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Appendix

Section A.1: The optimal solution for In-house remanufacturing

The profit-maximization problem for the In-house strategy is:

max
0≤pr1<αpn1;0≤θ̃1≤1

π1 = (pn1 − wn)Dn1 + pr1Dr1 − [S

1
∫

θ=θ̃1

c1(1 − θ)f(θ)dθ] − β(1 − c1)

= (pn1 − wn)Dn1 + pr1Dr1 − c1S[1− F (θ̃1) − µ + H(θ̃1],

s.t.

Dr1 ≤ S[1− F (θ̃1)],

where Dn1 = 1 − pn1−pr1

1−α , Dr1 = αpn1−pr1

α(1−α) , and H(θ̃1) =
θ=θ̃1
∫

0

θf(θ)dθ.

The constraint on Dr1 must bind at optimality since regardless of the pn1 and pr1 the retailer loses profit

if it remanufactures items that it cannot sell. So the retailer will set θ̃1 to exactly match the remanufacturing

volume to the demand. Then:

Dr1 =
αpn1 − pr1

α(1− α)
= S[1− F (θ̃1],

which yields pr1 = αpn1 − α(1 − α)S[1− F (θ̃1)]. Substituting this into the expression for Dn1 provides:

Dn1 = 1 − pn1 − αS[1− F (θ̃1)].

Then the profit-maximization problem reduces to:

max
0≤pn1≤1;0≤θ̃1≤1

π1 = (pn1 − wn)[1− pn1 − αS[1− F (θ̃1)]] +

+[αpn1 − α(1 − α)S[1− F (θ̃1)]][S[1− F (θ̃1]]−

−c1S[1− F (θ̃1)− µ + H(θ̃1)]− β(1 − c1).

Because for any given θ̃1, π1(pn1|θ̃1) is strictly concave in pn1. The first-order condition of π1(pn1) with

respect to pn1 leads to p∗n1 = 1+wn

2 , which is independent of θ̃1. The retailer’s decision problem can then be

expressed as the following single-variable optimization:

max
0≤θ̃1≤1

π1 =
(1 − wn)

2

4
−

Sα(1 − wn)[1− F (θ̃1)]

2
+
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{
α(1 + wn)

2
− Sα(1 − α)[1 − F (θ̃1)]}{S[1− F (θ̃1)]} −

−c1S[1 − F (θ̃1) − µ + H(θ̃1)] − β(1 − c1)

=
(1 − wn)

2

4
+ Sαwn − SαwnF (θ̃1) −

−S2α(1 − α)[1− F (θ̃1)]
2
− c1S[1 − F (θ̃1) − µ + H(θ̃1)] − β(1 − c1).

Using x = αwn and y = 2Sα(1− α) as placeholders as noted earlier, differentiation yields:

dπ1

dθ̃1

= Sf(θ̃1){−x + y[1 − F (θ̃1)] + c1(1− θ̃1)]}; (17)

d2π1

dθ̃2
1

= Sf(θ̃1)[−yf(θ̃1)− c1] + Sf ′[−x + y[1 − F (θ̃1)] + c1(1− θ̃1)]. (18)

π1(θ̃1) is concave in θ̃1 for the following reason. When θ̃1 → θ̃∗1 , −x + y[1− F (θ̃1)] + c1(1− θ̃1) = 0.

Therefore, d2π1

dθ̃2

1

|θ̃1→θ̃∗
1

= Sf(θ̃1)[−yf(θ̃1) − c1] which is strictly negative.

From (17) , dπ1

dθ̃1

/(Sf(θ̃1)) + yF (θ̃1) + c1θ̃1 = c1 + y − x and (θ̃1, F (θ̃1)) are both nonnegative. When

c1 + y − x < 0, then dπ1

dθ̃1

has to be negative. So the lowest possible θ̃1 will be optimal, i.e., θ̃∗1 = 0. When

c1 +y−x > 0, the zero of the first-order condition will be a unique global maximum. θ̃∗1 will be the solution

to the following equation:

c1θ̃1 + yF (θ̃1) = y + c1 − x.

The remainder of Table 2 follows directly.
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Section A.2: Nash bargaining formulation for Outsourcing for general δ

The Nash bargaining equilibrium is the solution to a two-stage problem. The retailer’s profit-maximization

problem at the second stage is:

max
pn2≥wn;pr2≤αpn2

π2 = (pn2 − wn)Dn2 + (pr2 − wr2)Dr2, (19)

where Dn2 = 1 − pn2−pr2

1−α and Dr2 = αpn2−pr2

α(1−α) . (19) is strictly and jointly concave in pn2 and pr2 for any

wr2. The retailer’s best-response prices for a given wr2 (obtained by solving simultaneously for the pn2 and

pr2 that satisfy the first-order conditions of (19)) are:

pn2(wr2) =
1 + wn

2
, (20)

pr2(wr2) =
α + wr2

2
. (21)

Substituting (20) and (21) into Dn2 = 1 − pn2−pr2

1−α
and Dr2 = αpn2−pr2

α(1−α) indicates that for a given wr2

the demands for the new and remanufactured products are:

Dn2(wr2) =
1

2
(1−

wn − wr2

1 − α
), (22)

Dr2(wr2) =
αwn − wr2

2α(1− α)
. (23)

We assume αwn − wr2 ≥ 0 so that demand for the remanufactured product is non-negative. Then we

step back to the first stage, in which the third-party’s profit-maximization problem is:

max
wr2≤αwn;0≤θ̃2≤1

π2o = wr2Dr2 − c2S[1− F (θ̃2) − µ + H(θ̃2)], (24)

s.t.

Dr2 ≤ S

1
∫

θ=θ̃2

f(θ)dθ = S[1− F (θ̃2)]. (25)

By the same logic that governed the profit-maximizing actions for the In-house strategy, the constraint in

(25) must bind in the optimal solution, i.e., Dr2 = S[1− F (θ̃2)]. Combining with (23) yields:

wr2 = αwn − 2Sα(1− α)[1− F (θ̃2)]. (26)
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Substituting (20), (21), (22), (23), and (26) into (19) and (24) allows reformulation of the retailer and

third-party profits as:

π2 =
(1− wn)2

4
+

yS

2
[1 − F (θ̃2)]

2
,

π2o = xS[1− F (θ̃2)]− yS[1− F (θ̃2)]
2
− c2S[1− F (θ̃2) − µ + H(θ̃2)],

where x = αwn, y = 2αS(1 − α), and H(θ̃2) =
∫ θ̃2

0 θf(θ)dθ. These expressions are used to simplify the

Nash bargaining formulation to a single-variate optimization in θ̃2.
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Section A.3: The Nash bargaining equilibrium for Outsourcing when δ = 1

The profit-maximization problem for the third-party is:

max
0≤θ̃2≤1

π2o = xS[1− F2] − yS[1− F2]
2 − c2S[1− F2 − µ + H2],

where x = αwn, y = 2α(1− α)S, F2 =
∫ θ̃2

0 f(θ)dθ, and H2 =
∫ θ̃2

0 θf(θ)dθ.

The objective has these first and second derivatives:

dπ2o

dθ̃2

= Sf(θ̃2){−x + 2y[1− F (θ̃2)] + c2(1 − θ̃2)};

d2π2o

dθ̃2
2

= Sf(θ̃2)[−2yf(θ̃2) − c2] + Sf ′[−x + 2y[1− F (θ̃2)] + c2(1− θ̃2].

First we prove that π2o(θ̃2) is concave in θ̃2. When θ̃2 → θ̃∗2 , −x + 2y[1 − F (θ̃2o)] + c2(1 − θ̃2) = 0.

Therefore, d2π2o

dθ̃2

2

|θ̃2→θ̃∗
2

= Sf(θ̃1)[−2yf(θ̃1) − c1] which is strictly negative.

From the first-order condition , dπ2o

dθ̃2

/(Sf(θ̃2))+2yF (θ̃2)+c2θ̃2 = c2 +2y−x and (θ̃2, F (θ̃2)) are both

nonnegative. When c2 + 2y − x < 0, then dπ2o

dθ̃2

has to be negative. So the lowest possible θ̃2 will be optimal,

i.e., θ̃∗2 = 0. When c2 + 2y − x > 0, the zero of the first-order condition will be a unique global maximum.

θ̃∗2 will be the solution to the following equation:

c2θ̃2 + 2yF (θ̃2) = 2y + c2 − x.

The remainder of Table 4 follows directly.
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Section B: In-house Strategy - Comparison of Uniform versus Triangular Distributions for θ

This section explores the robustness of the results in Section 4 to the distributional assumption for θ

(quality of used items at time of collection). Section 4 treats θ as uniform on [0, 1]. Here we use the triangular

distribution, first with parameters [0, 1, 0] and then with [0, 1, 1]. A θ with T [0, 1, 0] distribution has µ = 1
3 ,

f(θ) = 2(1 − θ), F (θ) = θ(2 − θ), and H(θ) =
θ2(3−2θ)

3 . With a T [0, 1, 1] distribution for θ, µ = 2
3 ,

f(θ) = 2θ, F (θ) = θ2, and H(θ) = 2θ3

3 .

In the interest of brevity, we limit this illustration to the case in which Outsourcing involves a third-

party with full leadership power (δ = 1). Using the same parameter settings as in Section 4 (i.e., α = 0.8,

wn = 0.2, and S = 0.2), we depict the congruence and conflict regions for the comparison between In-

house and third-party-led Outsourcing. We use values of β that facilitate a direct comparison to the results in

Section 4.2.

Table 2 and Table 4 provide the respective optimal/equilibrium outcomes for general distributions of

θ. Figure 3 compares In-house and third-party-led Outsourcing with respect to retailer profitability and

environmental performance with a uniformly distributed θ. Figure 10 and Figure 11 do the same for θ ∼

Triangular[0, 1, 0] and θ ∼ Triangular[0, 1, 1], respectively.

Figure 10: Retailer profit and environmental impact when δ = 1 and θ ∼ Triangular[0, 1, 0]: Regions of

congruence and conflict

Figure 10 and Figure 11 have the following in common with Figure 3. As the fixed-cost coefficient

β increases, the regions where Outsourcing is more profitable also grow - in particular, the [O(P), O(E)]

region (Outsourcing congruence) grows, the [I(P),I(E)] region (In-house congruence) shrinks, the [I(P), O(E)]
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Figure 11: Retailer profit and environmental impact when δ = 1 and θ ∼ Triangular[0, 1, 1]: Regions of

congruence and conflict

conflict region shrinks, and a [O(P), I(E)] conflict region emerges.

Several differences are noteworthy. The O(P) area is larger in Figure 10 than in Figure 3. This is because,

relative to θ ∼ Uniform[0, 1], θ ∼ Triangular[0, 1, 0] shifts the distribution of used products towards

lower quality. On the other hand, the I(P) area is larger in Figure 11 than in Figure 3. This is because,

relative to θ ∼ Uniform[0, 1], θ ∼ Triangular[0, 1, 1] shifts the distribution of used products towards

higher quality, making In-house more profitable for the retailer.

To summarize, the Uniform distribution lies between the two extreme Triangular distributions we have

considered in this section. The trends across these distributions validate our characterization of the setting in

the main paper, and show some robustness to the distributional assumption for θ.
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Section C.1: Proofs of Propositions 1 and 2

Table 5 is Table 2 when the quality of used products collected is θ ∼ U [0, 1].

Range for c1

c1 ∈ (0, x− y] c1 ∈ (x − y, 1)

θ̃1 0 1 − x
y+c1

p∗n1
1+wn

2
1+wn

2

p∗r1 α[ 1+wn

2 − S(1− α)] α
2 + xc1

2(y+c1)

D∗
n1

1−wn

2 − Sα 1
2 [1− (2Sα+c1)wn

2y+c1
]

D∗
r1 S Sx

y+c1

π∗
1

(1−wn)2

4 + S
2 [2x − y − c1] − β(1 − c1)

(1−wn)2

4 + Sx2

2(y+c1) − β(1 − c1)

where x = αwn and y = 2α(1 − α)S.

Table 5: Optimal solution for In-house remanufacturing for θ ∼ U [0, 1]

Proposition 1. In-house remanufacturing and Retailer-led Outsourcing have the following ordering with

respect to retailer profit:

(a) If c1, c2 ∈ (0, x− y], then if c2 ≥ 2β
S

+ c1(1−
2β
S

), In-house gives the retailer greater profit; otherwise

Outsourcing does;

(b) If c1 ∈ (0, x−y] and c2 ∈ (x−y, 1), then if c2 ≥ Sx2

S(2x−y−c1)−2β(1−c1)
−y, In-house gives the retailer

greater profit; otherwise Outsourcing does;

(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x − y], then if c2 ≥ (2x − y) +
2β(1−c1)

S − x2

y+c1
, In-house gives the

retailer greater profit; otherwise Outsourcing does;

(d) If c1, c2 ∈ (x − y, 1), then if c2 ≥ 2Sx2c1+4yβ(1−c1)(y+c1)
2Sx2−4β(1−c1)(y+c1)

, In-house gives the retailer greater profit;

otherwise Outsourcing does;

where x = αwn and y = 2αS(1− α).

Proof of Proposition 1.

As noted in the main paper, the Retailer-led Outsourcing equilibrium can be obtained from Table 5 by

making the following adjustments: (a) c2 in place of c1 since remanufacturing occurs at the third-party’s

variable cost; (b) θ̃2 in place of θ̃1 to match the subscript to the strategy; and (c) β = 0 because the retailer

no longer maintains internal manufacturing capability.
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The expressions for the optimal/equilibrium retailer profit directly yield the following:

(a) If c1, c2 ∈ (0, x− y], then π∗
1 − π∗

2 = S
2 (c2 − c1) − β(1 − c1);

(b) If c1 ∈ (0, x− y] and c2 ∈ (x − y, 1), then π∗
1 − π∗

2 = S
2 (2x − y − c1) − β(1 − c1) −

Sx2

2(y+c2)
;

(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x− y], then π∗
1 − π∗

2 = Sx2

2(y+c1)
− β(1 − c1)−

S
2 (2x − y − c2);

(d) If c1, c2 ∈ (x − y, 1), then π∗
1 − π∗

2 = Sx2

2(y+c1)
− β(1− c1) −

Sx2

2(y+c2)
.

Straightforward algebra then produces the findings of the proposition. Q.E.D.

Proposition 2. In-house remanufacturing and Retailer-led Outsourcing have the following ordering with

respect to environmental impact:

(a) If c1, c2 ∈ (0, x − y], then both In-house and Outsourcing yield an equal (and “best” possible) envi-

ronmental outcome;

(b) If c1 ∈ (0, x− y] and c2 ∈ (x − y, 1), then In-house is better for the environment;

(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x− y], then Outsourcing is better for the environment; and

(d) If c1, c2 ∈ (x − y, 1), then if:

• c1 = c2, both In-house and Outsourcing yield an equal environmental outcome;

• c1 < c2, In-house is better for the environment; and

• c1 > c2, Outsourcing is better for the environment.

where x = αwn and y = 2αS(1− α).

Proof of Proposition 2.

θ̃i is our metric of environmental impact, with lower values indicating a greater amount of remanufactur-

ing. Comparing the optimal/equilibrium values of θ̃1 and θ̃2 from Table 5:

(a) If c1, c2 ∈ (0, x− y], then θ̃∗1 = θ̃∗2 = 0;

(b) If c1 ∈ (0, x− y] and c2 ∈ (x − y, 1), then θ̃∗1 = 0; and θ̃∗2 > 0.
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(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x− y], then θ̃∗1 > 0 and θ̃∗2 = 0;

(d) If c1 ∈ (x − y, 1) and c2 ∈ (x − y, 1), then θ̃∗1 − θ̃∗2 = x
y+c2

− x
y+c1

= x(c1−c2)
(y+c1)(y+c2) .

Straightforward algebra then produces the findings of the proposition. Q.E.D.

44



Section C.2: Proofs of Propositions 3 and 4

Table 6 is Table 4 when the quality of used products collected is θ ∼ U [0, 1].

Range for c2

c2 ∈ (0, x− 2y] c2 ∈ (x − 2y, 1)

θ̃∗2 0 1 − x
2y+c2

w∗
r2 x − y x

2 + xc2
2[2y+c2]

p∗n2
1+wn

2
1+wn

2

p∗r2
α+x−y

2
α
4 [2 + wn + wnc2

2y+c2
]

D∗
r2 S Sx

2y+c2

D∗
n2

1−wn

2 − Sα 1−wn

2 − Sαx
2y+c2

π∗
2

(1−wn)2

4 + Sy
2

(1−wn)2

4 + x2yS
2[2y+c2]2

π∗
2o

S
2 [2x − 2y − c2]

Sx2

2[2y+c2]

where x = αwn and y = 2α(1 − α)S.

Table 6: Equilibrium for Third-party-led Outsourcing of remanufacturing when θ ∼ U [0, 1]

Proposition 3. In-house remanufacturing and Third-party-led Outsourcing have the following ordering with

respect to retailer profit:

(a) When c1 ∈ (0, x−y] and c2 ∈ (0, x−2y], then if c1 ≤ 2S(x−y)−2β
S−2β

, In-house gives the retailer greater

profit; otherwise Outsourcing does;

(b) If c1 ∈ (0, x− y] and c2 ∈ (x − 2y, 1), then if c1 ≤ S(2x−y)−2β
S−2β

− x2yS
(S−2β)(2y+c2)2

, In-house gives the

retailer greater profit; otherwise Outsourcing does;

(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x − 2y], then if 2β(1 − c1)(y + c1) + yS(y + c1) ≤ x2S, In-house

gives the retailer greater profit; otherwise Outsourcing does; and

(d) If c1 ∈ (x− y, 1) and c2 ∈ (x − 2y, 1), then if
x2S[(2y+c2)2−y(y+c1)]

2(y+c1)(2y+c2)2
− β(1− c1) ≥ 0, In-house gives

the retailer greater profit; otherwise Outsourcing does.

where x = αwn and y = 2αS(1− α).

Proof of Proposition 3.

Comparing the retailer profits from Table 5 and Table 6:

(a) When c1 ∈ (0, x− y] and c2 ∈ (0, x− 2y], then π∗
1 − π∗

2 = S
2 (2x − y − c1) − β(1 − c1)−

Sy
2 ;
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(b) If c1 ∈ (0, x− y] and c2 ∈ (x − 2y, 1), then π∗
1 − π∗

2 = S
2 (2x− y − c1) − β(1 − c1) −

Sx2y

2(2y+c2)
2 ;

(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x− 2y], then π∗
1 − π∗

2 = Sx2

2(y+c1) − β(1 − c1) −
Sy
2 ;

(d) If c1 ∈ (x − y, 1) and c2 ∈ (x − 2y, 1), then π∗
1 − π∗

2 = Sx2

2(y+c1) − β(1 − c1) −
Sx2y

2(2y+c2)
2 .

Straightforward algebra then produces the findings of the proposition. Q.E.D.

Proposition 4. In-house remanufacturing and Third-party-led Outsourcing have the following ordering with

respect to environmental impact:

(a) If c1 ∈ (0, x− y] and c2 ∈ (0, x− 2y], then both In-house and Outsourcing yield an equal (and “best”

possible) environmental outcome;

(b) If c1 ∈ (0, x− y] and c2 ∈ (x − 2y, 1), then In-house is better for the environment;

(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x− 2y], then Outsourcing is better for the environment;

(d) if c1 ∈ (x− y, 1) and c2 ∈ (x − 2y, 1), then if:

• c1 − c1 < y, In-house is better for the environment;

• c1 − c2 = y, both In-house and Outsourcing yield an equal environmental outcome; and

• c1 − c2 > y, Outsourcing is better for the environment.

where x = αwn and y = 2αS(1− α).

Proof of Proposition 4.

θ̃i is our metric of environmental impact. Lower values indicate a greater amount of remanufacturing,

and hence more environment-friendliness. Comparing θ̃1 and θ̃2 from Tables 5 and 6:

(a) If c1 ∈ (0, x− y] and c2 ∈ (0, x− 2y], then θ̃∗1 = θ̃∗2 = 0;

(b) If c1 ∈ (0, x− y] and c2 ∈ (x − 2y, 1), then θ̃∗1 = 0, and θ̃∗2 > 0;

(c) If c1 ∈ (x − y, 1) and c2 ∈ (0, x− 2y], then θ̃∗1 > 0 and θ̃∗2 = 0;

(d) If c1 ∈ (x − y, 1) and c2 ∈ (x − 2y, 1], then θ̃∗1 − θ̃∗2 = x
2y+c2

− x
y+c1

= x
(y+c1)(2y+c2)(c1 − c2 − y).

Straightforward algebra then produces the findings of the proposition. Q.E.D.
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Section D.1: The optimal solution for In-house remanufacturing when qr < qn = 1

Here we assume qr < qn = 1. The collected used products’ quality is a random variable θ with finite

support in the range [0, qr]. The cumulative distribution function of θ is F (θ), with F (0) = 0 and F (qr) = 1.

Analysis of the consumer surplus results in the following demand functions: Dn = 1 − pn−pr

1−αqr
, Dr =

αqrpn−pr

αqr(1−αqr)
.

The profit-maximization problem for the In-house strategy is:

max
0≤pr1<αpn1;0≤θ̃1≤1

π1 = (pn1 − wn)Dn1 + pr1Dr1 − [S

qr
∫

θ=θ̃1

c1(qr − θ)f(θ)dθ] − β(1− c1)

= (pn1 − wn)Dn1 + pr1Dr1 − c1S[qr − qrF (θ̃1) − µ + H(θ̃1] − β(1− c1),

s.t.

Dr1 ≤ S[1− F (θ̃1)].

As with the original model, the constraint on Dr1 must bind at optimality since regardless of the pn1 and

pr1 the retailer loses profit if it remanufactures items that it cannot sell. So the retailer will set θ̃1 to exactly

match the remanufacturing volume to the demand. Then:

Dr1 =
αpn1 − pr1

αqr(1− αqr)
= S[1− F (θ̃1],

which yields pr1 = αpn1−αqr(1−αqr)S[1−F (θ̃1)]. Substituting this into the expression for Dn1 provides:

Dn1 = 1 − pn1 − αqrS[1− F (θ̃1)].

For any fixed θ̃1, π1 is strictly concave in pn1. The first-order condition leads to p∗n1 = 1+wn

2 , which

is independent of θ̃1. The retailer’s decision problem can then be expressed as the following single-variable

optimization:

max
0≤θ̃1≤1

π1 =
(1− wn)2

4
+

1

2
S(1− F (θ̃1))(2αqrwn − 2Sαqr(1− αqr)(1− F (θ̃1)))

−c1S[qr − qrF (θ̃1) − µ + H(θ̃1)] − β(1 − c1).
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Using x = αqrwn and y = 2Sαqr(1 − αqr) as placeholders, differentiation yields:

dπ1

dθ̃1

= Sf(θ̃1){−x + y[1 − F (θ̃1)] + c1(qr − θ̃1)]};

d2π1

dθ̃2
1

= Sf(θ̃1)[−yf(θ̃1)− c1] + Sf ′[−x + y[1 − F (θ̃1)] + c1(1− θ̃1)].

The reason π1(θ̃1) is concave in θ̃1 is as follows. When θ̃1 → θ̃∗1 , −x + y[1−F (θ̃1)] + c1(qr − θ̃1) = 0.

Therefore, d2π1

dθ̃2

1

|
θ̃1→θ̃∗

1

= Sf(θ̃1)[−yf(θ̃1) − c1qr] which is strictly negative.

When c1qr + y − x < 0, dπ1

dθ̃1

has to be negative. This is because from the first-order condition,

dπ1

dθ̃1

Sf(θ̃1)
+

yF (θ̃1) + c1θ̃1 = c1qr + y − x < 0; and θ̃1 and F (θ̃1)) are both non-negative. So dπ1

dθ̃1

< 0. Then the lowest

possible θ̃1 will be optimal, i.e., θ̃∗1 = 0. When c1qr + y − x ≥ 0, the zero of the first-order condition will be

a unique global maximum. θ̃∗1 will be the solution to the following equation:

c1θ̃1 + yF (θ̃1) = c1qr + y − x.

The optimal solutions when qr < 1 and θ follows general distribution are shown in Table 7.

Range for c1

c1 ∈ (0, x−y

qr

] c1 ∈ (x−y

qr

, 1)

θ̃∗1 0 Solution of

c1θ̃1 + yF (θ̃1) = c1qr − x + y

p∗n1
1+wn

2
1+wn

2

p∗r1
αqr+x−y

2
αqr+x−y[1−F (θ̃∗

1
)]

2

D∗
n1

1−wn

2
− αqrS

1−wn

2
− αqrS[1 − F (θ̃∗1)]

D∗
r1 S S[1 − F (θ̃∗1)]

π∗
1

(1−wn)2

4 + S
2 (2x− y) − c1S(qr − µ) − β(1 − c1)

(1−wn)2

4 +
S[1−F (θ̃∗

1
)]

2 [2x − y[1 − F (θ̃∗1)]]

−c1S[qr − qrF (θ̃∗1) − µ + H(θ̃∗1)] − β(1 − c1)

where x = αqrwn, y = 2αqr(1 − αqr)S, H(θ̃∗

1) =
R θ̃∗

1

0
θf(θ)dθ, and µ is the mean of θ.

Table 7: Optimal solution for the In-house remanufacturing strategy when qr < 1

Table 8 is Table 7 when the quality of used products collected is θ ∼ U [0, qr].
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Range for c1

c1 ∈ (0, x−y
qr

] c1 ∈ (x−y
qr

, 1)

θ̃1 0 qr −
αqrwn

c1+2Sα(1−αqr)

p∗n1
1+wn

2
1+wn

2

p∗r1 αqr[
1+wn

2 − S(1− αqr)]
αqr

2 (1 + c1αqrwn

c1+2Sα(1−αqr)

D∗
n1

1−wn

2 − Sαqr
1−wn

2 − Sα2qrwn

c1+2Sα(1−αqr)

D∗
r1 S Sαwn

c1+2Sα(1−αqr)

π∗
1

(1−wn)2

4 + S
2 [2αqrwn − 2Sαqr(1 − αqr)]

(1−wn)2

4 + Sα2qrw2
n

2(c1+2Sα(1−α))

−c1S
qr

2 − β(1 − c1) −β(1 − c1)

Table 8: Optimal solution for In-house remanufacturing when qr < 1 and θ ∼ U [0, qr]

Section D.2: The equilibrium for Outsourcing of remanufacturing when qr < qn = 1

The equilibrium for Retailer-Led Outsourcing

The equilibrium is the same as the optimal solution for the In-house strategy stated in Appendix D.1,

except that (a) c2 replaces c1; (b) θ̃2 replaces θ̃1; and (c) β = 0.

The equilibrium for Third-party-Led Outsourcing

The equilibrium when qr < 1 and θ has a general distribution is shown in Table 9.

Range for c2

c2 ∈ (0, x−2y
qr

] c2 ∈ (x−2y
qr

, 1)

θ̃∗2 0 Solution of

c2θ̃2 + 2yF (θ̃2) = c2qr − x + 2y

w∗
r x − y x − y[1− F (θ̃∗2)]

p∗n2
1+wn

2
1+wn

2

p∗r2
αqr+x−y

2
αqr+x−y[1−F (θ̃∗

2
)]

2

D∗
n2

1−wn

2 − αqrS
1−wn

2 − αqrS[1− F (θ̃∗2)]

D∗
r2 S S[1− F (θ̃∗2)]

π∗
2

(1−wn)2

4 + yS
2

(1−wn)2

4 + yS
2 [1 − F (θ̃∗2)]

2

π∗
2o S(x− y) + c2S(qr − µ) S[1− F (θ̃∗2)]{x− y[1− F (θ̃∗2)]} − c2S[qr − F (θ̃∗2)qr − µ + H(θ̃∗2)]

where x = αqrwn, y = 2αqr(1 − αqr)S, H(θ̃∗

2) =
R θ̃∗

2

0
θf(θ)dθ, and µ is the mean of θ.

Table 9: Nash bargaining equilibrium for the Outsourcing remanufacturing strategy when δ = 1 and qr < 1

Table 10 is Table 9 when the quality of used products collected is θ ∼ U [0, qr].
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Range for c2

c2 ∈ (0, x−2y
qr

] c2 ∈ (x−2y
qr

, 1)

θ̃∗2 0 qr −
αqrwn

c2+4Sα(1−αqr)

w∗
r2 αqrwn − 2Sαqr(1 − αqr) αqrwn −

2Sα2qr(1−αqr)wn

c2+4Sα(1−αqr)

p∗n2
1+wn

2
1+wn

2

p∗r2
αqr+αqrwn−2Sαqr(1−αqr)

2
1
2 (αqr + αqrwn − Sα2qr(1−αqr)wn

c2+4Sα(1−αqr)
)

D∗
r2 S Sαwn

c2+4Sα(1−αqr)

D∗
n2

1−wn

2 − Sαqr
1−wn

2 − Sα2qrwn

c2+4Sα(1−αqr)

π∗
2

(1−wn)2

4 + S2αqr(1− αqr)
(1−wn)2

4 +
S2α3qr(1−αqr)w2

n

(c2+4Sα(1−αqr))2

π∗
2o Sαqr(wn − 2S(1− αqr)) −

Sc2qr

2
Sc2(1−q2

r)
2qr

+
Sα2qrw2

n

2(c2+4Sα(1−αqr))

Table 10: Equilibrium for Outsourcing of remanufacturing when δ = 1, qr < 1, and θ ∼ U [0, qr]

Proposition 5. The impact of qr is as follows:

(a) Under In-house and Outsourcing strategies (i = 1 and 2, respectively), increases in relative quality

for remanufactured products (qr) leads to increases in: the retail price (pri) and demand (Dri) for the

remanufactured product, and retailer profit (πi).

(b) Under Third-party-led Outsourcing, if the third-party’s remanufacturing cost is sufficiently low (i.e.,

c2 ∈ (0, (x−2y)/qr]), the third-party’s profit increases with qr; otherwise (i.e., c2 ∈ ((x−2y)/qr, 1)),

the third-party’s profit will first increase and then decrease with qr.

Proof of Proposition 5.

We are unable to derive closed-form solutions when θ has a general distribution. So for the subsequent

analysis we consider a uniformly distributed θ. Table 11 shows how qr impacts the optimum of the In-house

strategy (based on the solutions in Table 8). Table 11 shows how qr impacts the equilibrium for Retailer-led

Outsourcing. Table 12 shows how qr impacts the equilibrium of Third-party-led Outsourcing (based on the

equilibrium shown in Table 10). Straightforward differentiation produces these comparative statics. Q.E.D.
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Key Decisions

Parameter θ̃∗1 p∗n1 p∗r1 D∗
n1 D∗

r1 π∗
1

qr ↑ NC/↑ NC ↑ ↓ NC/↑ ↑

The directional relationships are abbreviated as follows, and apply over all c1 ∈ (0, 1) unless otherwise noted: (a) NC indicates no

change; (b) NC/↑ indicates NC when c1 ∈ (0, (x − y)/qr] and ↑ when c1 ∈ ((x − y)/qr , 1).

Table 11: Comparative statics for optimal solution for In-house remanufacturing

Key Decisions

Parameter θ̃∗2 w∗
r2 p∗n2 p∗r2 D∗

n2 D∗
r2 π∗

2 π∗
2o

qr ↑ NC/↑ ↑ NC ↑ ↓ NC/↑ ↑ ↑/ (↑ then ↓)

The directional relationships are abbreviated as follows, and apply over all c2 ∈ (0, 1) unless otherwise noted: (a) NC indicates no

change; (b) NC/↑ indicates NC when c2 ∈ (0, (x − 2y)/qr ] and ↑ when c2 ∈ ((x − 2y)/qr , 1); (c) ↑/ (↑or ↓) indicates ↑ when

c2 ∈ (0, (x − 2y)/qr ] and (↑ then ↓) when c2 varies within the rage of ((x − 2y)/qr , 1).

Table 12: Comparative statics for equilibrium for Outsourcing remanufacturing when δ = 1
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Section D.3: The optimal solution for In-house remanufacturing, adding salvage value g

The profit-maximization problem for the In-house strategy is:

max
0≤pr1<αpn1;0≤θ̃1≤1

π1 = (pn1 − wn)Dn1 + pr1Dr1 − [S

1
∫

θ=θ̃1

c1(1 − θ)f(θ)dθ] + S

θ=θ̃1
∫

0

gf(θ)dθ − β(1− c1)

= (pn1 − wn)Dn1 + pr1Dr1 − c1S[1− F (θ̃1) − µ + H(θ̃1] + gSF (θ̃1) − β(1 − c1),

s.t.

Dr1 ≤ S[1− F (θ̃1)],

where Dn1 = 1 − pn1−pr1

1−α , Dr1 = αpn1−pr1

α(1−α) , and H(θ̃1) =
θ=θ̃1
∫

0

θf(θ)dθ.

As in previous sections, the constraint on Dr1 will bind at optimality, i.e., the retailer will set θ̃1 to exactly

match the remanufacturing volume to the demand. Then:

Dr1 =
αpn1 − pr1

α(1− α)
= S[1− F (θ̃1],

which yields pr1 = αpn1 − α(1 − α)S[1− F (θ̃1)]. Substituting this into the expression for Dn1 provides:

Dn1 = 1 − pn1 − αS[1− F (θ̃1)].

Then the profit-maximization problem reduces to:

max
0≤pn1≤1;0≤θ̃1≤1

π1 = (pn1 − wn)[1− pn1 − αS[1− F (θ̃1)]] +

+[αpn1 − α(1 − α)S[1− F (θ̃1)]][S[1− F (θ̃1]]

−c1S[1− F (θ̃1) − µ + H(θ̃1)] + gSF (θ̃1) − β(1− c1).

For any θ̃1, π1(pn1|θ̃1) is strictly concave in pn1. The first-order condition leads to p∗n1 = 1+wn

2 , which

is independent of θ̃1. The retailer’s decision problem can then be expressed as the following single-variable

optimization:

max
0≤θ̃1≤1

π1 =
(1 − wn)2

4
+ Sαwn − SαwnF (θ̃1)

−S2α(1− α)[1− F (θ̃1)]
2
− c1S[1− F (θ̃1)− µ + H(θ̃1)] + gSF (θ̃1) − β(1 − c1).
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Using x = αwn and y = 2Sα(1− α) as placeholders, the profit becomes:

max
0≤θ̃1≤1

π1 =
(1 − wn)2

4
+ Sx(1− F (θ̃1)−

Sy

2
[1 − F (θ̃1)]

2
− c1S(1− µ)

+c1SF (θ̃1)− c1SH(θ̃1) − gSF (θ̃1) − β(1 − c1).

The differentiation yields:

dπ1

dθ̃1

= Sf(θ̃1){−x + y[1− F (θ̃1)] + c1(1 − θ̃1)] + g};

d2π1

dθ̃2
1

= Sf(θ̃1)[−yf(θ̃1) − c1] + Sf ′[−x + y[1− F (θ̃1)] + c1(1 − θ̃1) + g].

π1(θ̃1) is concave in θ̃1 for the following reason. When θ̃1 → θ̃∗1, −x+y[1−F (θ̃1)]+c1(1− θ̃1)+g = 0.

Therefore, d2π1

dθ̃2

1

|θ̃1→θ̃∗
1

= Sf(θ̃1)[−yf(θ̃1) − c1] which is strictly negative.

When c1 + y + g − x < 0, dπ1

dθ̃1

has to be negative. This is because dπ1

dθ̃1

/(Sf(θ̃1)) + yF (θ̃1) + c1θ̃1 =

c1+y+g−x and θ̃1 and F (θ̃1)) are both nonnegative. So the lowest possible θ̃1 will be optimal, i.e., θ̃∗1 = 0.

When c1 + y + g − x > 0, the zero of the first-order condition will be a unique global maximum. θ̃∗1 will be

the solution to the following equation:

c1θ̃1 + yF (θ̃1) = y + c1 + g − x.

We examine this condition for different ranges of g and c1.

• if g > 0,

if g < x − y and c1 < x − y − g, then θ̃∗1 = 0;

if g < x − y and c1 > x − y − g, then θ̃∗1 ⇐ c1θ̃1 + yF (θ̃1) = y + c1 + g − x;

if g > x − y then c1 + g + y − x > 0, and then θ̃∗1 ⇐ c1θ̃1 + yF (θ̃1) = y + c1 + g − x;

• if g < 0 (x − y − g must be positive),

if c1 < x − y − g, then θ̃∗1 = 0;

if c1 > x − y − g, then θ̃∗1 ⇐ c1θ̃1 + yF (θ̃1) = y + c1 + g − x.

To summarize the above cases, regardless of whether g ≥ 0 or g < 0, the optimal solution is such that:

53



(a) as long as c1 > max{x − y − g, 0}, then θ̃∗1 ⇐ c1θ̃1 + yF (θ̃1) = y + c1 + g − x; (b) when g < x − y

and c1 < x − y − g, then θ̃∗1 = 0. Table 13 presents these findings.

Range for c1

c1 ∈ (0, x− y − g] c1 ∈ (x − y − g, 1)

θ̃∗1 0 Solution of

c1θ̃1 + yF (θ̃1) = c1 + g − x + y

p∗n1
1+wn

2
1+wn

2

p∗r1
α+x−y

2
α+x−y[1−F (θ̃∗

1
)]

2

D∗
n1

1−wn

2
− αS 1−wn

2
− αS[1 − F (θ̃∗1)]

D∗
r1 S S[1 − F (θ̃∗1)]

π∗
1

(1−wn)2

4
+ S

2
(2x − y) − c1S(1 − µ) − β(1 − c1)

(1−wn)2

4
+

S[1−F (θ̃∗
1
)]

2
[2x − y[1 − F (θ̃∗1)]]−

−c1S[1 − F (θ̃∗1) − µ + H(θ̃∗1)] + gSF (θ̃∗1 ) − β(1 − c1)

where x = αwn, y = 2α(1 − α)S, H(θ̃∗

1) =
R θ̃∗

1

0
θf(θ)dθ, and µ is the mean of θ. We assume g < x − y.

Table 13: Optimal solution for In-house remanufacturing with non-zero salvage value

Table 14 is Table 13 when the quality of used products collected is θ ∼ U [0, 1].

Range for c1

c1 ∈ (0, x− y − g] c1 ∈ (x − y − g, 1)

θ̃1 0 1 − x−g
y+c1

p∗n1
1+wn

2
1+wn

2

p∗r1 α[ 1+wn

2 − S(1− α)] α
2 + xc1+yg

2(y+c1)

D∗
n1

1−wn

2 − Sα 1−wn

2 −
Sα(x−g)

y+c1

D∗
r1 S

S(x−g)
y+c1

π∗
1

(1−wn)2

4 + S
2 [2x − y − c1] − β(1 − c1)

(1−wn)2

4 + S
2(y+c1) [(x− g)2 + 2g(y + c1)] − β(1 − c1)

where x = αwn and y = 2α(1 − α)S. We assume g < x − y.

Table 14: Optimal solution for In-house remanufacturing with non-zero salvage value when θ ∼ U [0, 1]
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Section D.4: The equilibrium for Outsourcing of remanufacturing, with non-zero salvage value g

The equilibrium for Retailer-led Outsourcing (δ = 0)

The equilibrium is the same as in In-house optimum stated in Appendix D.3, except that (a) c2 replaces

c1; (b) θ̃2 replaces θ̃1; and (c) β = 0.

The equilibrium for Third-party-led Outsourcing (δ = 1)

Range for c2

c2 ∈ (0, x− 2y − g] c2 ∈ (x − 2y − g, 1)

θ̃∗2 0 Solution of

c2θ̃2 + 2yF (θ̃2) = c2 + g − x + 2y

w∗
r x − y x − y[1− F (θ̃∗2)]

p∗n2
1+wn

2
1+wn

2

p∗r2
α+x−y

2
α+x−y[1−F (θ̃∗

2
)]

2

D∗
n2

1−wn

2 − αS 1−wn

2 − αS[1− F (θ̃∗2)]

D∗
r2 S S[1− F (θ̃∗2)]

π∗
2

(1−wn)2

4 + yS
2

(1−wn)2

4 + yS
2 [1− F (θ̃∗2)]

2

π∗
2o S(x− y) + c2S(1− µ) S[1− F (θ̃∗2)]{x− y[1 − F (θ̃∗2)]} − c2S[1− F (θ̃∗2) − µ + H(θ̃∗2)] + SfF (θ̃∗2)

where x = αwn, y = 2α(1 − α)S, H(θ̃∗

2) =
R θ̃∗

2

0
θf(θ)dθ, and µ is the mean of θ. We assume g < x − y.

Table 15: Nash bargaining equilibrium for the Outsourcing remanufacturing strategy when δ = 1, with

non-zero salvage value

Table 16 is Table 15 when the quality of used products collected is θ ∼ U [0, 1].

Range for c2

c2 ∈ (0, x− 2y − g] c2 ∈ (x − 2y − g, 1)

θ̃∗2 0 1 − x−g
2y+c2

w∗
r2 x − y x − y(x−g)

2y+c2

p∗n2
1+wn

2
1+wn

2

p∗r2
α+x−y

2
1
2(α + x −

y(x−g)
2y+c2

)

D∗
r2 S

S(x−g)
2y+c2

D∗
n2

1−wn

2 − Sα 1−wn

2 −
Sα(x−g)
2y+c2

π∗
2

(1−wn)2

4 + Sy
2

(1−wn)2

4 +
(x−g)2yS

2(2y+c2)2

π∗
2o

S
2 [2x − 2y − c2]

S
2(2y+c2) [(x− g)2 + 2g(2y + c2)]

where x = αwn and y = 2α(1 − α)S. We assume g < x − y.

Table 16: Equilibrium for Outsourcing of remanufacturing when θ ∼ U [0, 1], with non-zero salvage value
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Proposition 6. The impact of per-unit salvage value g is as follows:

(a) When c1 ∈ (0, x − y − g] for In-house; c2 ∈ (0, x − y − g] for Retailer-led Outsourcing; or c2 ∈

(0, x − 2y − g] for Third-party-led Outsourcing, there is no impact of g on the optimal/equilibrium

solutions.

(b) When c1 ∈ (x− y − g, 1) for In-house; c2 ∈ (x− y − g, 1) for Retailer-led Outsourcing; or c2 ∈ (x−

2y − g, 1) for Third-party-led Outsourcing, a higher g leads to higher retail price (pri), higher demand

for new product (Dni), and lower demand for remanufactured product (Dri). Under In-house and

Retailer-led Outsourcing, the retailer’s profit (πi) increases with g. Under Third-party-led Outsourcing,

the retailer’s profit decreases with g while the third-party’s profit (π2o) increases with g.

Proof of Proposition 6.

These comparative statics follow from straightforward differentiation. Table 17 shows the properties of

In-house and Retailer-led Outsourcing, while Table 18 addresses Third-party-led Outsourcing. Q.E.D.

Key Decisions

Parameter θ̃∗1 p∗n1 p∗r1 D∗
n1 D∗

r1 π∗
1

g ↑ NC/↑ NC NC / ↑ NC/↑ NC/↓ ↑

The directional relationships are abbreviated as follows, and apply over all c1 ∈ (0, 1) unless otherwise noted: (a) NC indicates no

change; (b) NC/↑ (or ↓) indicates NC when c1 ∈ (0, x − y − g] and ↑ (or ↓) when c1 ∈ (x − y − g, 1).

Table 17: Comparative statics for optimal solution for In-house remanufacturing

Key Decisions

Parameter θ̃∗2 w∗
r2 p∗n2 p∗r2 D∗

n2 D∗
r2 π∗

2 π∗
2o

g ↑ NC/↑ NC/↑ NC NC/↑ NC/↑ NC/↓ NC/↓ NC/↑

The directional relationships are abbreviated as follows, and apply over all c2 ∈ (0, 1) unless otherwise noted: (a) NC indicates no

change; (b) NC/↑ (or ↓) indicates NC when c2 ∈ (0, x − 2y − g] and ↑ (or ↓) when c2 ∈ (x − 2y − g, 1).

Table 18: Comparative statics for equilibrium for Outsourcing of remanufacturing when δ = 1

56




