_0 \) and the total level of consumption in period 1, higher \(c_0 \) makes households willing to buy more goods with safe assets in the future. Similarly, given the total level of consumption in period 1 and consumption \(c_0 \), higher interest rate \(i_0 \) makes it more attractive to invest in safe debt. I will focus on the case in which the liquid debt demand schedule increases faster with consumption \(c_0 \) compared to the safe debt supply schedule. If this is not the case the model counterfactually implies that increase in policy rate \(i_0 \) stimulates the economy. The sufficient condition for safe debt demand to be more sensitive to consumption than safe debt supply is
Intuitively, this expression states that the elasticity of marginal utility of consumption bought with safe debt is not too high. Because safe debt demand increases and safe debt supply falls with interest rate i_0, the intersection of safe debt supply and demand on panel (b) implies that consumption is negatively related to interest rate i_0.

Panel (c) of figure 3 plots output in period 0 as a function of the policy rate. Recall that output in period 0 is a sum of consumption and investment in production of durable goods: $y_0 = c_0 + k_0$. We deduced from panel (b) that consumption is negatively related to interest rate i_0. We also discussed, see panel (a), that investment in durable goods is negatively related to interest rate for a given level of consumption c_0. There is an additional negative effect of k_0 because consumption falls with interest rate. As a result, output is negatively related to interest rate. This is represented by a downward sloping curve on panel (c). Due to price stickiness, the central bank can affect output by setting interest rate i_0, represented by horizontal line on panel (c). If prices were flexible output would equal y_0^{FP}, see vertical dashed line on panel (c). In the figure the central bank sets the interest rate so that output equals flexible price output.

A low value of parameter θ acts as a negative aggregate demand “shock”. Figure 4 compares equilibria with low and high values of θ. The dashed lines correspond to the low value of θ. With smaller θ bankers reduce their supply of durable goods as well as the supply of safe debt. For a given level of interest rate i_0, households must reduce their consumption to equate supply and demand for safe debt. As a result consumption c_0 is smaller. Output is represented by the dashed curve shifted to the left. If monetary authority does not adjust the nominal interest rate the economy experiences recession in period 0.

It is instructive to contrast the effect of a change in θ to an effect of deleveraging shock considered in a recent paper by Eggertsson and Krugman (2012). The authors study an economy populated by heterogeneous consumers who endogenously become borrowers and savers. An exogenous negative shock to borrowing capacity of borrowers makes them delever. In an environment with sticky prices, given a nominal interest rate, borrowers delever by reducing current consumption which results in recession. In the current paper the bankers resemble borrowers from Eggertsson and Krugman (2012). A low value of θ does not allow them to borrow much. As a result, the durable goods investment demand is small which, given the nominal interest rate, has a direct negative effect on output. However, in the current paper there is an additional negative effect on output. Because bankers issue less safe debt, households will buy fewer goods and hence output will be lower. This is represented by the dashed curve shifted to the left in Figure 4.
The Lagrangian of this problem is

\[L = u(c_0) - \nu \left(\frac{c_0 + k_0}{A_0(s_0)} \right) + \beta \left[u(y_1^*) + (\mu + (1 - \mu) \theta) g'[G(k_0)] + \nu u(d_1^0 + d_1^0) - v(n_1^*) \right] \]

This problem differs from the problem of optimally choosing both monetary and macroprudential policy. Smaller consumption \(c_0\) reduces bankers incentives to invest in durable goods which reduces the supply of safe assets even more. The logic repeats leading to an amplification of the direct effect from low realization in \(\theta\). This amplification mechanism can potentially lead to existence of multiple equilibria. However, condition (A.1) rules out this possibility.

A.1.3 Proof of Proposition 3

(i) Let’s first consider optimal monetary policy conditional on macroprudential policy being set at \(\tau_0^B\). The planner solves

\[
\max_{c_0, k_0, d_1^0} u(c_0) - \nu \left(\frac{c_0 + k_0}{A_0(s_0)} \right) + \beta \left[u(y_1^*) + (\mu + (1 - \mu) \theta) g'[G(k_0)] + \nu u(d_1^0 + d_1^0) - v(n_1^*) \right]
\]

s.t.

\[
d_1^0 \leq \frac{\theta g'[G(k_0)]}{u'(y_1^*)} G(k_0),
\]

\[
u u'(c_0) = \beta g'[G(k_0)] G'(k_0) \left(\mu + \left[(1 - \tau_0^B) \left\{ \frac{\nu u'(d_1^0 + d_1^0)}{u'(y_1^*)} + 1 \right\} - \mu \right] \theta \right).
\]

This problem differs from the problem of optimally choosing both monetary and macroprudential policy. The banker’s choice of optimal investment is now taken as a constraint because \(\tau_0^B\) is not chosen optimally. The Lagrangian of this problem is

\[
\bar{L}_0 = u(c_0) - \nu \left(\frac{c_0 + k_0}{A_0(s_0)} \right) + \beta \left[u(y_1^*) + (\mu + (1 - \mu) \theta) g'[G(k_0)] + \nu u(d_1^0 + d_1^0) - v(n_1^*) \right]
\]

\[
- \beta u'(A_1 n_1^*) \xi_0 \left[d_1^0 - \frac{\theta g'[G(k_0)]}{u'(y_1^*)} G(k_0) \right]
\]

\[
- \bar{\xi}_0 \left\{ u'(c_0) - \beta g'[G(k_0)] G'(k_0) \left(\mu + \left[(1 - \tau_0^B) \left\{ \frac{\nu u'(d_1^0 + d_1^0)}{u'(y_1^*)} + 1 \right\} - \mu \right] \theta \right) \right\}.
\]

The first order optimality conditions for this problem are

\[
\partial c_0 : u'(c_0) = \frac{\nu'(n_0)}{A_0} + \bar{\xi}_0 u''(c_0),
\]

\[
\partial d_1^0 : \nu u'(d_1^0 + d_1^0) + \bar{\xi}_0 g'[G(k_0)] G'(k_0) \left(1 - \tau_0^B \right) \frac{\nu u''(d_1^0 + d_1^0)}{u'(y_1^*)} = u'(y_1^*) \xi_0(s_0),
\]

\[
\partial k_0 : \beta g'[G(k_0)] G'(k_0) \left(\mu + (1 - \mu) \theta + \bar{\xi}_0 \theta (1 - \epsilon_\Gamma) \right)
\]

\[
+ \bar{\xi}_0 \left[(1 - \theta) \mu + (1 - \tau_0^B) (1 + \tau_\lambda) \theta \right] \left[\frac{G''(k_0)}{G'(k_0)} - \epsilon_\Gamma \frac{G'(k_0)}{G(k_0)} \right] = \frac{\nu'(n_0)}{A_0},
\]

and the complementarity slackness conditions are

\[
\text{CSC}_1 : d_1^0 \leq \frac{\theta g'[G(k_0)]}{u'(y_1^*)} G(k_0), \quad \bar{\xi}_0 \geq 0, \quad \left\{ d_1^0 - \frac{\theta g'[G(k_0)]}{u'(y_1^*)} G(k_0) \right\} \bar{\xi}_0 = 0.
\]
These conditions can be reduced to

\[\tilde{\lambda}_0 = \tau_0 \frac{u'(c_0)}{u''(c_0)}, \]

\[\tilde{\xi}_0 = \tau_A \left[1 + \theta \frac{g'(G(k_0)) G'(k_0)}{u'(y_1^*)} \left(1 - \tau_0^b \right) \frac{u'(c_0) u''(c_0) \left(d_1^b + d_1^g \right)}{u''(c_0) u'(c_0) \left(d_1^b + d_1^g \right)} \right], \]

\[u'(c_0) = \beta \frac{g'(G(k_0)) G'(k_0)}{1 - \tau_0} \left\{ \mu + (1 - \mu) \theta + \tilde{\xi}_0 \theta (1 - \epsilon_\tau) + \tau_0 \frac{u'(c_0)}{u''(c_0)} \left[\mu + (1 - \mu) \theta + \left(1 - \tau_0^b \right) (1 + \tau_A) - 1 \right] \left[\frac{g''(G(k_0))}{G'(k_0)} - \epsilon_\tau \frac{G'(k_0)}{G(k_0)} \right] \right\}. \]

Combining the last two equations with private durable investment optimality conditions leads to

\[\tau_0 = -\frac{1}{Z_1} \left[\tau_0^b - \frac{\epsilon_\tau \tau_A}{1 + \tau_A} \right], \]

where

\[Z_1 = \left(\frac{\mu + (1 - \mu) \theta + \theta \tau_A}{\theta (1 + \tau_A)} \right) \left(1 + \frac{u'(c_0)}{u''(c_0)} \left[\frac{g''(G(k_0))}{G'(k_0)} - \epsilon_\tau \frac{G'(k_0)}{G(k_0)} \right] \right) \]

\[+ \tau_A \left(1 - \epsilon_\tau \right) \frac{\theta g'(G(k_0)) G'(k_0)}{u'(y_1^*)} \left(1 - \tau_0^b \right) \frac{u'(c_0) u''(c_0) \left(d_1^b + d_1^g \right)}{u''(c_0) u'(c_0) \left(d_1^b + d_1^g \right)} > 0. \]

Part (ii) Let’s consider optimal macroprudential policy conditional on monetary policy being set at \(i_0 \).

The planner solves

\[\max_{c_0, k_0, d_1^b} u(c_0) - v \left(\frac{c_0 + k_0}{A_0(s_0)} \right) + \beta \left[u(y_1^*) + (\mu + (1 - \mu) \theta) g(G(k_0)) + \nu u(d_1^b + d_1^g) - v(n_1^*) \right] \]

s.t. \(\dot{d}_1^b \leq \theta \frac{g'(G(k_0))}{u'(y_1^*)} G(k_0), \)

\[\beta \frac{1 + i_0}{\Pi^*} u' \left(A_1 n_1^* \right) \left[1 + \frac{\nu u'(d_1^b + d_1^g)}{u'(y_1^*)} \right] = u'(c_0). \]

The regulator’s problem is characterized by the following Lagrangian

\[\tilde{L}_0 = u(c_0) - v \left(\frac{c_0 + k_0}{A_0(s_0)} \right) + \beta \left[u(y_1^*) + (\mu + (1 - \mu) \theta) g(G(k_0)) + \nu u(d_1^b + d_1^g) - v(n_1^*) \right] \]

\[- \beta u'(y_1^*) \tilde{\xi}_0 \left[d_1^b - \theta \frac{g'(G(k_0))}{u'(y_1^*)} G(k_0) \right] - \tilde{\varphi}_0 \left\{ \beta \frac{1 + i_0}{\Pi^*} u' \left(y_1^* \right) \left[1 + \frac{\nu u'(d_1^b + d_1^g)}{u'(y_1^*)} \right] - u'(c_0) \right\}. \]
The first order conditions are

\[\partial c_0 : u'(c_0) = \frac{\nu'(n_0)}{A_0} - \bar{\phi}_0 u''(c_0), \]
\[\partial \xi_1 : \nu u'(d_1^b + d_1^s) = u'(y_1^i) \bar{\xi}_0 + \bar{\phi}_0 \frac{1 + i_0}{\Pi^s} \nu u''(d_1^b + d_1^s), \]
\[\partial k_0 : \beta g'[G(k_0)]G'(k_0) \left[\mu + (1 - \mu) \theta + \bar{\xi}_0 \theta (1 - \epsilon_1) \right] = \frac{\nu'(n_0)}{A_0}. \]

and the complementarity slackness conditions are

\[\text{CSC}_1 : \bar{d}_1^b \leq \theta \frac{g'[G(k_0)]}{u'(y_1^i)} G(k_0), \quad \bar{\xi}_0 \geq 0, \quad \left\{ \bar{d}_1^b - \theta \frac{g'[G(k_0)]}{u'(y_1^i)} G(k_0) \right\} \bar{\xi}_0 = 0. \]

The first order conditions can be rewritten as follows

\[\tau_0 = -\bar{\phi}_0 \frac{u''(c_0)}{u'(c_0)}, \]
\[\bar{\xi}_0 = \tau_A \left[1 - \bar{\phi}_0 \frac{1 + i_0}{\Pi^s} \frac{u''(d_1^b + d_1^s)}{u'(d_1^b + d_1^s)} \right], \]
\[(1 - \tau_0) u'(c_0) = \beta g'[G(k_0)]G'(k_0) \left[\mu + (1 - \mu) \theta + \bar{\xi}_0 \theta (1 - \epsilon_1) \right]. \]

Comparing planner’s optimal choice of investment in durable goods to private optimum I get

\[\bar{\tau}_0^b = \frac{1}{1 - \tau_0} \left(\frac{\epsilon_1 \tau_A}{1 + \tau_A} - \tau_0 Z_2 \right), \]

where

\[Z_2 = \frac{\mu (1 - \theta) + \theta (1 + \tau_A)}{\theta (1 + \tau_A)} + \tau_A (1 - \epsilon_1) + \frac{i_0}{\Pi^s} \frac{u''(c_0)}{u'(c_0)} \frac{u''(d_1^b + d_1^s)}{u'(d_1^b + d_1^s)} > 1, \quad (A.2) \]

The two terms in \(Z_2 \) reflects two effects that bankers do not internalize when they decide to issue safe debt. First, higher level of safe debt allows a banker increase its investment in durable goods production. This increases “aggregate demand” in period 0. This has a positive welfare effect if a country is in recession, i.e., \(\tau_0 > 0 \). Second, higher level of safe debt increases consumers safe debt holdings, which allows them to buy more goods with safe debt in period 1. When the nominal (and real) interest rate does not adjust, higher consumption of goods bought with safe debt in period 1 lead to higher consumption of goods in period 0. As a result, “aggregate demand” increases. When the country is in recession, this has a positive welfare effects.

A.2 A 2-period Model of Currency Union

This section presents monetary union derivations and proofs omitted from the main text.

A.2.1 Household Problem Solution

A typical household in country \(i \) solves the following problem
\[\mathcal{L}_0 = \mathbb{E} \left\{ U \left(c_{NT,0}^i, c_{T,0}^i \right) - v \left(n_0^i \right) + \beta \left[U \left(c_{NT,1}^i + \xi_{NT,1}^i, c_{T,1}^i + \xi_{T,1}^i \right) - v \left(n_1^i \right) \right. \right. \\
\left. \left. + X_1(s_1) g \left(h_1^i \right) + v' \left(\xi_{NT,1}^i, \xi_{T,1}^i \right) \right] \right\} \]

\[
- \Lambda_0^i \left[T_0^i + P_{NT,0}^i c_{NT,0}^i + P_{T,0}^i c_{T,0}^i + \frac{D_{0}^{c}}{1 + i_0} + P_{NT,0}^i k_{NT,0}^i \right. \\
\left. - P_{T,0}^i c_{T,0}^i - \frac{D_{0}^{b}}{1 + i_0} \left(1 - \tau_{0}^b \right) - W_{0}^h n_0^i - \Pi_0^i \right] \\
- \beta \Lambda_1^i \left[P_{NT,1}^i \left(c_{NT,1}^i + \xi_{NT,1}^i \right) + P_{T,1}^i \left(c_{T,1}^i + \xi_{T,1}^i \right) + T_1^i + \Gamma_1^i h_1^i + \bar{D}_{1}^{b,1} \right. \\
\left. - P_{T,1} c_{T,1}^i - D_{1}^{c,1} - W_{1}^h n_1^i - \Gamma_1^i G \left(k_{NT,0}^i \right) - \Pi_1^i \right] \\
- \beta \Lambda_1^i \left[\frac{D_{1}^{b,1} - \min_{s_1} \left\{ \Gamma_1^i \right\} G \left(k_{NT,0}^i \right) \right] \\
- \beta \Lambda_1^i \eta_1^i \left[P_{NT,1}^i \xi_{NT,1}^i + P_{T,1}^i \xi_{T,1}^i - D_{1}^{c,1} \right]. \]

Let's introduce the following notation:

\[
U_{NT,0}^i \equiv \frac{\partial U \left(c_{NT,0}^i, c_{T,0}^i \right)}{\partial c_{NT,0}^i}, \quad U_{T,0}^i \equiv \frac{\partial U \left(c_{NT,0}^i, c_{T,0}^i \right)}{\partial c_{T,0}^i}, \]

\[
U_{NT,1}^i \equiv \frac{\partial U \left(c_{NT,1}^i + \xi_{NT,1}^i, c_{T,1}^i + \xi_{T,1}^i \right)}{\partial c_{NT,1}^i}, \quad U_{T,1}^i \equiv \frac{\partial U \left(c_{NT,1}^i + \xi_{NT,1}^i, c_{T,1}^i + \xi_{T,1}^i \right)}{\partial c_{T,1}^i}, \]

\[
U_{NT,1}^i \equiv \frac{\partial U \left(\xi_{NT,1}^i, \xi_{T,1}^i \right)}{\partial \xi_{NT,1}^i}, \quad U_{T,1}^i \equiv \frac{\partial U \left(\xi_{NT,1}^i, \xi_{T,1}^i \right)}{\partial \xi_{T,1}^i}, \]

\[
\xi_{NT,0}^i \equiv \xi' \left(k_{NT,0}^i \right). \]
The first order conditions can be written as follows

\[
\begin{align*}
\partial c^i_{NT,0} &: U^i_{NT,0} = \Lambda^i_0 p^i_{NT,0}, \\
\partial c^i_{T,0} &: U^i_{T,0} = \Lambda^i_0 p^i_{T,0}, \\
\partial c^i_{NT,1} &: U^i_{NT,1} = \Lambda^i_1 p^i_{NT,1}, \\
\partial c^i_{T,1} &: U^i_{T,1} = \Lambda^i_1 p^i_{T,1}, \\
\partial c^i_{\Sigma NT,1} &: U^i_{\Sigma NT,1} + v'U^i_{NT,1} = P^i_{NT,1} \Lambda^i_1 \left(1 + \eta^i_1\right), \\
\partial c^i_{\Sigma T,1} &: U^i_{\Sigma T,1} + v'U^i_{T,1} = P^i_{T,1} \Lambda^i_1 \left(1 + \eta^i_1\right), \\
\partial D^i_{c,1} &: \frac{\Lambda^i_0}{1 + i_0} = \beta E_0 \Lambda^i_1 \left(1 + \eta^i_1\right), \\
\partial D^i_{\Sigma} &: \frac{\Lambda^i_0}{1 + i_0} \left(1 - \tau^i_{L,0}\right) = \beta E_0 \Lambda^i_1 \left(1 + \zeta^i_0\right), \\
\partial n^i_0 &: v' \left(n^i_0\right) = \Lambda^i_0 (s_0) W^i_0, \\
\partial n^i_1 &: v' \left(n^i_1\right) = \Lambda^i_1 (s_1) W^i_1, \\
\partial h^i_1 &: X_1(s_1) g' \left(h^i_1\right) = \Lambda^i_1 \Gamma^i_1, \\
\partial k^i_{NT,0} &: \Lambda^i_0 p^i_{NT,0} = \beta E_0 G^j_{NT,0} \Lambda^j_1 \left(\Gamma^j_1 + \zeta^0_0 \min_{s_1} \{\Gamma^j_1\}\right), \\
\partial p^i_{NT,1} &: P^i_{NT,1} = \left(1 + \tau^i_{T,1}\right) \frac{e}{e - 1} \cdot \frac{W^i_j}{\Lambda^i_1},
\end{align*}
\]

as well as complementarity slackness conditions

\[
\begin{align*}
\text{CSC}_1 &: D^i_{b,j} \leq \min_{s_1} \{\Gamma^i_1 (s_1)\} G \left(k^i_{NT,0}\right), \quad \zeta^i_0 \geq 0, \quad \left[D^i_{b,j} - \min_{s_1} \{\Gamma^i_1\} G \left(k^i_{NT,0}\right)\right] \zeta^i_0 = 0, \\
\text{CSC}_2 &: p^i_{NT,1} \xi^i_{NT,1} + P^i_{T,1} \xi^i_{T,1} \leq D^i_{c,j}, \quad \eta^i_1 \geq 0, \quad \left[p^i_{NT,1} \xi^i_{NT,1} + P^i_{T,1} \xi^i_{T,1} - D^i_{c,j}\right] \eta^i_1 = 0.
\end{align*}
\]
A.2.2 Equilibrium

The full set of equilibrium conditions is

$$\zeta_0 = \frac{1 - \tau^{b, j}_0}{1 + i_0} \cdot \frac{U^i_{T, 0}}{P^i_{T, 0}} - 1 \geq 0, \quad \tilde{d}^{b, j}_1 \leq G(k^i_{NT, 0}) \min_{s_1} \frac{X_1(s_1)g'(h^i_1)}{U^i_{T, 1}},$$

$$\left[\tilde{d}^{b, j}_1 - G(k^i_{NT, 0}) \min_{s_1|s_0} \frac{X_1(s_1)g'(h^i_1)}{U^i_{T, 1}}\right] \zeta_0 = 0,$$

$$\eta^i_1 = \frac{\nu^i U^i_{T, 1}}{\beta E^0} \geq 0, \quad p^i_1 \epsilon_{NT, 1} + \xi^i_{T, 1} \leq d^{c, j}_1, \quad [p^i_1 \epsilon_{NT, 1} + \xi^i_{T, 1} - d^{c, j}_1] \eta_1 = 0,$$

$$U^i_{T, 0} = (1 + r_0) \beta E^0 \left(U^i_{T, 1} + \nu^i U^i_{T, 1} \right),$$

$$\frac{v'(n^i_0)}{U^i_{NT, 0}} = \frac{W^i_0}{P^i_{NT, 0}},$$

$$\frac{v'(n^i_1)}{U^i_{NT, 1}} = A^i_1,$$

$$U^i_{NT, 0} = \beta G^i_{NT, 0} E^0 \left[X_1(s_1)g'(h^i_1) + A^i_1 \zeta^i_0 \min_{s_1} \left\{ \frac{X_1(s_1)g'(h^i_1)}{A^i_1} \right\} \right],$$

$$\frac{U^i_{NT, 0}}{U^i_{T, 0}} = \frac{p^i_{NT, 0}}{P^i_{T, 0}},$$

$$\frac{U^i_{NT, 1}}{U^i_{T, 1}} = p^i_1,$$

$$\frac{U^i_{NT, 1}}{U^i_{T, 1}} = \frac{U^i_{NT, 1}}{U^i_{T, 1}},$$

$$c^i_{T, 0} - c^i_{T, 0} + \frac{d^{c, j}_1 - d^{b, j}_1 - d^{g, j}_1}{1 + r_0} = 0,$$

$$c^i_{T, 1} + c^i_{T, 1} - c^i_{T, 1} + d^{b, j}_1 + d^{g, j}_1 - d^{c, j}_1 = 0,$$

$$A^i_0 n_0 = k^i_{NT, 0} + c^i_{NT, 0},$$

$$A^i_1 n_1 = c^i_{NT, 1} + c^i_{NT, 1},$$

$$h^i_1 = G(k^i_{NT, 0}),$$

$$\int d^{c, j}_1 di = \int d^{g, j}_1 di + \int d^{b, j}_1 di.$$

Using assumption 1 and the fact that equilibrium allocation does not depend on the realization of state s_1, the full set of equilibrium conditions can be written as follows
\[\xi_0 = (1 - \tau_0 i) \left\{ v^i \frac{\bar{c}_{NT,0}}{\xi_{NT,0}} + 1 \right\} - 1 \geq 0, \bar{a}^{\theta,i} \leq \theta^i G \left((k_0^i) \right) \left[\frac{\bar{d}^{\theta,i} - \theta^i G \left((k_0^i) \right)}{U_{T,0}^i} \right] \xi_0 = 0 \]

\[\eta_1 = \frac{v^i \bar{c}_{NT,0}}{\xi_{NT,0}} - 1 \geq 0, \frac{\bar{c}_{NT,1} p_i}{a} \leq d_{a,i} \left[\frac{\bar{c}_{NT,1} p_i}{a} - d_{a,i} \right] \eta_1 = 0, \]

\[\frac{a}{c_{NT,0}} = (1 + r_0) \frac{p_i}{P_i / P_{T,0}} \beta \left[\frac{a}{\xi_{NT,1}} + v^i a \right], \]

\[A_i \frac{a}{\xi_{NT,1}} = v^i \left(\frac{\bar{c}_{NT,1}}{A_i^1} \right), \]

\[v^i (n_0) = W_0^i, \]

\[\frac{a}{1 - a} \cdot \frac{c_i^1}{c_i^1} = \frac{P_i}{P_{T,0}}, \]

\[\frac{a}{c_{NT,0}} = \beta G \left((k_{NT,0}) \right) \bar{G}'(k_0^i) (\mu + (1 - \mu) \theta^i + \xi_0 \theta^i), \]

\[c_{NT,0} \frac{p_i}{P_{T,0}} = 1 - a - c_{T,0} + d_{a,i} - \bar{d}^{\theta,i} \]

\[\int d_{a,i}^i di = \int d_{a,i}^i di + \int d_{a,i}^{\bar{d}} di, \]

where \(\bar{c}_{NT,1} (s_0) = \bar{c}_{NT,1} (s_0) + \xi_0 \)

\[A.2.3 \text{ Proof of Lemma 1} \]

\[V^i \left(c_{NT,0}, c_{NT,1}, k_{NT,0}, P_{NT,0}, p_{T,0}, p_1 \right) \]

\[= \log \left[c_{NT,0} \left[\frac{1 - a}{a} \cdot p_i / P_{T,0} \right] \right] \]

\[+ \beta \log \left[y_{NT,1}^i \left[\frac{1 - a}{a} \cdot p_1 \right] \right] + \beta v^i \log \left[\left(1 - a \right) / a \right] \]

\[= \log c_{NT,0}^i - v \left(\frac{c_{NT,0}^i + k_{NT,0}^i}{A_0^i} \right) + \beta \left\{ v^i \log \bar{c}_{NT,1} (s_0) + X_i^i (s_1) G \left(k_{NT,0}^i \right) \right\}, \]

\[+ (1 - a) \log \left(\frac{p_i}{P_{T,0}} \right) + \beta (1 - a) \left[1 + v^i \right] \log p_1^i \]

\[+ \beta \left[\log y_{NT,1}^i - v \left(y_{NT,1}^i / A_i^1 \right) \right] + \left[1 + \beta (1 + v^i) \right] \log \left((1 - a) / a \right). \]
A.2.4 Proof of Proposition 5

The regulator’s problem can be summarized as follows

$$\max_{k_{NT,0},d_{NT,0}\xi_{NT,1},d_{T,0},d_{T,1},\lambda_1,\lambda_0,\lambda^i_1} \mathbb{E} \left\{ \log c_{NT,0} - v \left(\frac{c_{NT,0} + k_{NT,0}}{A_0} \right) + \beta \left\{ v^i \log c^i_{NT,1} + X_1^i(s_1) \log G \left(k_{NT,0} \right) \right\} \right\}$$

$$+ (1 - a) \log \left(\frac{p^i_{NT,0}}{p^i_{T,0}} \right) + \beta (1 - a)(1 + v^i) \log p^i_1$$

s.t.:

$$\frac{1}{c_{NT,0}} = (1 + r_0) \frac{p^i_{NT,0}}{p^i_{T,0} p^i_1} \left(\frac{1}{y_{NT,1}^{i^*}} + \frac{v^i}{\xi_{NT,1}} \right),$$

$$\bar{d}^i_{T,0} \leq \theta^i \frac{G^i \left(k_{NT,0} \right) g^i \left(k_{NT,0} \right)}{a/y_{NT,0}^{i^*}} G \left(k_{NT,0} \right) p^i_1,$$

$$\frac{c_{NT,1} p^i_1}{a} \leq \bar{d}^i_1,$$

$$\frac{1 - a}{a} c_{NT,0} \frac{p^i_{NT,0}}{p^i_{T,0}} - c^i_{T,0} = \bar{d}^i_{T,0} + \bar{d}^i_{T,1} - \bar{d}^i_1,$$

$$\bar{c}^i_{NT,1} p^i_1 \frac{1 - a}{a} - c^i_{T,1} = \bar{d}^i_1 - \bar{d}^i_{T,1} - \bar{d}^i_0.$$ (A.7)

Denote the Lagrange multipliers on the above constraints as \(\bar{\phi}^i, \beta^i \lambda_1^i, \beta^i \lambda_0^i, \lambda_0^i, \beta^i \lambda^i_1\) respectively. The first order conditions are

$$\partial c_{NT,0} : \bar{\phi}^i = \frac{1 - a}{c^i_{T,0}} \left(1 + \frac{a}{1 - a} \tau^i_0 + \frac{\bar{\phi}^i}{(1 - a) c^i_{NT,0}} \right),$$

$$\partial k_{NT,0} : \frac{v^i (\eta^i_0)}{A_0} = \beta G^i (k_{NT,0}) g^i [G(k_{NT,0})] \left[\mu + (1 - \mu) \theta^i + \theta^i \bar{\phi}^i \frac{\lambda^i_1 p^i_1}{a/y_{NT,0}^{i^*}} \left(1 - c^i_1 \right) \right],$$

$$\partial \xi_{NT,1} : v^i = \bar{\phi}^i (1 + r_0) \frac{p^i_{NT,0}}{p^i_{T,0} p^i_1} \frac{v^i}{\xi_{NT,1}} + \bar{\lambda}^i_1 \bar{\phi}^i \lambda^i_1,$$

$$\partial \bar{d}^i_{T,0} : c^i_{T,0} = -1 + \frac{\lambda^i_1}{\beta} \lambda^i_0 \frac{1}{1 + r_0},$$

$$\partial \bar{\phi}^i : \bar{\phi}^i = \frac{1}{\bar{\phi}^i} \left(1 + \frac{v^i}{\beta (1 - a) c^i_{NT,0}} \right),$$

$$\partial p^i_1 : \frac{1 - a}{c^i_{T,1}} = \bar{\phi}^i \frac{1}{\beta (1 - a) c^i_{NT,0}} \frac{v^i}{\bar{\phi}^i}.$$
The first order conditions for \(p_i^j \) and \(\xi_{NT,1}^i \) can be used to express the unknown Lagrange multipliers \(\bar{\lambda}_0, \bar{\lambda}_1 \) through \(\bar{\phi}^j \) as follows

\[
\bar{\lambda}_1 = \frac{1 - a}{c_{T,1}^j} \left\{ 1 + \frac{\nu^j (d_{11}^j - ad_{11}^j)}{(1 - a)d_{11}^j} - \frac{\bar{\phi}^j}{\beta(1 - a)} \left[\frac{1}{c_{NT,0}^j} \frac{d_{11}^j}{d_{11}^j} + \left(1 - \frac{d_{11}^j}{d_{11}^j} \right) \beta(1 + r_0) \frac{p_{NT,0}^i}{p_{T,0}^i p_{11}^i \xi_{NT,1}^j} \right] \right\},
\]

\[
\bar{\lambda}_0 = \frac{1}{1 - \frac{\nu^j (1 + r_0) p_{NT,0}^i}{p_{T,0}^i p_{11}^i \xi_{NT,1}^j}} \left[\frac{\nu^j (1 + r_0) p_{NT,0}^i}{p_{T,0}^i p_{11}^i \xi_{NT,1}^j} \right] c_{T,1}^j.
\]

The first order conditions for \(d_{11}^j \) can then be used to express \(\bar{\phi}^j \) as follows

\[
\frac{\bar{\phi}^j}{\beta c_{NT,0}^j} = \frac{\nu^j (d_{11}^j - ad_{11}^j)}{c_{T,1}^j} - (1 + \frac{\tau_i^j}{\tau_A^j}) \frac{\bar{\lambda}_0}{\tau_A^j} + \frac{\tau_i^j}{\tau_A^j} \left(1 - \frac{\tau_i^j}{\tau_A^j} \right) \frac{p_{NT,0}^i}{p_{T,0}^i p_{11}^i \xi_{NT,1}^j}.
\]

Finally, comparing private durable goods investment optimality condition (52) to the regulator’s condition (A.8), I can express optimal prudential tax as follows

\[
\tau_0^{b,i} = \frac{1}{1 - \tau_0^i} \left[\frac{\tau_A^j e_{11}^i}{1 + \tau_A^j} - \frac{\tau_0^i (1 + \theta^j) + \theta^j \tau_A^j}{\tau_0^i (1 + \tau_A^j)} + \frac{\tau_A^j (1 - e_{11}^i)}{1 + \tau_A^j} \right].
\]

The last term in the square brackets can be further simplified as follows

\[
\frac{\tau_A^j (1 - e_{11}^i)}{1 + \tau_A^j} = \frac{\tau_A^j (1 - e_{11}^i)}{1 + \tau_A^j} \frac{p_{NT,0}^i}{p_{T,0}^i p_{11}^i \xi_{NT,1}^j} = \Omega_i \left(\frac{\tau_A^j (1 - e_{11}^i)}{1 + \tau_A^j} \right) \frac{\left(\frac{d_{11}^j}{c_{T,1}^j} + \frac{d_{11}^j + \frac{\tau_i^j}{\tau_A^j}}{c_{T,1}^j} \right)}{1 - \frac{\tau_0^i}{\tau_A^j}},
\]

where

\[
\Omega_i = \frac{\tau_A^j (1 - e_{11}^i)}{1 + \tau_A^j} \left(\frac{\tau_A^j + d_{11}^j}{1 + \tau_A^j c_{T,1}^j} + \frac{d_{11}^j + \frac{\tau_i^j}{\tau_A^j} d_{11}^j}{c_{T,1}^j} \right)^{-1} = \frac{\tau_A^j (1 - e_{11}^i)}{1 + \tau_A^j} \left(\frac{d_{11}^j + \frac{\tau_i^j}{\tau_A^j} d_{11}^j}{1 + \tau_A^j} \right)^{-1}.
\]

This optimal macroprudential tax can now be expressed as follows

\[
\tau_0^{b,i} = \frac{1}{1 - \tau_0^i} \left[\frac{\tau_A^j e_{11}^i}{1 + \tau_A^j} - \frac{\tau_0^i (1 + \theta^j) + \theta^j \tau_A^j}{\theta^j (1 + \tau_A^j)} + \frac{\tau_A^j (1 - e_{11}^i)}{1 + \tau_A^j} \right],
\]

where

\[
Z_2^2 = \frac{\mu + (1 - \mu) \theta^j + \theta^j \tau_A^j}{\theta^j (1 + \tau_A^j)}, \quad Z_3^3 = \frac{\tau_A^j}{1 + \tau_A^j} \cdot \frac{\Omega_i}{c_{T,1}^j}, \quad Z_4^4 \equiv \Omega_i. \quad (A.9)
\]
A.2.5 Proof of Proposition 6

This section solves the global Ramsey planner problem that corresponds to optimal union-wide monetary and regional macroprudential policies.

\[
\max_{\{k_{NT,0}^i, a_{NT,0}^i, \xi_{NT,0}^i, p_{T,0}^i \}} \mathbb{E} \int \omega^i \left\{ \log c_{NT,0}^i - v \left(\frac{c_{NT,0}^i + k_{NT,0}^i}{A_0^i} \right) + \beta \left\{ v^i \log \xi_{NT,1}^i + X_i^i(s_1)g \left[G \left(k_{NT,0}^i \right) \right] \right\} \right. \\
+ (1 - a) \log \left(\frac{p_{NT,0}^i}{P_{T,0}^i} \right) + \beta(1 - a)(1 + v^i) \log p_{T,0}^i \right\} di, \\
\text{s.t.: } d_{1}^{b,i} \leq \theta^i G'[G(k_{NT,0}^i)] G(k_{NT,0}^i) p_{T,0}^i, \\
\frac{\xi_{NT,1}^i}{a^i} \leq d_{1}^{c,i}, \\
\frac{c_{NT,0}^i}{P_{T,0}^i} \left(1 - a \right) \frac{1}{a} - e_{1}^{c,i} + \frac{d_{1}^{c,i} - d_{1}^{b,i} - d_{1}^{g,i}}{1 + r_0} = 0, \\
y_{NT,1}^i \frac{p_{T,0}^i}{a} - e_{1}^{c,i} + d_{1}^{b,i} + d_{1}^{g,i} - d_{1}^{c,i} = 0, \\
\frac{1 - a}{a} \int p_{T,0}^i c_{NT,0}^i di = \int e_{1}^{c,i} di, \\
\frac{1 - a}{a} \int p_{T,0}^i y_{NT,1}^i di = \int e_{1}^{c,i} di, \\
\frac{1}{c_{NT,0}^i} = (1 + r_0) \beta \frac{p_{NT,0}^i}{p_{T,0}^i p_{T,0}^i} \left(\frac{1}{y_{NT,1}^{i,s}} + \frac{v^i}{\xi_{NT,1}^i} \right) .
\]

Note that the traded goods market clearing condition in one of the periods is redundant. On of the two conditions can be obtained by summing country-wide budget constraints across countries in both periods, and then using the traded goods market clearing condition in the other period. Thus, I drop global market clearing condition for traded goods in period 1. The first order conditions are

\[
\partial c_{NT,0}^i : \lambda_0^i = \frac{1 - a}{c_{T,0}^i} \left(1 + \frac{a}{1 - a} \bar{c}_0^i + \frac{\bar{\delta}_i}{(1 - a)\xi_{NT,0}^i} - \frac{\bar{\psi}_0 c_{T,0}^i}{\omega^i(1 - a)} \right), \\
\partial \xi_{NT,1}^i : \xi_0^i = \bar{\delta}_i (1 + r_0) \frac{p_{NT,0}^i}{P_{T,0}^i p_{T,0}^i}, \\
\partial k_{NT,0}^i : \beta G'(k_{NT,0}^i) G'(G(k_{NT,0}^i)) \left[\mu + (1 - \mu) \theta^i + \theta^i \frac{\bar{\lambda}_0^i}{a} \xi_{NT,0}^i \left(1 - c_{T,0}^i \right) \right] = \frac{v^i (n_0^i)}{A_0^i}, \\
\partial p_{T,0} : \int \omega_i \eta_0^i di = 0, \\
\partial \bar{p}_i^b : \bar{\xi}_0^i = -1 + \frac{\bar{\lambda}_0^i}{\beta \bar{\lambda}_1^i} \frac{1}{1 + r_0}, \\
\partial e_i^b : \bar{\xi}_0^i = \bar{\eta}_0^i, \\
\partial p_{T,0} : \int \omega_i \left[\frac{\bar{\phi}_i}{c_{NT,0}^i} - \bar{\lambda}_0^i \left(c_{T,0}^i - c_{T,0}^i \right) \right] di = 0.
\]
\[\partial p_i^l \lambda_i^l = \frac{1 - a}{c_{T,1}} \cdot \frac{1 + \nu^l - \phi^l}{\beta (1 - a) c_{T,0}}. \]

Optimality condition with respect to investment in durable goods can be rearranged as follows

\[\beta G'(k_{NT,0}^l) g' \left[G(k_{NT,0}^l) \right] \left[1 + \theta^l \zeta_0 \frac{\lambda_i^l}{U^l} \left(1 - e^l_i \right) \right] = (1 - \tau_0^l) U^l_{NT,0}. \]

This expression is identical to local planner’s optimality condition with respect to investment in durable goods. The first order condition with respect to the real interest rate on safe bonds leads to

\[\tilde{\psi}_0 = \frac{\int \omega^l \left(1 - \frac{\lambda_i^l e^l_i}{U^l} \right) di}{\int e^l_i d^l_i di}. \]

This equation states that the Lagrange multiplier on the traded goods market clearing condition in period 0 equals the average deviation of planner’s marginal value of traded goods from the private agents marginal utility multiplied by the share of endowment in consumption of traded goods. This expression can be alternatively written as

\[\tilde{\psi}_0 = (1 + r_0) \cdot \frac{\int \omega^l \left(1 - \frac{\lambda_i^l e^l_i}{U^l} \right) (1 + \frac{a}{1 - a} \tau_0^i) di - \int \omega^l \frac{\phi^l}{\Theta^l} \left[\frac{\nu^l (d^l_i - a c^l_i)}{c_{T,1}} - (1 + \tau_0^l) \frac{a c^l_i}{c_{T,1}} \right] di}{\int \frac{\phi^l}{\Theta^l} \cdot \frac{d^l_i}{c_{T,1}} di}, \quad (A.10) \]

where

\[\Theta^l = \frac{\tau_0^l}{1 + \tau_0^l} + \frac{d^l_i}{(1 + r_0) c_{T,0}} + \frac{d^l_i A^l d^l_i}{c_{T,1} (1 + \tau^l)}. \]

It is easy to see that

\[\frac{\tilde{\phi}^l}{\beta c_{NT,0}^l} = \frac{\tau_0^l}{1 + \tau_0^l} \frac{\nu^l (d^l_i - a c^l_i)}{c_{T,1}} - (1 + \tau_0^l) \frac{a c^l_i}{c_{T,1} (1 + \tau^l)} + \frac{d^l_i}{(1 + r_0) c_{T,1}} + \frac{d^l_i + \tau_0^l d^l_i}{c_{T,1} (1 + \tau_0^l)}. \]

Next, I express optimal tax rate by comparing private and regulator optima with respect to investment in durable goods

\[\tau_{0,0}^l = \frac{1}{1 - \tau_0^l} \left[\frac{\tau_0^l c^l_i}{1 + \tau_0^l} - \tau_0^l Z_2^l + Z_3^l \cdot (d^l_i - a c^l_i) - \frac{a}{1 - a} \tau_0^l Z_4^l + \tilde{\psi}_0 Z_5^l \right], \quad (A.11) \]

where \(Z_2^l, Z_3^l, Z_4^l \) are similar to (A.9) and

\[Z_5^l = \frac{1}{1 + \tau_0^l} \cdot \frac{c^l_{T,1}}{a} \cdot \frac{Z_4^l}{\beta (1 + r_0) \omega^l} = \frac{c^l_{T,0} Z_5^l}{\omega^l a Z_4^l} > 0. \]
If I denote
\[\tau_{0}^{b,i} \mid_{\text{local}} = \frac{1}{1 - \tau_{0}^{j}} \left[\frac{\tau_{A}^{i} \tilde{c}_{T,1}^{i}}{1 + \tau_{A}^{j}} - \tau_{0}^{i} Z_{2}^{i} + Z_{3}^{i} \cdot \left(d_{1}^{b,i} - a d_{1}^{b,j} \right) \right] = \frac{a}{1 - a} \tau_{0}^{i} Z_{4}^{i}, \]
the optimal prudential tax can be alternatively written as
\[\tau_{0}^{b,i} = \tau_{0}^{b,i} \mid_{\text{local}} + \frac{\tilde{\psi}_{0}}{1 - \tau_{0}^{j}} Z_{5}^{i}. \]
Because global regulator internalizes the effects of its choice of prudential policy in country \(i \) on the rest of the union, it sets different prudential tax. Depending on the sign of \(\tilde{\psi}_{0} \), the tax can be higher or lower than that of local regulator. Variable \(\tilde{\psi}_{0} \) combines the net effect of several forces. First, absent additional instruments, like fiscal transfers, the global regulator understands that changing the local allocation through changing the local tax effectively redistributes tradable goods across countries. Second, even when the marginal values additional consumption of tradable goods are equalized across countries, so that redistribution is no longer a concern, the global regulator internalizes the positive and negative international spillovers of local macroprudential policy. To see this formally, consider the case in which all countries are identical. In this case, equation A.10 becomes
\[\tilde{\psi}_{0} = \frac{d_{1}^{i}}{(1 + r_{0}) \beta} \left[\frac{v(d_{1}^{b} - a d_{1}^{b})}{d_{1}^{i}} - (1 + \tau_{A}) a d_{1}^{b} \right]_{T,1} \]
\[= \frac{(1 + r_{0}) \beta}{c_{T,1}^{i}} \left[\frac{v(d_{1}^{b} - a d_{1}^{b})}{d_{1}^{i}} - (1 + \tau_{A}) a d_{1}^{b} \right] \]
\[= \frac{(1 + r_{0}) \beta}{c_{T,1}^{i}} \left\{ v \left[(1 - a) d_{1}^{b} - d_{1}^{b} \right] d_{1}^{i} - (1 + \tau_{A}) a d_{1}^{b} \right\} . \]

In case when countries are symmetric, the union-wide monetary policy stabilizes all economies, i.e., \(\tau_{0} = 0 \). This further simplifies the expressions for \(\tilde{\psi}_{0} \) as follows
\[\tilde{\psi}_{0} = \frac{d_{1}^{i}}{(1 + r_{0}) \beta} \cdot v \left[(1 - a) d_{1}^{b} - d_{1}^{b} \right]. \]

\(\tilde{\psi}_{0} \) captures the effect of local macroprudential tax on the two pecuniary externalities in the other countries. The intuition behind this formula is summarized in the main text after the statement of Proposition 6. If the supply of government debt \(d_{1}^{b} \) is small enough, the above formula implies that \(\tilde{\psi}_{0} < 0 \), and the global planner sets smaller prudential tax. In other words, uncoordinated macroprudential policy over-regulates the financial sector.
A.2.6 Proof of Proposition 7

\[
\max_{\{k^i_{NT,0}, c^i_{NT,0}, x^i_{NT,1}, p^i_{T,0}, p^i_{T,0}\}} \mathbb{E} \int \omega^i \left\{ \log c^i_{NT,0} - v \left(\frac{c^i_{NT,0} + k^i_{NT,0}}{A^i_0} \right) + \beta \left\{ \nu^i \log x^i_{NT,1} + X^i_1(s_1) G \left(k^i_{NT,0} \right) \right\} \right\}
\]

\[+ (1 - a) \log \left(\frac{p^i_{NT,0}}{p^1_{T,0}} \right) + \beta(1 - a)(1 + \nu^i) \log p^i_1 \right\} di, \]

s.t.: \[
\hat{d}_{1}^{b,j} \leq \theta^i \frac{G'(k^i_{NT,0})}{a} \frac{G(k^i_{NT,0})}{p^i_1},
\]
\[
\frac{c^i_{NT,0}}{a} \leq d_{1}^{c,i},
\]
\[
\frac{c^i_{NT,0}}{p^i_{T,0}} \frac{1 - a}{a} e_{T,0}^i + \frac{d_{1}^{c,i} - d_{1}^{b,i} - d_{1}^{b,i}}{1 + r_0} + \hat{T}_{1}^i = 0,
\]
\[
y^i_{NT,1} p^i_1 \frac{1 - a}{a} e_{T,1}^i + \hat{a}_{1}^{i} + d_{1}^{c,i} - d_{1}^{c,i} + \hat{T}_{1}^i = 0,
\]
\[
\int \hat{T}_{1}^i di = 0,
\]
\[
\int \hat{T}_{1}^i di = 0,
\]
\[
\frac{1 - a}{a} \int p^i_{T,0} c_{NT,0}^i di = \int e_{T,0}^i di,
\]
\[
\frac{1 - a}{a} \int p^i_{T,1} y^i_{NT,1} di = \int e_{T,1}^i di,
\]
\[
\frac{1}{c^i_{NT,0}} = (1 + r_0) \beta \frac{p^i_{NT,0}}{p^i_{T,0} p^i_1} \left(\frac{1}{y^i_{NT,1}} + \frac{\nu^i}{\xi^i_{NT,1}} \right).
\]

I can use country-wide budget constraints to eliminate transfers. Constraints (A.12),(A.13), after taking into account traded goods market clearing conditions, can be replaced by one safe bonds debt market clearing condition. The problem takes the following form now

\[
\max_{\{k^i_{NT,0}, c^i_{NT,0}, x^i_{NT,1}, p^i_{T,0}, p^i_{T,0}\}} \mathbb{E} \int \omega^i \left\{ \log c^i_{NT,0} - v \left(\frac{c^i_{NT,0} + k^i_{NT,0}}{A^i_0} \right) + \beta \left\{ \nu^i \log x^i_{NT,1} + X^i_1(s_1) G \left(k^i_{NT,0} \right) \right\} \right\}
\]

\[+ (1 - a) \log \left(\frac{p^i_{NT,0}}{p^1_{T,0}} \right) + \beta(1 - a)(1 + \nu^i) \log p^i_1 \right\} di, \]

s.t.: \[
\hat{d}_{1}^{b,j} \leq \theta^i \frac{G'(k^i_{NT,0})}{a} \frac{G(k^i_{NT,0})}{p^i_1},
\]
\[
\frac{c^i_{NT,0} p^i_{T,0}}{a} \leq d_{1}^{c,i},
\]
\[
\hat{d}_{1}^{b,j} \leq \theta^i \frac{G'(k^i_{NT,0})}{a} \frac{G(k^i_{NT,0})}{p^i_1},
\]
\[
\frac{c^i_{NT,0}}{a} \leq d_{1}^{c,i},
\]
\[
\frac{c^i_{NT,0}}{p^i_{T,0}} \frac{1 - a}{a} e_{T,0}^i + \frac{d_{1}^{c,i} - d_{1}^{b,i} - d_{1}^{b,i}}{1 + r_0} + \hat{T}_{1}^i = 0,
\]
\[
y^i_{NT,1} p^i_1 \frac{1 - a}{a} e_{T,1}^i + \hat{a}_{1}^{i} + d_{1}^{c,i} - d_{1}^{c,i} + \hat{T}_{1}^i = 0,
\]
\[
\int \hat{T}_{1}^i di = 0,
\]
\[
\int \hat{T}_{1}^i di = 0,
\]
\[
\frac{1 - a}{a} \int p^i_{T,0} c_{NT,0}^i di = \int e_{T,0}^i di,
\]
\[
\frac{1 - a}{a} \int p^i_{T,1} y^i_{NT,1} di = \int e_{T,1}^i di,
\]
\[
\frac{1}{c^i_{NT,0}} = (1 + r_0) \beta \frac{p^i_{NT,0}}{p^i_{T,0} p^i_1} \left(\frac{1}{y^i_{NT,1}} + \frac{\nu^i}{\xi^i_{NT,1}} \right).
\]
The first order conditions are

\[
\partial c_{NT,0}^i : \tilde{\varphi}_0 = \omega^i \frac{1 - a}{c_{T,0}^i} \left(1 + \frac{a}{1 - a} \frac{\tilde{\varphi}_i}{1 - a c_{NT,0}^i} \right)
\]

\[
\partial c_{NT,1}^i : v^i = \tilde{\varphi}^i (1 + r_0) \frac{p_{NT,0}^i}{p_{T,0}^i p_1^i} \cdot \frac{v^i}{\xi_{NT,1}^i} + \tilde{\eta}_0 d^i_{T,1},
\]

\[
\partial k_{NT,0} : \beta G'(k_{NT,0}) g'[G(k_{NT,0})] \left[\mu + (1 - \mu) \theta^i + \theta^i \tilde{\varphi}_0 - \frac{p_{NT,0}^i}{y_{NT,0}^i} \left(1 - c_{T,0}^i \right) \right] = \frac{v'(n_0^i)}{A_0},
\]

\[
\partial p_{T,0} : \int \omega^i \tilde{\varphi}_0^i d\tau_0^i = 0
\]

\[
\partial d_{T,0}^i : \omega^i \tilde{\varphi}_0^i = \tilde{\varphi}^i
\]

\[
\partial d_{T,1}^i : \omega^i \tilde{\eta}_0^i = \tilde{\varphi}^i
\]

\[
\partial r_0 : \int \omega^i \tilde{\varphi}_0^i d\tau_0^i = 0,
\]

\[
\partial p_{1}^i : \tilde{\varphi}_1^i = \omega^i \frac{1 - a}{c_{T,1}^i} \left(1 + v^i \tilde{\varphi}_1^i + \frac{\tilde{c}_{1}^i - \tilde{d}_{1}^i}{1 - a} - \frac{\tilde{\varphi}_1^i}{\beta (1 - a) c_{NT,0}^i} \right)
\]

Comparing the optimality condition for investment in durable goods to private optimality, I can express the optimal macroprudential tax as follows

\[
\tau_{0}^{b,i} = \frac{1}{1 - \tau_{0}^i} \left[\tau_{A}^i \tilde{c}_{T,1}^i - \tilde{c}_{A}^i \tilde{c}_{T,2}^i + \tau_{1}^i \frac{1 - \tau_{A}^i}{1 + \tau_{A}^i} \tilde{c}_{T,1}^i \left(1 - \frac{\tilde{\varphi}_1^i}{\omega^i} \right) \right],
\]

where \(\tilde{\varphi}_0 \) is the planner’s marginal value of safe asset, which is common across all of the countries, \(\tau_{T,1}^i \) is private marginal value of safe assets in country \(i \), and \(Z_2^i \left[\mu + (1 - \mu) \theta^i + \theta^i \tilde{\varphi}_0 \right] / \left[\theta^i (1 + \tau_{A}^i) \right] \). Using the first order condition for \(c_{NT,1}^i \) one can show that

\[
\tilde{\varphi}_0 = \int \omega^i \frac{\tilde{c}_{1}^i - \tilde{d}_{1}^i}{1 + \tau_{A}^i} d\tau_0^i
\]

This expression is a weighted average across countries of marginal utilities from consumption bought with
safe assets, with weights being $\Phi^i \equiv d^{c_i,1+\tau_A^i} / \int d^{c_i,1+\tau_A^i} di$. The last expression implies

$$
\tau_A^i \left(1 - \frac{\tilde{c}_i/\omega^i}{v^i U_{i,T,1}^{-1}} \right) = \frac{1}{\omega^i U_{i,T,1}} \left(\omega^i v^i d^{c_i,1+\tau_A^i} di - \int \omega^i \frac{v^i}{d^{c_i,1+\tau_A^i}} \Phi^i di \right).
$$

This leads to

$$
\tau_0^{b,i} = \frac{1}{1 - \tau_0} \left[\tau_A^i e^i + \frac{\tau^i_0 z_2^i + e^i_0}{1 + \tau_A^i} \cdot \frac{1}{\omega^i U_{i,T,1}} \left(\omega^i v^i d^{c_i,1+\tau_A^i} di - \int \omega^i \frac{v^i}{d^{c_i,1+\tau_A^i}} \Phi^i di \right) \right]
= \frac{1}{1 - \tau_0} \left(\tau_A^i e^i + \tau_0 z_2^i + Z_0^i \right).
$$

A.2.7 Proof of Proposition 8

$$
\max_{\{k_{NT,0},p_{NT,0}\},\{\xi_{NT,1},\eta_{NT,1}\},\tau_{1,0}} \mathbb{E} \int \omega^i \left\{ \log c_{NT,0}^i - v \left(\frac{c_{NT,0}^i + k_{NT,0}^i}{A_0^i} \right) + \beta \left\{ v^i \log c_{NT,1}^i + \chi_i (s_1) g \left(G \left(k_{NT,0}^i \right) \right) \right\} \right\}
+ (1 - a) \log \left(\frac{p_{NT,0}^i}{P_{i,0}} \right) + \beta (1 - a) (1 + v^i) \log p_1^i \right\} di,
$$

s.t.: $d_1^i \leq \theta^i \frac{G'(k_{NT,0}^i)}{a/y_{NT,1}^i} G(k_{NT,0}^i) p_1^i$, $[\beta \eta_0^i \omega^i]$

$\frac{c_{NT,1}^i}{a} \leq d_1^i$, $[\beta \tilde{\eta}_0^i \omega^i]$

$\int \left[d_1^i - d_1^i - d_1^i \right] di = 0$, $[\beta \tilde{c}_0^i]$

$\frac{1 - a}{a} \int \frac{p_{NT,0}^i}{p_{i,0}} e_{NT,0}^i di = \int e_{T,0}^i di$, $[\psi_i]$

$\frac{1 - a}{a} \int \frac{p_1^i}{p_{i,0}} e_{NT,1}^i di = \int e_{T,1}^i di$. $[\beta \psi_1^i]$

The first order conditions are

$$
\partial c_{NT,0}^i : \bar{\psi}_0 = \omega^i \frac{1 - a}{c_{T,0}^i} \left(1 + \frac{a}{1 - a} \tau_0 \right),
\partial c_{NT,1}^i : \bar{\psi}^i = \tilde{\eta}_0^i c_{T,0}^i,
\partial k_{NT,0}^i : \beta G'(k_{NT,0}^i) g \left[G(k_{NT,0}^i) \right] \left[\mu + (1 - \mu) \theta^i + \theta^i \tilde{\eta}_0^i \frac{p_1^i}{a/y_{NT,0}^i} \left(1 - c_1^i \right) \right] = \frac{v'(n_0^i)}{A_0^i},
\partial P_{i,0} : \int \omega^i \tau_0^i di = 0,
\partial d_1^i : \bar{\psi}_0 = \tilde{c}_0^i.
$$
\[\partial d_1^c : \eta_0^i = \xi, \]
\[\partial p_1^i : \psi_1 = \omega \frac{1 - a}{c_{T,1}^i} \left(1 + \nu^i + \xi_0 \frac{d_{T,1}^i - d_{T,1}^i}{1 - a} \right). \]

Combine FOCs for \(c_{NT,1}^i \) and \(p_1^i \)
\[\psi_1 = \omega \frac{1 - a}{c_{T,1}^i} \left(1 + \eta_0^i d_{T,1}^i + \xi_0 \frac{d_{T,1}^i - d_{T,1}^i}{1 - a} \right) = \omega \frac{1 - a}{c_{T,1}^i} \left(1 + \xi_0 \frac{d_{T,1}^i - d_{T,1}^i}{1 - a} \right). \]

Summing the first order conditions for \(c_{NT,0}^i \) and \(p_1^i \) across all of the countries, one can find
\[\tilde{\psi}_0 = \frac{1 - a}{\int e_{T,0}^i di} \]
\[\tilde{\psi}_1 = \frac{1 - a}{\int e_{T,1}^i di} \left(1 + \xi_0 \frac{\int (d_{T,1}^i - d_{T,1}^i) \omega^i di}{1 - a} \right). \]

This first order condition imply
\[\tau_{b,i}^0 = \frac{1}{1 - \tau_0^i} \left(\tau_{A,i}^i e_{T,i}^i \left(1 + \frac{\mu + (1 - \mu)\theta^i + \theta_{T,i}^i}{\theta^i (1 + \tau_{A,i}^i)} \right) \right). \]

A.2.8 Proof of Lemma 2

The proof of this Lemma proceeds in several steps. First, I derive the household optimality condition. Then I summarize all equilibrium conditions. Finally, I reduce the equilibrium conditions to a smaller set of equations that will be the constraints in the planners problem.

Household problem. The problem of a household in country \(i \) outside of monetary union

\[\mathcal{L}_0 = \mathbb{E}\left\{ U (c_{NT,0}^i, c_{T,0}^i) - v (n_0^i) + \beta \left[U (c_{NT,1}^i + \xi_{NT,1}^i, c_{T,1}^i + \xi_{T,1}^i) - v (n_1^i) \right. \right. \]
\[\left. + X_1 (s_1) g (h_1^i) + \nu^i U (\xi_{NT,1}^i, \xi_{T,1}^i) \right\]
assumes that bankers in country purchasing safe debt denominated in home currency respectively, purchased by the household in country and.

\[- \Lambda_i \left[T_i^0 + P_{NT,0}^i c_{NT,0}^i + P_{T,0}^i c_{T,0}^i + \frac{D_i^{c,i}}{1 + i_0} + \frac{D_i^{c,i}}{1 + i_0} E_i^0 + P_{NT,0}^i k_{NT,0}^i \right. \]
\[\left. - P_{T,0}^i c_{T,0}^i - \frac{D_i^{b,i}}{1 + i_0} \left(1 - \tau_i^{b,i} \right) - W_i^0 n_i^0 - \Pi_i^0 \right] \]
\[- \beta \Lambda_i^i \left[P_{NT,1}^i \left(c_{NT,1}^i + c_{NT,1}^i \right) + P_{T,1}^i \left(c_{T,1}^i + c_{T,1}^i \right) + T_i^1 + \Gamma_i^1 h_i^1 + D_i^{b,i} \right. \]
\[\left. - P_{T,1}^i c_{T,1}^i - D_i^{c,i} - D_i^{c,i} E_i^1 - W_i^1 n_i^1 - \Gamma_i^1 G \left(k_{NT,0}^i \right) - \Pi_i^1 \right] \]
\[- \beta \Lambda_i^i \left[\tilde{D}_i^{b,i} - \min\{ \Gamma_i^1 \} G \left(k_{NT,0}^i \right) \right] \]
\[- \beta \Lambda_i^i \left[P_{NT,1}^i c_{NT,1}^i + P_{T,1}^i c_{NT,1}^i - D_i^{c,i} - D_i^{c,i} E_i^1 \right] \]
as well as complementarity slackness conditions

\[\text{CSC}_1 : \bar{D}_b^{h,i} \leq \min_{s_1(s_1)} \{ \Gamma^i_{1(s_1)} \} G \left(k^i_{NT,0} \right), \bar{\xi}_0 \geq 0, \left[\bar{D}_0^{b,i} - \min_{s_1} \{ \Gamma^i_{1} \} G \left(k^i_{NT,0} \right) \right] \bar{\xi}_0 = 0, \]

\[\text{CSC}_2 : P_{NT,1}^{i,NT,1} + P_{T,1}^{i,T,1} \leq D_{1}^{C,i,i} + D_{1}^{C,i,u} \eta_{1}, \eta_{1} \geq 0, \left[P_{NT,1}^{i,NT,1} + P_{T,1}^{i,T,1} - D_{1}^{C,i,i} - D_{1}^{C,i,u} \eta_{1} \right] \eta_{1}^i = 0. \]

Equilibrium conditions. Define home and monetary union safe real interest rate (in units of traded goods) as before

\[r_0 = \frac{1 + i_0}{P_{T,1} / P_{T,0}}, \]

\[r_i = \frac{1 + i_0^i}{P_{T,1}^i / P_{T,0}^i}, \]

The first order conditions with respect to \(\partial D_{1}^{C,i} \) and \(\partial D_{1}^{C,i,u} \) together with the assumption that there is no uncertainty in nominal exchange rate can be combined to yield the interest rate parity

\[\frac{1 + i_0^i}{1 + i_0} = \frac{E_1^i}{E_0}. \]

This condition can be rewritten taking into account the definitions of safe real interest rates and exchange rate as follows

\[r_0 = r_i^i. \]
The full set of equilibrium conditions is

\[
\begin{align*}
\zeta_0^i &= 1 - \frac{\tau_b^i}{1 + \tau_0^i} \cdot \frac{U_{T,0}^i}{U_{T,1}^i} \cdot \beta \mathbb{E}_0 \left(\frac{U_{T,1}^i}{P_{T,1}^i} \right) - 1 \geq 0, \\
& \quad \frac{d_1^i - G(k_{NT,0})}{U_{T,1}^i} \min_{s_1} X_1(s_1) g'(h_1^i), \\
& \quad \left[\frac{d_1^i - G(k_{NT,0})}{U_{T,1}^i} \right] \zeta_0^i = 0, \\
\eta_1^i &= \frac{\nu^i U_{T,1}^i}{U_{T,1}^i} \geq 0, \\
& \quad p_i^1 \leq G(k_{NT,1}) \min_{s_1} X_1(s_1) g'(h_1^i), \\
& \quad \left[p_i^1 \leq G(k_{NT,1}) \min_{s_1} X_1(s_1) g'(h_1^i) - p_i^0 \right] \eta_1^i = 0, \\
U_{T,0}^i &= (1 + r_0) \beta \mathbb{E}_0 \left(U_{T,1}^i + \nu^i U_{T,1}^i \right), \\
U_{NT,0}^i &= \beta G_{NT,0} \mathbb{E}_0 \left[X_1(s_1) g'(h_1^i) + \Lambda_1 \zeta_0^i \min_{s_1} X_1(s_1) g'(h_1^i) \right], \\
U_{NT,1}^i &= p_i^1, \\
U_{T,1}^i &= p_i^1, \\
U_{NT,1}^i &= \frac{U_{NT,1}^i}{U_{T,1}^i}, \\
U_{T,1}^i &= \frac{U_{T,1}^i}{U_{T,1}^i}, \\
\zeta_0^i &= \frac{d_1^i - G(k_{NT,0})}{U_{T,1}^i} \min_{s_1} X_1(s_1) g'(h_1^i), \\
\eta_1^i &= \frac{\nu^i U_{T,1}^i}{U_{T,1}^i} \geq 0, \\
& \quad p_i^1 \leq G(k_{NT,1}) \min_{s_1} X_1(s_1) g'(h_1^i), \\
& \quad \left[p_i^1 \leq G(k_{NT,1}) \min_{s_1} X_1(s_1) g'(h_1^i) - p_i^0 \right] \eta_1^i = 0, \\
U_{T,0}^i &= (1 + r_0) \beta \mathbb{E}_0 \left(U_{T,1}^i + \nu^i U_{T,1}^i \right),
\end{align*}
\]

where \(d_1^i \equiv \left((D_{T,1}^i + D_{T,0}^i E_1^i) / P_{T,1}^i \right) \). Using assumption 1 and the fact that equilibrium allocation does not depend on the realization of state \(s_1 \), the full set of equilibrium conditions can be written as follows...
\[\zeta_i^0 = (1 - \tau_0^{b,i}) \left\{ \nu \frac{\zeta_{NT,1}^{i}}{\zeta_{NT,1}} + 1 \right\} - 1 \geq 0, d_{1,i}^b \leq g \frac{r^{G'}[G(k_0^i)]}{U_T^i} G(k_0^i), \left[\frac{d_{1,i}^b}{a} - d_{1,i}^b \right] \eta_1^i = 0, \]

\[\eta_1^i = \frac{v^i}{\zeta_{NT,1}} \frac{c_{NT,1}^i}{\zeta_{NT,1}} \geq 0, \frac{c_{NT,1}^i}{a} \leq d_{1,i}^b, \left[\frac{c_{NT,1}^i}{a} - d_{1,i}^b \right] \eta_1^i = 0, \]

\[\frac{a}{c_{NT,0}} = (1 + r_0) \frac{p_i^0}{p_i^1} \beta \left[\frac{a}{c_{NT,1}} + \nu \frac{a}{\zeta_{NT,1}} \right], \]

\[A_i^i \frac{a}{c_{NT,1}} = v' \left(\frac{\zeta_{NT,1}^{i}}{A_1^i} \right), \]

\[\frac{v'(n_0)}{U_{NT,0}} = W_0^i, \]

\[\frac{a}{1 - a} \frac{c_{NT,0}^i}{c_{NT,0}} = p_0^i, \]

\[\frac{a}{c_{NT,0}} = \beta g^i \left(G \left(k_{NT,0}^i \right) \right) G'(k_0^i)(\mu + (1 - \mu) \theta^i + \zeta_0^i \eta^i), \]

\[c_{NT,0}^i p_0^i \frac{1 - a}{a} - c_{T,0}^i + d_{1,i}^b - d_{1,i}^b - d_{1,i}^b = 0, \]

\[\frac{c_{NT,1}^i}{a} - c_{T,1}^i + d_{1,i}^b + d_{1,i}^b - d_{1,i}^b = 0, \]

where \(c_{NT,1}^i(s_0) = c_{NT,1}^i(s_0) + \zeta_{NT,1}(s_0) \).

Dropping some equilibrium equations. I drop variables and equilibrium conditions that involve variables that do not affect the household utility function. The remaining conditions are

\[\zeta_i^0 = (1 - \tau_0^{b,i}) \left\{ \nu \frac{\zeta_{NT,1}^{i}}{\zeta_{NT,1}} + 1 \right\} - 1 \geq 0, d_{1,i}^b \leq g \frac{r^{G'}[G(k_0^i)]}{U_T^i} G(k_0^i), \left[\frac{d_{1,i}^b}{a} - d_{1,i}^b \right] \eta_1^i = 0, \]

\[\eta_1^i = \frac{v^i}{\zeta_{NT,1}} \frac{c_{NT,1}^i}{\zeta_{NT,1}} \geq 0, \frac{c_{NT,1}^i}{a} \leq d_{1,i}^b, \left[\frac{c_{NT,1}^i}{a} - d_{1,i}^b \right] \eta_1^i = 0, \]

\[\frac{a}{c_{NT,0}} = (1 + r_0) \frac{p_i^0}{p_i^1} \beta \left[\frac{a}{c_{NT,1}} + \nu \frac{a}{\zeta_{NT,1}} \right], \]

\[c_{NT,0}^i p_0^i \frac{1 - a}{a} - c_{T,0}^i + d_{1,i}^b - d_{1,i}^b - d_{1,i}^b = 0, \]

\[\frac{c_{NT,1}^i}{a} - c_{T,1}^i + d_{1,i}^b + d_{1,i}^b - d_{1,i}^b = 0, \]

A.2.9 Proof of Proposition 9

Step 1. The local planner outside of monetary union solves the following problem
\[
\max_{k_{NT,0}, \bar{c}_{NT,0}, \bar{d}_{NT,1}, \bar{\lambda}_{NT,1}, \bar{\lambda}_{NT,0}, \bar{p}_0, \bar{p}_1} \mathbb{E} \left\{ \log c_{NT,0}^i - \nu \left(\frac{c_{NT,0}^i + k_{NT,0}^i}{A_0^i} \right) + \beta \left\{ v^i \log \xi_{NT,1}^i + X_1(s_1)g \left[\frac{\mu}{\rho} \right] \right\} \right\} + (1 - a) \log p_0^i + \beta (1 - a)(1 + v^i) \log p_1^i \right\}
\]

s.t.: \[
\frac{1}{c_{NT,0}} = (1 + r_0) \beta \frac{p_0^i}{p_1^i} \left(\frac{1}{y_{NT,1}^i} + \frac{v^i}{\xi_{NT,1}^i} \right), \quad [\bar{\phi}^i] \tag{A.14}
\]
\[
\bar{d}_{NT,1}^i \leq \nu \frac{G' \left(k_{NT,0}^i \right)}{a/y_{NT,1}^i} G(k_{NT,0}^i) p_1^i, \quad [\beta \bar{\lambda}_{NT,0}^i \bar{\eta}_0] \tag{A.15}
\]
\[
\frac{\xi_{NT,1} p_1^i}{a} \leq d_{NT,1}^i, \quad [\bar{\lambda}_0] \tag{A.16}
\]
\[
\frac{1 - a}{a} c_{NT,0}^i p_{10}^i - c_{NT,0}^i - c_{T,1}^i = \frac{\bar{d}_{NT,1}^i + a \bar{d}_{T,1}^i - d_{T,1}^i}{1 + r_0}, \quad [\bar{\lambda}_1] \tag{A.17}
\]
\[
y_{NT,1} p_1^i \frac{1 - a}{a} - c_{NT,0}^i = d_{NT,1}^i - d_{T,1}^i - d_{T,1}^i. \quad [\beta \bar{\lambda}_1] \tag{A.18}
\]

where variables \(\bar{\phi}^i, \beta \bar{\lambda}_{NT,0}^i, \beta \bar{\lambda}_{NT,0}^i, \beta \bar{\lambda}_0, \beta \bar{\lambda}_1 \) that are indicated in square brackets are Lagrange multipliers.

The first order conditions are

\[
\partial c_{NT,0}^i : \bar{\lambda}_0^i = \frac{1 - a}{c_{T,0}^i} \left(1 + \frac{a}{1 - a} c_{NT,0}^i + \frac{\bar{\phi}^i}{(1 - a) c_{NT,0}^i} \right),
\]
\[
\partial k_{NT,0}^i : \nu \left(\frac{n_{00}^i}{A_0^i} \right) = \beta G' \left(k_{NT,0}^i \right) G(k_{NT,0}^i) \left[\mu + (1 - \mu) \theta + \theta \frac{\bar{\lambda}_0^i p_1^i}{a/y_{NT,0}^i} \left(1 - c_{NT,0}^i \right) \right],
\]
\[
\partial \xi_{NT,1}^i : v^i = \bar{\phi}^i (1 + r_0) \frac{p_{10}^i}{p_1^i} \cdot \frac{v^i}{\xi_{NT,1}^i} + \beta \bar{\lambda}_0^i \bar{\eta}_0 d_{T,1}^i,
\]
\[
\partial d_{NT,1}^i : \bar{\xi}_0^i = -1 + \frac{1}{\beta \bar{\lambda}_1^i} \cdot \frac{1}{1 + r_0},
\]
\[
\partial \bar{d}_{T,1}^i : \bar{\xi}_0^i = \bar{\eta}_0,
\]
\[
\partial p_1^i : \bar{\lambda}_1^i = \frac{1 - a}{c_{T,1}^i} \cdot \frac{1 + v^i}{1 + \bar{\xi}_0^i d_{T,1}^i - d_{T,1}^i},
\]
\[
\partial p_0^i : \bar{\lambda}_0^i = \frac{1 - a}{c_{T,0}^i} \left(1 + \frac{\bar{\phi}^i}{(1 - a) c_{NT,0}^i} \right),
\]

First order conditions with respect to \(c_{NT,0}^i \) and \(p_0^i \) imply that \(\tau_0^i = 0 \).

Step 2. I now express the Lagrange multiplier on the Euler equation. From the FOC wrt \(\xi_{NT,1}^i, p_1^i \) I obtain

\[
\bar{\lambda}_1^i = \frac{1 - a}{c_{T,1}^i} \left[1 + v^i d_{T,1}^i - a d_{T,1}^i \right] \left(\frac{\beta (1 - a) c_{NT,0}^i (1 + \tau_1^i) d_{T,1}^i}{\beta (1 - a) c_{NT,0}^i (1 + \tau_1^i) d_{T,1}^i} \right).
\]

67
The FOC wrt \bar{d}_{1}^{ij} can be solved to express

$$c_{0}^{i} \lambda_{0}^{i} = \frac{1 - a}{c_{T,1}^{i}} \left\{ \frac{\phi^{i}_{1}}{1 - a c_{NT,0}^{i}} + \tau_{A}^{i} \left(1 - \frac{\bar{d}_{1}^{ij} - a d_{1}^{ij}}{c_{T,1}^{i}} \right) \right\}.$$

The FOC wrt $\bar{c}_{NT,1}^{i}$ leads to

$$\frac{\tilde{\phi}_{i}^{1}}{\beta c_{NT,0}^{i}} = \frac{\tau_{A}^{i} d_{1}^{ij} - a d_{1}^{ij}}{c_{T,1}^{i}}.$$

Step 3. Comparing private and regulator optimality conditions with respect to investment in durable goods one obtains

$$\tau_{0}^{j} = \frac{\tau_{A}^{i} c_{i}^{j}}{1 + \tau_{A}^{i}} + \frac{\tau_{A}^{i} (1 - c_{i}^{j})}{1 + \tau_{A}^{i}} \left(1 - \frac{\bar{\lambda}_{i}^{j} c_{0}^{j}}{\bar{c}_{T,1}^{j}} \right).$$

The last term in the square brackets can be further simplified as follows

$$\frac{\tau_{A}^{i} (1 - c_{i}^{j})}{1 + \tau_{A}^{i}} \left(1 - \frac{\bar{\lambda}_{i}^{j} c_{0}^{j}}{\bar{c}_{T,1}^{j}} \right) = \frac{\tau_{A}^{i} (1 - c_{i}^{j})}{1 + \tau_{A}^{i}} \bar{\phi}^{j} (1 + r_{0}) \frac{p_{0}^{j}}{p_{1}^{j} \xi_{NT,1}^{j}} = \Omega^{j} \frac{\tau_{A}^{i}}{1 + \tau_{A}^{i}} \left(\frac{d_{1}^{ij} - a d_{1}^{ij}}{c_{T,1}^{i}} \right),$$

where

$$\Omega^{j} \equiv \frac{\tau_{A}^{i} (1 - c_{i}^{j})}{1 + \tau_{A}^{i}} \left(1 - \frac{\bar{\lambda}_{i}^{j} c_{0}^{j}}{\bar{c}_{T,1}^{j}} \right)^{-1}.$$

This optimal macroprudential tax can now be expressed as follows

$$\tau_{0}^{j} = \frac{\tau_{A}^{i} c_{i}^{j}}{1 + \tau_{A}^{i}} + Z_{3}^{j} \left(\frac{\bar{d}_{1}^{ij} - a d_{1}^{ij}}{c_{T,1}^{i}} \right),$$

where

$$Z_{3}^{j} \equiv \frac{\tau_{A}^{i}}{1 + \tau_{A}^{i}} \cdot \frac{\Omega^{j}}{c_{T,1}^{i}}.$$

(A.19)

A.2.10 Proof of Proposition 10

Step 1. The local planner outside of the monetary union solves the following problem
However, they still imply that the affect on global market of traded goods. This is represented by the terms with the Lagrange multiplier \(\lambda \). Observe that only the optimality conditions with respect to \(c \) are of proposition 6. The first order conditions with respect to variables in the countries outside of monetary union are identical to those in the proof of proposition 6. The first order conditions with respect to variables in the countries outside of monetary union are

\[
\max_{\{k^i_{NT,0}, c^i_{NT,0}, \pi^i_0, \pi^i_1\}_{i \in I}, \{p^i_0, p^i_1\}_{i \in [0,1]/I}} \int_{i \in I} \omega^i E^i_0 V^i \left(c^i_{NT,0}, \xi^i_{NT,1}, k^i_{NT,0}, \frac{p^i_{NT,0}}{P_{T,0}}, p^i_1 \right) \, di + \int_{i \in I} \omega^i E^i_0 V^i \left(c^i_{NT,0}, \xi^i_{NT,1}, k^i_{NT,0}, p^i_0, p^i_1 \right) \, di
\]

s.t.: (A.3)-(A.7) for \(i \in I \)

\[
(A.14)-(A.18) \text{ for } i \in [0,1]/I
\]

\[
\frac{1 - a}{a} \int_{i \in I} \frac{p^i_{NT,0}}{P_{T,0}} c^i_{NT,0} \, di + \frac{1 - a}{a} \int_{i \in I} p^i_0 c^i_{NT,0} \, di = \int \epsilon^i_{T,0} \, di, \quad [\psi_0]
\]

\[
\frac{1 - a}{a} \int_{i \in [0,1]} p^i_1 y^i_{NT,1} \, di = \int \epsilon^i_{T,1} \, di,
\]

As before I denote \(\omega^i \bar{\phi}^i, \omega^i \beta \bar{\lambda}^i \bar{\xi}^i, \omega^i \beta \bar{\lambda}^i \bar{\eta}^i, \omega^i \beta \bar{\lambda}^i \omega^i \beta \bar{\lambda}^i \) the Lagrange multipliers on the Euler equation, the collateral constraint, the SAIA constraints, the two country-wide budget constraints. \(\bar{\psi}_0 \) is the Lagrange multiplier on the clearing condition for traded goods in period 0. Note that the last constraint (market clearing conditions for traded goods in period 0) is redundant because it can be obtained from the traded goods clearing conditions in period 0 and the country-wide budget constraints. The first order conditions with respect to choice variables in the countries inside the monetary union are identical to those in the proof of proposition 6. The first order conditions with respect to variables in the countries outside of monetary union are

\[
\partial c^i_{NT,0} : \bar{\lambda}^i_0 = \frac{1 - a}{c^i_{T,0}} \left(1 + \frac{a}{1 - a} \bar{\phi}^i - \frac{\bar{\xi}^i}{(1 - a)c^i_{NT,0}} \right),
\]

\[
\partial k^i_{NT,0} : \frac{\nu^i (\eta^i_0)}{A^i_0} = \beta G' (k^i_{NT,0}) G' [G (k^i_{NT,0})] \left[\mu + (1 - \mu) \theta \bar{\lambda}^i \bar{\xi}^i \bar{\eta}^i_0 \epsilon^i_{NT,1} \left(1 - \epsilon^i_{T,1} \right) \right],
\]

\[
\partial \xi^i_{NT,1} : \nu^i = \bar{\phi}^i (1 + r_0) \frac{p^i_{NT,0}}{p^i_1} \frac{\nu^i}{\xi^i_{NT,1}} + \bar{\lambda}^i \bar{\xi}^i_0 d^i_1,
\]

\[
\partial d^i_1 : \bar{\xi}^i_0 = \bar{\eta}^i_0,
\]

\[
\partial p^i_1 : \bar{\lambda}^i_1 = \frac{1 - a}{c^i_{T,1}} \left(1 + \bar{\phi}^i - \frac{\bar{\xi}^i}{\bar{\xi}^i_0 d^i_1 - \bar{\phi}^i} \right),
\]

\[
\partial p^i_0 : \bar{\lambda}^i_0 = \frac{1 - a}{c^i_{T,0}} \left(1 + \bar{\phi}^i - \frac{\bar{\xi}^i}{(1 - a)c^i_{NT,0}} \right),
\]

Observe that only the optimality conditions with respect to \(c^i_{NT,0} \) and \(p^i_0 \). They now take into account the affect on global market of traded goods. This is represented by the terms with the Lagrange multiplier \(\bar{\psi}_0 \). However, they still imply that \(\tau^i_0 = 0 \). Finally, the first order condition with respect to \(r_0 \) is

\[
\partial r_0 : \int_{i \in [0,1]} \omega^i \left[\frac{\bar{\psi}^i}{c^i_{NT,0}} - \bar{\lambda}^i_0 \left(\epsilon^i_{T,0} - \epsilon^i_{T,0} \right) \right] \, di = 0.
\]
As in the proofs of Propositions 6 and 10, I can express \(\tilde{\phi}^i \) as follows

\[
\frac{\tilde{\phi}^i}{\beta c^{NT,0}_i} = \frac{\nu (d_1^i - ad_1^i)}{c_{r,0}} - (1 + r_A^i) \frac{ad_1^i}{c_{r,0}} \tau_0^i + \tilde{\phi}_0 \frac{d_1^i}{\beta (1 + r_0) \omega^i}, \quad i \in I,
\]

and

\[
\frac{\tilde{\phi}^i}{\beta c^{NT,0}_i} = \frac{\nu (d_1^i - ad_1^i)}{c_{r,0}} + \tilde{\phi}_0 \frac{d_1^i}{\beta (1 + r_0) \omega^i}, \quad i \in [0, 1] / I.
\]

To simplify notation, denote

\[
\Theta^i \equiv \frac{\tau_A^i}{1 + \tau_A^i} + \frac{d_1^i}{(1 + r_0)c_{r,0}} + \frac{d_1^i + \tau_A^i d_1^j}{c_{r,1} (1 + \tau_A^i)}.
\]

After substituting out \(\tilde{\phi}^i \) and \(\lambda_0^i \) in the first order condition for \(r_0 \), one obtains

\[
\tilde{\phi}_0 = (1 + r_0) \frac{\int_{i \in [0, 1]} \omega' \frac{1-a}{c_{r,0}} (c_{T,0} - c_{T,0}) \, di - \int_{i \in [0, 1]} \beta \omega' \frac{c_{r,0}}{c_{r,0} \Theta^i} \cdot \frac{\nu (d_1^i - ad_1^i)}{c_{r,1} \Theta^i} \, di}{\int_{i \in [0, 1]} \frac{d_1^i}{\Theta^i} \cdot \frac{c_{r,0}}{c_{r,0}} \, di}
\]

\[
+ (1 + r_0) \frac{\int_{i \in I} \omega' \frac{1-a}{c_{r,0}} (c_{T,0} - c_{T,0}) \, di + \int_{i \in I} \beta \omega' \frac{c_{r,0}}{c_{r,0} \Theta^i} \cdot (1 + \tau_A^i) \frac{ad_1^j}{c_{r,1} \Theta^i} \, di}{\int_{i \in [0, 1]} \frac{d_1^i}{\Theta^i} \cdot \frac{c_{r,0}}{c_{r,0}} \, di}
\]

where the first term integrates over the effects common across countries, and the second term integrates over terms shared only by the countries in the currency union. Also note that this expression becomes identical to expression (A.10) if \(I = [0, 1] \), i.e., all countries belong to the currency union.

After comparing private and planner optimality condition with respect to investment in durable goods one can write

\[
\tilde{c}_0^b = \frac{1}{1 - \tau_A^i} \left[\frac{\tau_A^i \epsilon_i^s}{1 + r_A^i} \left(Z_2^i \cdot (d_1^i - ad_1^i) \right) - \frac{a}{1-a} \tau_0^i Z_4^i + \tilde{\phi}_0 Z_5^i \right], \quad i \in I,
\]

\[
\tilde{c}_0^b = \frac{\tau_A^i \epsilon_i^s}{1 + r_A^i} + Z_3^i \cdot (d_1^i - ad_1^i) \tilde{\phi}_0 Z_5^i, \quad i \notin I,
\]

where as before I define the following variables

\[
Z_2^i = \frac{\mu + (1 - \mu) \theta^i + \theta \tau_A^i}{\theta^i (1 + \tau_A^i)} A, \quad Z_3^i = \frac{\mu + (1 - \mu) \theta^i + \theta \tau_A^i}{\theta^i (1 + \tau_A^i)} A, \quad Z_4^i = \frac{\tau_A^i \epsilon_i^s}{1 + r_A^i} \cdot Z_3^i, \quad Z_5^i = \frac{1}{1 + r_A^i} \cdot \frac{\epsilon_i^s}{\beta (1 + r_0) \omega^i}.
\]

and \(\Omega^i = \frac{\tau_A^i (1 - \epsilon^s_i)}{\Theta^i (1 + r_A^i)} \).

70