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Preface

This work brings together some of the most up to date research in
the application of operations research and mathematical modeling tech-
niques to problems arising in supply chain management and e-Commerce.
While research in the broad area of supply chain management encom-
passes a wide range of topics and methodologies, we believe this book
provides a good snapshot of current quantitative modeling approaches,
issues, and trends within the field. Each chapter is a self-contained
study of a timely and relevant research problem in supply chain manage-
ment. The individual works place a heavy emphasis on the application
of modeling techniques to real world management problems. In many
instances, the actual results from applying these techniques in practice
are highlighted. In addition, each chapter provides important manage-
rial insights that apply to general supply chain management practice.

The book is divided into three parts. The first part contains chap-
ters that address the new and rapidly growing role of the internet and
e-Commerce in supply chain management. Topics include e-Business
applications and potentials; customer service issues in the presence of
multiple sales channels, varying from purely Internet-based to traditional
physical outlets; and risk management issues in e-Business in B2B mar-
kets.

The second part of the book deals with problems of coordinating the
activities of different players within the supply chain. Topics include the
impact and management of uncertainty when selling perishable season-
able products through mechanisms such as: advance booking discounts
in the case of long replenishment lead-times; partial quick response poli-
cies when a second ordering opportunity is available; and a stochastic
programming based decision support system. Other topics included are
the effect of revenue sharing on the purchasing behavior of a vendor;
supply chain contracting and coordination with shelf-space-dependent
demand; a fee-setting model to decide a manufacturer’s compensation
scheme for the services provided by its independent distributors; tacti-
cal distribution planning with resource acquisition and deployment de-
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viii SUPPLY CHAIN MANAGEMENT

cisions; and mechanisms for controlling retail store-order variability to
improve supply chain performance.

Finally, the third part focuses on models and applications for supply
chain planning and design. Topics explored include: the design of global
facility networks; a planning model for multiple products manufactured
across multiple manufacturing facilities sharing similar production ca-
pabilities; models for evaluating logistics costs in a global supply chain
in the aviation industry; supply chain models in the forest industry; and
a study on the benefits of information sharing in the supply chain.

This book can serve as a valuable reference for researchers in supply
chain management as well as a reference text book for a graduate level
reading course.

All chapters in this book were thoroughly refereed by two anony-
mous referees. We would like to take this opportunity to thank the
authors of the chapters, the referees, as well as several Ph.D. students
at the Department of Industrial and Systems Engineering at the Uni-
versity of Florida, for their efforts. We would like to give special thanks
to: Zuo-Jun “Max” Shen, Burak Eksioglu, Sandra Duni Eksioglu, Olga
Perdikaki, Kevin Taaffe, M. Bayram Yildirim, and Joongkyu Choi.

JOSEPH GEUNES, PANOS PARDALOS, AND EDWIN ROMEIJN
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Abstract A number of retail firms use a “private-label” strategy in which mer-
chandise is sold under a brand name exclusive to the retail firm, but
manufactured by one or more independent vendors. While offering a
number of benefits, this approach also poses a different set of supply
chain challenges than manufacturer-brand-based retailing, in that the
retail firm must take a more active role in organizing and coordinating
the planning and materials management activities in a supply base that
is often dispersed and heterogenous.
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164 SUPPLY CHAIN MANAGEMENT

This chapter describes a methodology for planning capacity commit-
ments, scheduling shipments, and managing inventory for an assortment
of private-label retail merchandise produced by multiple vendors. The
vendors differ in their lead time requirements, costs, and production
flexibility. Product demand is uncertain, and fluctuates over time. We
develop an optimization model to choose the production commitments
that maximize the retailer’s expected gross profit, given market demand
forecasts and vendors’ capacity and flexibility constraints. The model
has been incorporated into a PC-based decision support system called
the Sourcing Allocation Manager (SAM). This was developed in col-
laboration with supply chain planners at a global retailer of seasonal
and fashion merchandise, and has been tested by buyers at two major
retailers.

Keywords: Sourcing Strategy, Retailing, Capacity Planning, Multi-item Inventory
Planning

1. Introduction
A number of retail firms use a “private-label” strategy in which mer-

chandise is sold under a brand name exclusive to the retail firm, but
manufactured by one or more independent vendors. This practice can
allow a retailer to avoid the premium charged by brand-name vendors,
fill gaps in its product assortment, exercise greater control over product
attributes, gain leverage in the manufacturer-retailer balance of power,
and convert product brand loyalty to store loyalty. For well-received
products, there are additional benefits to be enjoyed from being the ex-
clusive seller. However, this also poses a different set of supply chain
challenges than manufacturer-brand-based retailing, in that the retail
firm must take a more active role in organizing and coordinating the
planning and materials management activities in a supply base that is
often dispersed and heterogenous1. As a result, some such retail firms
have become increasingly interested in tools and techniques for effective
supply chain management and design. This is the case with the retailer
(a multinational firm with several billion dollars of annual revenue from
private-label sales) that approached us with the business problem moti-
vating the research described here.

1Private-labeling poses a number of marketing challenges as well. The retailer takes sole
responsibility for brand management tasks such as advertising and creating store displays,
and foregoes manufacturer-sponsored provisions that mitigate market risks, such as return
privileges and price protection. Our intent is not to address the question of when a retailer
should use private-label, but to provide guidance on supply chain planning when this strategy
is pursued.
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We consider the problem of how to optimally plan and execute the
sourcing of seasonal and fashion private-label merchandise carried by
department stores and specialty retailers. For a given selling season,
the sourcing decisions, typically made by the retail buyer responsible for
each merchandise department, include the following components: (1)
purchases of raw materials (e.g., fabric) for use by vendors, (2) sup-
ply contracts and production commitments with vendors, (3) a weekly
plan for sales, shipments, and inventory, and (4) adjustments based on
subsequent market information. This research develops a formal plan-
ning methodology for this decision problem that accommodates multiple
products and multiple suppliers, and explicitly accounts for demand un-
certainty and adjustments to the plan during the season. The resulting
optimization model has been embedded within a PC-based decision sup-
port system named the Sourcing Allocation Manager (SAM).

A more theory-oriented treatment of this modeling research is pre-
sented in Agrawal et al. (2001). Parts of that document describing the
model formulation are included here for the reader’s convenience, but
those who are interested in such a perspective and an extensive numer-
ical case study should refer to that paper. This chapter focuses on the
software implementation and how the business environment influenced
the design of the graphical user interface.

The Business Setting
Many of the challenges of this application are due to attributes of the
demand patterns and the supply base, and how they interact. Demand
in this environment typically fluctuates sharply throughout the year.
This is exemplified by the data in Figure 8.1, which illustrates recent
sales for a men’s casual slacks product.

This type of demand becomes most challenging when production ca-
pacity is constrained, which is commonly the case in this industry.
Specifically, demand during the peak Fall (“Back to School”) and Christ-
mas seasons typically exceeds available manufacturing capacity, while
surplus capacity tends to exist during the Spring and Summer. Produc-
ing in advance of peak periods improves the ability to meet demand, but
creates inventory buildup and requires that commitments to production
and fabric purchases be made under greater uncertainty.

Sourcing strategies must also reflect the performance capabilities of
the supply base. In most cases there are a variety of possible vendors
that differ in costs, lead times, and flexibility of production. Vendors
with the lowest cost generally offer virtually no flexibility with respect to
capacity commitments. These vendors tend to have long lead times for
booking capacity (e.g., nine months), shipment times of several weeks,
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Figure 8.1. Seasonal Patterns in Demand2

and often require that the total production be allocated relatively evenly
throughout the year. More responsive vendors may have shorter lead
times and allow greater flexibility vis-a-vis production commitments.
Additionally, different vendors may be willing to store limited amounts
of finished product prior to delivery for a fee.

Retailers tend to leverage a portfolio of such vendors, resulting in
supply chains such as that shown in Figure 8.2. The portfolio approach
enables strategies such as exploiting lower cost production for the more
predictable segment of demand, while sourcing the more speculative seg-
ment via the more flexible, but more costly, vendors. Operationalizing
this strategy in a multi-product, multi-vendor setting is nontrivial, and
is further complicated by many production and logistical constraints de-
scribed later. This was our retail collaborator’s motivation in sponsoring
this project. In fact, our methodology is unique in its focus on designing
contracts with a portfolio of vendors that simultaneously exploits the
comparative advantages of each, as opposed to selecting a single most
desirable vendor.

Research Contribution
Relative to previous academic research detailed in Section 2, our for-

2Since the retailer providing this data aspires to and usually achieves very high fill rates for
this product, the difference between sales and demand is insignificant.
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mulation of the multi-vendor sourcing problem is novel in representing
the complex constraints and changing states of information under which
different sourcing commitments must be made. We address numerous
issues associated with the design of the supply chain, and provide in-
sight into a universal question in sourcing: how to balance unit costs
versus supplier attributes such as flexibility. Overall, our model builds
on the key aspects of the literature described in Section 2, incorporat-
ing seasonal patterns in demand and detailed production and logistical
constraints in a stochastic demand environment with forecast updating.
While subsets of these issues have been treated previously, we believe
our formulation to be unique in addressing all of them simultaneously.

Our formulation evolved in close collaboration with retail practition-
ers, whose involvement occurred at two different levels. A committee
of senior executives from different firms regularly reviewed our assump-
tions and problem framing to ensure the broad applicability of our model
to a variety of retail settings. However, the specifics were developed in
collaboration with executives and buyers at a particular retailer, who
confirmed that our level of detail captures the key complexities faced by
retail planners. Their help was especially useful in identifying the cost
tradeoffs and constraints most important for sensitivity analysis, lead-
ing to variable and constraint modifications that allowed discovery and
presentation of the most critical shadow prices. Furthermore, feedback
from these buyers and planners was instrumental in the incorporation
of our model into a decision support software package with a graphical
user interface. Given the depth and breadth of the practitioners’ par-
ticipation, we believe this model to be widely applicable to retail firms
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that manage the sourcing and production of private-label merchandise,
and to certain nonretail firms as well.

Organization of This Chapter
The remainder of this chapter is organized as follows. Section 2 reviews
the relevant literature. Section 3 details the mathematical formulation of
the optimization model, discussing in depth the assumptions we made to
capture the salient features of the particular retail environment. Section
4 describes the decision support software, the business issues motivat-
ing the design features of the user interface, and summarizes our retail
collaborator’s experiences with the software, and Section 5 concludes.

2. Literature Review
The use of formal decision models in aggregate production planning

has a long tradition, and has been the subject of hundreds of academic
studies. See Silver and Peterson (1985) for a textbook treatment and
some historical background. A review of the academic literature is pro-
vided in Nam and Logendran (1992), and a survey of the usage of such
models in practice is provided in Buxey (1993) and Buxey (1995). The
predominant optimization approach is based on linear programming
(LP), which allows for non-stationary but deterministic demand, and
can handle large numbers of products simultaneously. Forecast uncer-
tainty and information updating are usually dealt with only in an in-
direct fashion, by using a rolling-horizon implementation of a snapshot
deterministic solution (the formal term for this is “Open-Loop Feedback
Control”, cf. Bertsekas (1976)), and also perhaps through the specifi-
cation of safety stock levels, usually exogenously (e.g., Guerrero et al.
(1986), Gunther (1982), Heath and Jackson (1994), Miller (1979)).

More direct treatment of demand uncertainty is called for in the re-
tail setting, especially where hard-to-forecast fashion or style goods are
involved. This can be provided by newsvendor-style models, but at the
expense of sacrificing the dimensionality and detailed constraint struc-
ture that can be supported by LP formulations. In this type of approach,
the entire selling season for a product is summarized as a small num-
ber (possibly one or two) of random variables with known joint proba-
bilities. This allows analytic incorporation of forecast uncertainty into
production planning (e.g., Crowston et al. (1973), Hartung (1973), Haus-
man and Peterson (1972), Murray and Silver (1966), Ravindran (1972),
Wadsworth (1959), and more recently Brown and Lee, Donohue (2000),
Eppen and Iyer (1997), Fisher and Raman (1996)), albeit in stylized
ways. Various approaches to obtaining the probability distributions of
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these demand random variables, especially for fashion products, are pro-
posed by Chang and Fyffe (1971), Hausman and Sides (1973), Hertz and
Schaffir (1960), Riggs (1984), Riter (1967), and Wolfe (1968).

The efforts closest in spirit to our work are Bitran et al. (1986), Eppen
et al. (1989), Kira et al. (1997), and Nuttle et al. (1991). The first
three are based on mathematical programming, while the fourth takes a
simulation approach. We discuss them briefly below.

In Bitran et al. (1986), the authors perform multi-period production
planning for families of consumer electronics products which in turn con-
sist of specific items. Setup costs for switchovers between families are
such that each family will be run only once during the season, while
switchovers between items within a family are assumed costless. De-
mand occurs in the last period, and estimates of this demand are re-
vised each period. Demands for all items are assumed to be normally
distributed, and the standard deviation of forecast error at each time
period is known, given by an arbitrary, decreasing sequence of numbers
which must be provided as data. The updated forecasts at each period
also follow a joint normal distribution, with a known covariance matrix.
The exact problem is a difficult-to-solve, stochastic mixed-integer pro-
gram, for which the authors develop a deterministic mixed-integer ap-
proximation. While both their model and ours consider multi-product
planning with forecast updates, the respective areas of emphasis differ.
Whereas they take production capacity as given and then determine how
to schedule the production of a variety of items, we consider as decision
variables the capacities to be reserved with a variety of vendors at dif-
ferent points in time. They model the operations within a single factory
at a greater level of detail, whereas our scope spans multiple vendors’
factories as well as the retailer’s distribution center, and includes the
scheduling of shipments from the former to the latter. Their representa-
tion of item demand is more general but also data-intensive. We pursue
a discrete simplification of forecast dynamics as part of an overall strat-
egy of retaining a basic LP structure that allows an exact solution in
real time.

In Eppen et al. (1989) a model is developed for General Motors to aid
in making decisions about capacity for several lines of automobiles pro-
duced in multiple factories. A general sequence of events is considered
in each of five years: (1) the available capacity is configured in terms
of tooling the production lines for specific products, (2) demand occurs,
and (3) a production plan is implemented that attempts to meet the
demand given the capacity configuration. Demand uncertainty is repre-
sented by defining three different “scenarios” for each year that specify
the demand and price for individual products. Scenario probabilities are
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assigned, and are assumed to be independent from year to year. The re-
sulting optimization problem is a mixed-integer program that maps out
individual sample paths of all possible scenario combinations. This sce-
nario approach is similar to our representation of demand uncertainty.
However, our production decisions are based on imperfect demand sig-
nals, while theirs assume that all uncertainty has been resolved. Further,
our notions of capacity are slightly different. Their optimal capacity con-
figuration is selected from a discrete number of predefined possibilities,
hence the integer variable structure. Ours is chosen from a simplex re-
gion defined by a variety of constraints that explicitly represent features
of the business relationship between the retailer and each vendor.

In Kira et al. (1997), the authors use a probability structure sim-
ilar to that in Eppen et al. (1989), with a single-factory production
environment that is much simpler than ours. Capacity planning is not
treated, and the nuances of managing a supply chain composed of mul-
tiple, independently-managed physical nodes are not incorporated into
their formulation.

In Nuttle et al. (1991) a software application called “The Sourcing
Simulator” is described, which was developed by researchers at North
Carolina State University in concert with the Textile/Clothing Tech-
nology Corporation and the American Textile Partnership-Demand Ac-
tivated Manufacturing Architecture (AM-TEX-DAMA) project. This
treats the same industry setting as we do, and makes many similar
assumptions in addressing the question of how the replenishment fre-
quency and lead time of a vendor affects a retailer’s performance. This
purely descriptive simulation approach allows a detailed representation
of certain aspects of the setting, especially in the range of allowable
replenishment strategies and consumer behavior. However, because it
assumes single-sourcing (with the single vendor abstracted as simply a
lead time and reorder frequency), it cannot simultaneously allocate pro-
duction across a portfolio of time-phased vendors. Like the three models
described previously, the scope of this formulation is largely confined to
a single firm. Nevertheless, various studies based on this model (Hunter
et al. (1992), Hunter et al. (1996) and King and Hunter (1996)) have
validated the importance of the ability to react to improved demand
information, which is a key rationale for the sourcing strategies that we
model.

3. Model Specification
This section outlines the mathematical formulation of the planning

problem faced by a retailer leveraging a portfolio of time-phased ven-
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dors. Our discussion uses the language of apparel retailing because this
is our sponsor firm’s primary line of business. However, we believe our
underlying methodology to be broadly applicable to other product set-
tings.

3.1 Timeline of Events and Information
Assumptions

In chronological order, the critical time points for the retailer’s se-
quential decision problem for a specified “selling season3” are as follows:

t0 = time at which initial vendor commitments and fabric purchases4

are made

t1 = second time at which commitments to vendors are made, for those
vendors allowing capacity decisions to be deferred to this time5

tb = beginning of selling season

tf = end of selling season, when actual demand becomes known.

We assume that our model analysis is performed at some time at
or before t0 for a selling season that spans the horizon (tb, tf ). The
retail planner’s information regarding demand evolves continuously over
time, shaped by economic forecasts, new fashion and color trends, and
observed sales results for similar products. However, for our formulation
it is only necessary to define the possible states of information at the
specific points in time at which decisions are made. Evaluation of the
expected profit also requires knowledge of the actual demand information
at time tf . To represent the evolving demand information, we define the
following random variables6:

3This might correspond, for example, to the Fall season (running from roughly August
through January) or the Spring season (February through July). For certain merchandise,
some retailers use four or more shorter seasons per year. In some instances a season may be
as short as 8 weeks.
4In many cases the fabric is purchased by the retailer and shipped to vendors for cutting and
sewing. This provides control of raw material quality and leverages the buying power that a
major retailer enjoys.
5Our discussions with the retailer’s production planning managers indicated that two decision
points (times t0 and t1) are adequate for a typical apparel planning decision process. However,
the formulation can easily be extended to include more decision points by simply adding more
variables to the model.
6For example, we have assumed that the initial demand information for any product at time
t0 is deterministic, i.e., X0 has only one possible value. At time t1, the demand information
demand has three possible values based on what has been observed since t0: High, Medium,
or Low, with different probabilities. The remaining uncertainty about the actual demand is
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Xk ≡ a random variable corresponding to the market demand informa-
tion that the retailer has at time tk, for k = 0, 1,f .

At each time point, Xk has a discrete set of possible values. Finally, at
time tf , the actual demand corresponds to one of a discrete set of demand
scenarios. We define the following probability distributions to describe
the likelihood of observing particular sequences of demand information:

p (ξ1) ≡ P {X1 = ξ1} for each possible ξ1 value at time t1

p (ξf |ξ1) ≡ P {Xf = ξf |X1 = ξ1} for each possible combination of ξ1 and
ξf , and

p (ξ1, ξf ) ≡ p (ξf |ξ1) p (ξ1) = the joint probability of X1 and Xf .

Clearly, this structure can be generalized to characterize information
that is revealed in any number of stages, but we will describe only the
two-stage case since that corresponds to our particular application.

Market “scenarios” are frequently used by retailers in developing mar-
keting plans for alternative contingencies7. We extend this concept to
include market demand information that is revealed in stages, resulting
in the sequential stochastic decision model illustrated in Figure 8.3. The
underlying assumption is that as the selling season gets closer, the sales
estimates in the plan improve for several reasons. For example, there
is new sales information for related products. Also, updated sales esti-
mates are at least in part the result of revisions in the merchandise plan,
e.g., deciding to feature more or less of a particular type of merchan-
dise, giving it a more or less prominent display and floor space, etc. For

then described by the conditional probability distribution , and is not completely resolved
until the end of the selling season at time tf . We also note that this modeling structure is
easily generalizable to include additional stages of information and decision points.
7We model demand uncertainty through discrete scenarios for three reasons. The first reason
is analytical tractability. Modeling uncertainty using continuous random variables would rule
out certain complexities categorically declared by our corporate collaborators to be essential
attributes of their business setting. The second reason is consistency with common manage-
rial practice. Our corporate collaborators indicated that their planning methodology often
requires the articulation of “worst case,” “most likely,” and “best case” scenarios for market
uncertainties. However, in the past these scenarios have typically been used only for financial
planning, due to a lack of technical know-how for translating them into contingency plans
for vendor and production management. The third reason is that there is an established
precedent in the literature for using scenarios to model uncertainty in a variety of contexts.
As described in Section 2, Eppen et al. (1989) and Kira et al. (1997) used a scenario approach
similar to ours for capacity planning. Discrete demand scenarios were used in Smith et al.
(1998) to obtain optimal inventory and promotional plans for retail chains. Of course, there
is a rich tradition in the financial economics literature of modeling uncertainty in the prices
of stocks and securities this way (cf. Cox and Rubinstein (1985)). More recently, Huchzer-
meier and Cohen (1996) have used discrete scenarios to study the operations management
implications of exchange rate fluctuations.
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Figure 8.3. Decision Tree for Production Planning

changes of this type, there is a good base of experience for the buyers
to update their subjective estimates of the demand. This determines
the conditional probabilities p (ξf |ξ1). Note that in principle the same
method can use early sales results to update the demand probabilities
(after the selling season begins) and in fact, our formulation approach
is compatible with Bayesian updating of the probabilities of the discrete
demand levels based on early sales results. However, for this application
the vendor deadlines did not permit changes in capacity commitments
after the start of the selling season, other than changes in the color, style,
or size mix. Since our model is meant to support capacity planning at
an aggregate level, this is appropriate for our application8. With some
assistance from the authors, the retail planners at two major retailers
were able to subjectively estimate the required probabilities.

3.2 Decision Variable Definitions
The following indices will be used for variable definitions: j for prod-

ucts, i for vendors, t for the time increment used for production, ship-

8Most papers that consider updating of forecasts in a model of reasonably realistic detail
only consider updating prior to the occurrence of any sales. This includes the mathematical-
programming-based models most similar to ours, as described in Section 2. Those models
that do accommodate forecast updating based on in-season sales tend to have very simplified
inventory analysis that would not scale to the constraint and decision variable complexity in
our decision model (e.g. Chang and Fyffe (1971), Crowston et al. (1973), Fisher and Raman
(1996), Hartung (1973), Murray and Silver (1966)).
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ment, and sales decisions (typically weeks), and q for the time increment
used for reservation of capacity (typically quarters). In this model, we
assume that the term ”product” refers to an aggregation of styles, not to
an individual SKU (distinguished by style/size/color). Variable names
in upper case represent decision variables, while those in lower case or
Greek symbols are fixed parameters.

The main basis for classifying vendors (into “short lead time” and
“long lead time” types) is the time at which commitments for each prod-
uct must be made. This is denoted by

τij ≡ time at which a commitment is required by vendor i for product
j,

and the corresponding state of retailer information

Xij ≡ demand information available at time τij , which takes on discrete
values ξij .

For our implementation, τij = t0 or t1, since these are the only pro-
duction commitment time points. It follows that Xij is either X0 or X1

for every combination of i and j.
For each possible (ξ1, ξf ) combination, the production and inventory

variables are defined as follows:

Fj ≡ fabric commitment (in yards) made at time t0 for product j

Pij (t|ξij) ≡ production by vendor i of product j during period t

Zi (q|ξ1) ≡ total production by vendor iduring quarter q

ZF
j (ξ1) ≡ yards of fabric actually used for product j

Mij (t|ξ1) ≡ beginning inventory of product j stored by vendor i in pe-
riod t

Sij (t|ξ1) ≡ quantity of product j shipped from vendor i in period t

Uj (t|ξ1, ξf ) ≡ retailer’s unit sales of product j in period t

Ij (t|ξ1, ξf ) ≡ retailer’s beginning inventory of product j in period t

The decision variables depend on the information states in different
ways, i.e., what information is known when each variable’s value is spec-
ified. These dependencies determine the dimensionality of the variables.
We denote this dependence explicitly in our formulation, using the “|”
notation. For example, since the production schedule of an item i at a



SAM: A Decision Support System for Retail Supply Chain Planning 175

vendor j is fixed at time τij , when the state of information is ξij , the cor-
responding vendor production variables are denoted as Pij (t|ξij). The
total production and total fabric usage depend upon ξ1 because they are
defined for both short and long lead time production decisions. Similarly,
the vendors’ inventory and shipment decisions depend upon ξ1 because
that is the information available to the vendor when the shipping deci-
sions are made. However, the realized unit sales, and consequently the
retailer’s on hand inventory, depend on both ξ1 and ξf . This is because
the on-hand inventory depends on both the actual demand scenario and
all the production decisions, some of which depend on ξ1. Since the unit
sales are affected by the inventory level, this depends on ξ1 and ξf as
well. In the LP optimization, the information states ξ1 and ξf are simply
treated as additional “subscripts” on variables.

3.3 Inventory Balance Equations and
Production Constraints

The production, inventory, and shipping variables are related to each
other by the following inventory balance equations for the retailer and
vendors:

Ij (t + 1|ξ1, ξf ) = Ij (t|ξ1, ξf ) +
∑

i|t≥τij+li

Sij (t− li|ξ1)− Uj (t|ξ1, ξf ) ,

for all i, j, ξ1, ξf , t, (8.1)

where li is the shipping delay for vendor i,

Mij (t + 1|ξ1) = Mij (t|ξ1) + Pij (t|ξij)− Sij (t|ξ1) ,

for all i, j, ξ1, t. (8.2)

When the states of information “subscripts” in one constraint are
different for different variables, the variable with fewer subscripts simply
keeps the same value for a subset of the equations.

For simplicity, our model considers only the total inventory in the
retailer’s system, as opposed to inventory levels in individual stores9.
This assumes that inventory is generally balanced across the stores, and

9Once the merchandise reaches the retailer’s distribution center (DC), it is usually distributed
to the stores and displayed for sale within two to three days. In order to maximize the
productivity per square foot, there is generally little storage space in stores, and all store
merchandise is placed on display for sale as quickly as possible. The only significant delays
in this type of supply chain arise from production commitment lead times, which are usually
several months, and shipping times, which may be several weeks for surface shipments.
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is appropriate because inventory is re-balanced during the season by al-
locating replenishments to the stores that most need additional stock.
For some merchandise, transshipments are made from one store to an-
other to balance the inventory, but only if the repackaging and shipping
costs can be justified.

Constraints on each vendor’s storage space can be represented as

∑

j

νjMij (t|ξ1) ≤ wi (t) ≡ vendor i’s maximum storage for period t,

for all i, t, ξ1 (8.3)

where νj ≡ storage space required per unit of product j.
A retailer may also specify an upper bound on the amount of inventory

contained within its system10. This can be specified by

∑

j

νjIj (t|ξ1, ξf ) ≤ wR(t) ≡ retailer’s maximum storage for period t,

for all t, ξ1, ξf (8.4)

The initial and final inventories may also be required to satisfy con-
straints of the form:

Ij (tb|ξ1, ξf ) ≥ i0j ≡ minimum initial retailer inventory for product j

for all ξ1, ξf

Ij (tf |ξ1, ξf ) ≥ ifj ≡ minimum final retailer inventory for product j

for all ξ1, ξf

Mij (tb|ξ1) ≥ m0
ij ≡ minimum initial inventory of product j at vendor i

for all ξ1

Mij (tf |ξ1) ≤ mf
ij ≡ maximum final initial inventory of product j at

vendor i for all ξ1.

The initial inventory i0j must be sufficient to create an attractive dis-
play of merchandise with which to begin the selling season. For contin-
uing, or “basic” products, the minimum final inventory ifj may be set
to the desired initial inventory for the subsequent season. The vendor’s
initial inventory m0

ij can be used to satisfy demand in the current season,
while the final inventory mf

ij is available for the subsequent season.

10This can represent either a physical or budget restriction. In the latter case, νj will have
a different meaning.
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For some aspects of aggregate production planning, managers use
quarters as the appropriate increment of time. Using q (t) to denote
the quarter corresponding to a time period t, the following relationship
tallies the total production of vendor i within a quarter y:

∑

j

∑

t
∣∣q(t)=y

κjPij (t|ξij) = Zi (y|ξ1) , for all i, y, ξij (8.5)

where κj ≡ production capacity required per unit of product j. This
enables us to model quarterly constraints. For instance, to ensure di-
versification a vendor may be willing to commit only a fraction of its
quarterly capacity to a single retailer. On the other hand, less flexible
vendors may also insist on a minimum quarterly production commit-
ment from the retailer as a condition for doing business. These can be
included as follows:

ki (q) ≤ Zi (q|ξ1) ≤ ki (q) , for all i, q, ξ1 (8.6)

where the bounds do not depend on the demand information. To achieve
the economic benefits of level production, certain vendors also permit
only limited changes of total production from quarter to quarter, which
can be expressed as follows:

(1− αi) Zi (q − 1|ξ1) ≤ Zi (q|ξ1) ≤ (1 + βi) Zi (q − 1|ξ1) ,

for all i, q, ξ1 (8.7)

where 0 ≤ αi ≤ 1 and βi ≥ 0. In general, vendors that allow later
commitments also typically allow greater quarter-to-quarter flexibility
(larger αi and βi parameters).

Production is also constrained by the fabric procurement decision as
follows:

∑
y

∑

j

∑

t
∣∣q(t)=y

κF
j Pij (t|ξij) = ZF

j (ξ1) ≤ Fj , for all j, ξij (8.8)

where κF
j ≡ yards of fabric required per unit of product j.

3.4 Modeling Product Demand
The demand pattern for each product over time is an input to the

model that is conditional on the demand scenario ξf , denoted as follows:
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dj (t|ξf ) ≡ actual demand for product j in period t.

To specify these values, we used a forecasting model form that has
been applied successfully to retail sales forecasting. Econometric mar-
keting studies have found that multiplicatively separable models of the
form

(
Period t demand

for product j

)
=

(
Total season demand

for product j

)
·

(
Seasonality
effect at t

)
·
(

Marketing
effects at t

)

fit observed retail sales data well (Achabal et al. (1990), Kalyanam
(1996)). Thus we let

dj (t|ξf ) = bj (ξf ) · fj (t) · ρj (t) (8.9)

where

bj (ξf ) ≡ full-season demand for product j under demand scenario ξf

fj (t) ≡ fraction of total demand for product j that occurs in period t

ρj (t) ≡ marketing effects for product j during period t, including price/
advertising effects.

This approach greatly reduces the model dimensionality by confining
the effect of information updating to the full-season demand, which is
a scalar. The full set of relative seasonality factors fj (t), such as that
shown in Figure 8.1, generally do not require updating. Similar represen-
tations of demand have been used by Chang and Fyffe (1971), Crowston
et al. (1973), and Hartung (1973). The specification of demand pa-
rameters and price variations due to any retail promotional strategies is
exogenous to the optimization model, hence does not affect the linearity
structure.

3.5 Calculating Unit Sales
Unit sales volume in period t is bounded by the period’s demand, so

Uj (t|ξ1, ξf ) ≤ dj (t|ξf ) , for all j, t, ξ1, ξf . (8.10)

While traditional inventory models assume that lost sales occur only
when inventory is fully exhausted, in retail marketing environments the
amount of on-hand inventory can influence sales. In apparel, for exam-
ple, sales rates can deteriorate as inventory drops because the remaining
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inventory consists of increasingly broken assortments with incomplete se-
lections of sizes and colors (Smith and Achabal (1998)). Low inventory
also increases the likelihood that some stores are inadequately stocked,
i.e., the inventory is not “balanced.” While the relationship between
inventory level and sales is not necessarily linear (Smith and Achabal
(1998)), a linear approximation is reasonable within the range of values
of the inventory level that is expected in practice. This lends consider-
able analytical tractability to our formulation. Therefore, we allow unit
sales to depend upon the beginning inventory according to the following
constraints:

Uj (t|ξ1, ξf ) ≤ ηjIj (t|ξ1, ξf ) , for all j, t, ξ1, ξf (8.11)

where ηj ≡ maximum fraction of the beginning inventory that can be
sold in one period11. Because of (8.1) and the production capacity con-
straints in (8.6) and (8.7), it is also possible that neither (8.10) or (8.11)
will be binding for a given t.

Constraints (8.10) and (8.11) assume that the unfilled demand is lost
(to competitors, for example), which is more common than backorder-
ing for most retail merchandise. Backordering, which is actually more
straightforward to model, can easily be accommodated within our for-
mulation by modifying the inventory balance equations.

3.6 The Objective Function
The objective function will be defined in terms of the following eco-

nomic parameters:

πj (t) ≡ average selling price for product j in period t

cij ≡ unit procurement + shipping cost (“landed cost”) for product j
purchased from vendor i

rj ≡ residual value per unit of product j at the end of the selling season

cF
j ≡ cost per yard of fabric for product j

rF
j ≡ residual value per yard of fabric for product j at the end of the

selling season

hj ≡ retailer’s unit holding cost per period for product j

11Retailers typically track the “sell-through” rate, i.e., the fraction of the beginning on-hand
inventory that is sold in each time period. If the sell-through rate is too high, it is assumed
that some sales have been lost due to insufficient inventory (see Smith et al. (1998) for further
discussion).
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vij ≡ vendor i’s unit storage charge per period for product j

The average selling price πj (t) may vary by time period to allow
periodic price markdowns during the season. The value of rj has different
interpretations for seasonal and fashion items. For a seasonal item, it
corresponds to the unit value of this product in the next selling season
(i.e., the avoided replacement cost minus any holding cost). For fashion
items it describes a “salvage value.” At the selling season’s end, any
remaining fashion items may be sold through outlet stores or in bulk to
discounters, resulting in markdowns to prices possibly below the original
cost.

The expected revenue and cost for each product, denoted as Rj and
Cj , respectively, are:

Rj =
∑

t,ξ1,ξf

p (ξ1, ξf )
{

πj (t|ξf ) Uj (t|ξ1, ξf )

+ rjIj (tf |ξ1, ξf ) + rF
j

(
Fj − ZF

j (ξ1)
)}

(8.12)

Cj =
∑

i,t,ξ1

p (ξ1) {cijPij (t|ξij) + vijMij (t|ξ1)}

+
∑

t,ξ1,ξf

p (ξ1, ξf ) hjIj (t|ξ1, ξf ) + cF
j Fj (8.13)

where p (ξ1, ξf ) and p (ξ1) are the previously defined joint and marginal
probabilities, respectively. The total objective to maximize is then∑

j {Rj − Cj}.
The fabric commitments, production capacity commitments, and ship-

ping schedules that optimize this objective function correspond to a se-
quence of decisions under uncertainty, where the demand information
changes at each decision point. In general, this can be viewed as a
stochastic dynamic programming problem (with linear constraints). Un-
fortunately, the size of the resulting state space and the complexity of
the objective make this solution approach impractical. However, as long
as the states of information are restricted to a discrete set of values, the
equations for Rj and Cj are linear in the decision variables, so that this
optimization problem is a linear program12.

12This approach for handling uncertainty within an LP formulation was first suggested by
Dantzig (1955). Including decision variables whose values may be chosen after the resolution
of the uncertainty leads to what is generally termed as a stochastic linear program with
recourse. See Hansotia (1980) and Infanger (1994) for discussion of various technical aspects
of solving such models and extensive reviews of the literature.
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3.7 Model Extensions for Sensitivity Analysis
Important insights from an optimization analysis are often derived

from shadow prices and other sensitivity outputs. In vendor sourcing,
this information can identify the most critical vendor production and
storage constraints, and therefore guide the retailer in negotiating these
limits or in identifying alternative vendors with appropriate capabilities.
The retailer’s storage limits or end-season inventory requirements may
also be opportunities for performance improvement.

Because of the multitude of variables and constraints associated with
the specific time periods and information states, most individual shadow
prices in our model are not directly meaningful. However, useful sensi-
tivity information can be obtained by introducing additional variables.
For instance, since increases in production and storage capacity would
typically be made for the entire horizon rather than by individual pe-
riods, it is appropriate to introduce a single variable that increments a
given vendor’s capacity uniformly in all periods and information states.
If this variable is then constrained to be 0, the corresponding shadow
price will reveal the marginal benefit of increasing the vendor’s capacities
in all periods at once. We add variables for these aggregate constraints
as follows:

∆i ≡ increase in quarterly production capacity (000’s) for vendor i for
all quarters

∆i ≡ decrease in quarterly minimum production (000’s) for vendor i for
all quarters

ωi ≡ increase in storage capacity at vendor i (cartons)

The appropriate constraint equations ((8.6) and (8.3)) are then re-
placed with the following:

ki (q)−∆i ≤ Zi (q|ξ1) ≤ ki (q) + ∆i, for all i, q, ξ1 (8.14)

∑

j

νjMij (t|ξ1) ≤ wi (t) + ωi, for all i, t, ξ1 (8.15)

∆i, ∆i, ωi = 0. (8.16)

This enhancement was made for components of the formulation deemed
most important by the retail planners: vendor production capacity, ven-
dor flexibility, vendor storage, end-season retail inventory, and product
demand.
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3.8 Positioning This Model in the Retailer’s
Planning Process

Our discussions with executives at our retail sponsor highlighted two
key issues relevant to the implementation of our methodology. The first
deals with the timing of the analysis. Even though our planning model
formulates the demand and supply dynamics over a finite horizon, like
many other such models it would actually be used on a rolling horizon
basis. (As noted earlier, this approach can be termed “open-loop feed-
back control.”) Thus, the production planning actions recommended by
each run of the model will serve as important inputs to the subsequent
run13. The second issue deals with the level of product aggregation at
which the analysis is performed. The retail executives envisioned this
model being used for analysis at the product category level (e.g., T-
shirts, denim jackets, or denim pants) as well as at a lower product type
level (e.g., Pocket Tees, V-Neck Tees, and Crew Neck Tees). The for-
mer analysis will typically be of interest to product managers who are
responsible for the profitability of separate categories. The latter will be
of primary interest to buyers who devise procurement plans for product
types.

4. The Decision Support System
With extensive input from sourcing managers at the retail chain, the

optimization model described above was implemented as a PC-based
decision support system (DSS) named the Sourcing Allocation Manager
(SAM). The user interface screens were programmed in Visual Basic and
the optimization engine is LINGO, supplied to us by LINDO Systems.
For test problems with four products, four vendors, a nine-month plan-
ning horizon, and 27 distinct sample paths of information realizations,
the LP has several thousand decision variables and constraints. It was
solved on a 300 MHz Pentium II PC in approximately 3-5 minutes.

The DSS development was a “proof of concept” exercise with several
goals: (1) to provide a context for defining the user inputs and outputs
of the model, (2) to test the practical viability of the optimization algo-
rithm, (3) to demonstrate to the sourcing managers the potential benefits
of the system, and (4) to identify through experience the cost tradeoffs

13For example, within the context of our formulation, at time t0 one could be planning for a
six month selling season that begins six months hence (i.e., tb−t0 = 6months, and tf−tb = 6
months). The entire planning horizon thus consists of 4 quarters, with planning decisions
being revised at a weekly level. In this case, the previously committed production, which
might be the result of a prior run of the model, can serve as input constraints to the current
run of the model.



SAM: A Decision Support System for Retail Supply Chain Planning 183

 Sourcing Allocation 
Manager (SAM) 

Introduction 
 

Calendar Setup 

Vendor/Product Information 

Projected Sales Levels 

Aggregate Capacity Plan 

Performance Summary 

Sensitivity Analysis 

Save Scenarios 

Vendor Information 

Vendor Production 
Information 

Product Information 

Product-Level Capacity 
Plan and Shipments 

Vendor Capacity 
Plan 

Input 
Screens 

Output 
Screens 

Product Capacity Plan 
by Vendor 

Figure 8.4. SAM Screen Flowchart

most important for planning. These goals were largely achieved, and
the extensive involvement of retail planners profoundly influenced the
resulting system in numerous ways. For instance, over the course of its
development, the DSS evolved from a batch-processing application that
generated the optimal sourcing plan for a particular text file consisting of
all relevant parameters, to a system that enables beginning users to per-
form sensitivity and cost tradeoff analyses interactively. Feedback from
users over the course of their cumulative experience with the DSS led to
a number of key enhancements of the core mathematical formulation as
well.

4.1 Graphical User Interface
The logical flow of the DSS screens is illustrated in Figure 8.4. In

general, all input screens must be completed before any output screens
can be viewed, although input scenarios can be stored for subsequent
analyses. Data for the input screens can either be keyed in manually or
read from a Microsoft Excel spreadsheet file, which a user can view and
modify interactively. In a full-scale implementation most of these values
would likely be fed directly from other applications or databases.



184 SUPPLY CHAIN MANAGEMENT

 

Figure 8.5. Calendar Setup Screen

Below we will describe the main screens, although space limitations
preclude the inclusion of all screen views.

Input Screens
The Calendar Setup Screen in Figure 8.5 allows the user to specify dates
delineating the timetable for planning. The first date field is for Fab-
ric Commitment, indicating when the fabric must be ordered for all
products under consideration. The second and third dates are the com-
mitment times for the long and short lead-time vendors, respectively.
For reasons discussed in Section 3.1 and Section 3.2, all commitments
with vendors are modeled as being made at one of these two dates. How-
ever, a single vendor is allowed different commitment dates for different
products. The Selling Season corresponds to the retailer’s season for
this set of products or the time frame for which this set of production
commitments is in effect, whichever is shorter. (For continuing products,
linkage to selling periods beyond this season is achieved by requiring end
of season inventory, as described in Section 3.3.) This screen also allows
the specification of vendor and product names (up to 4 of each).

Figure 8.6 shows the screen displaying vendor and product attributes.
These are organized into a matrix with column headings (vendor names),
row headings (product names), and interior cells that each provide click-
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Figure 8.6. Vendor/Product Information Screen

through access to the appropriate type of information. This matrix
framework persists throughout the DSS.

This screen has two different views accessible via the folder “tabs”
at the top of the screen. These present the most significant attributes
of each vendor-product sourcing combination – Commitment Date and
Unit Cost. In the Commitment Date view depicted in Figure 8.6, the
interior cells report the commitment deadlines required by each vendor
for supplying each product. Short and long lead-time vendors are dif-
ferentiated by color coding of these cells (although this is not apparent
in a black-and-white graphic). Clicking on an interior cell calls up the
dialog box presented in the foreground, in which a user can view or alter
the Commitment Date or the Unit Cost. Toggling to the Unit Cost view
presents the matrix of unit costs for all vendor-product combinations.
Reflecting the richness of detail which our model can accommodate, sep-
arate input screens are required to fully specify the attributes of each
vendor and each product. These may be accessed by clicking the appro-
priate column or row heading buttons, as described below.

Clicking a column heading button in the Figure 8.6 screen calls up
the vendor information shown in Figure 8.7. The allowable quarter-to-
quarter production volume adjustment (see equation (8.7)) and shipping
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Figure 8.7. Vendor Information Screen

lead time dictate the relative flexibility of this vendor. The Vendor Pro-
duction Capacity button allows access to a screen detailing each vendor’s
total production capacity by quarter, shown in Figure 8.8. The storage
capacity and total quarterly production capacity are shared across all
products made by this vendor.

Clicking a row heading button in the Figure 8.6 screen calls up the
Product Information screen shown in Figure 8.9. Here each product’s
sales forecasts (for the “Most Likely” case, as described in Section 3.1),
retail prices (week by week to accommodate frequent price changes if
dictated by the retailer’s promotional strategy), inventory costs and re-
quirements, and fabric information are entered (or taken from a spread-
sheet using an embedded interface accessible from the “Show Spread-
sheet” button) and displayed. The inventory constraints and costs on
this screen apply only to inventory held in the retailer’s distribution
system and stores.

The Projected Sales Levels button on the left-hand menu calls up
the screen shown in Figure 8.10, which solicits the retail planners’ be-
liefs about demand uncertainty. The “Most Likely” total season forecast
for each product is automatically computed by summing the estimated
weekly sales shown in Figure 8.9. The user specifies what a “Low”
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Figure 8.8. Vendor Production Information Screen

 

Figure 8.9. Product Information Screen
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Figure 8.10. Projected Sales Levels Screen

and “High” forecast update would mean for each product in terms of
a percentage deviation from the “Most Likely” volume. The percent-
age changes input here for a product capture the uncertainty about its
demand, i.e., the extent to which the projections about that product’s
demand might change between t0 and t1. Stable products will tend
to have more narrow ranges than newer or fashion-oriented products.
These parameters are used to scale the weekly sales according to the de-
mand model described in Section 3.4. At the bottom area of the screen
the user must specify relative likelihoods for each of the three scenarios.
After considerable discussion and experimentation, this input format
was preferred by the sourcing managers because they are accustomed to
developing strategies for three scenarios (cf. footnote 7).

Output Screens
A complete set of inputs allows the optimal sourcing plan to be deter-
mined by the LP solver engine. Since this plan contains considerable
detail as well as contingency plans, the output is summarized across
several screens. The main output screen is shown in Figure 8.11, which
reports the total amount of each product that should be committed to
each vendor under the three scenarios. (The buttons along the bottom



SAM: A Decision Support System for Retail Supply Chain Planning 189

 

Figure 8.11. Aggregate Capacity Plan

of the screen allow the user to toggle through the plans for each indi-
vidual scenario, or to juxtapose all three as shown in the figure. Each
scenario button has a different color, which is used to display the cor-
responding plan in the “Show All” view.) By definition, long lead-time
vendors must have the same commitments in all scenarios, while short
lead-time vendors may receive commitments that depend on the sce-
nario. This flexibility justifies any cost premium the latter vendors may
charge. The summary provided by this screen can give each vendor a
reasonable picture of how its total volume of business might vary. The
buttons on the row and column headings are analogous to those in Figure
8.6, in that they provide paths to further details by vendor or product.

To eliminate any potential LP infeasibility due to the vendor storage
constraints, the formulation was modified to allow unlimited auxiliary
storage (at some very high price, to discourage the pursuit of this op-
tion). The Extra Vendor Storage cells at the bottom of the screen report
the additional space (in thousands of cartons) required by the modified
formulation’s optimal plan. The sourcing managers considered this re-
laxation to be reasonable since, in spite of formally stated vendor storage
limits, additional storage can almost always be obtained at some price.
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Figure 8.12. Product-Level Capacity Plan and Shipments Screen

The Product-Level Capacity Plan and Shipments Screen in Figure
8.12 shows week-by-week sourcing plans by product, including shipping
receipts and fabric commitments for each scenario (displayed, as always,
by toggling via the buttons near the screen’s bottom). Figure 8.13 pro-
vides the vendor perspective on quarterly production and shipments for
all products under each scenario. Barcharts are presented beneath the
numerical table to visually illustrate the changes in vendor commitments
for each product across the scenarios.

Figure 8.14 presents a summary of key retail performance metrics for
each of the sales scenarios. GM represents gross margin dollars, inven-
tory turnover is the total annualized sales divided by the average in-
ventory level during the season, and GMROI (Gross Margin Return On
Investment) is the product of the inventory turnover and the gross mar-
gin per unit (cf. Berman and Evans (1998)). Average cost is scenario-
dependent because salvage revenues vary with the amount of residual
fabric and end-of-season inventory. Again, the metrics take different
values for each scenario, and the barcharts compare the values for each
metric across the three scenarios.



SAM: A Decision Support System for Retail Supply Chain Planning 191

 

Figure 8.13. Vendor Capacity Plan Screen

 

Figure 8.14. Performance Summary Screen
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Figure 8.15. Sensitivity Analysis Screen

Sensitivity Analysis
Figure 8.15 shows the screen interface to the sensitivity analysis frame-
work described in Section 3.7. Clicking on the vendor or product name
buttons takes the user back to the appropriate input screen to view the
current parameter value and make any desired modifications. This al-
lows “What if?” analyses to be conducted quickly and easily for a wide
range of assumptions. Added at the request of our retail sponsor, this
screen has had the longest evolutionary path of any of the SAM screens
and is considered to have the greatest strategic importance. By running
the DSS, the retailer can determine which of each vendor’s constraints
are the most significant obstacles to improved profitability and can also
estimate the value of relaxing any particular constraint. This can play a
valuable role in negotiating with vendors by providing information that
was not previously quantifiable.

Figure 8.16 shows the screen associated with the Save Scenarios but-
ton on the left menu. Because of the large number of input parameters,
and to facilitate what-if analysis, SAM allows the capture of inputs and
outputs for up to five problem scenarios. The user can annotate these
in the text window near the bottom of the screen, where the various
scenarios can be saved and retrieved.



SAM: A Decision Support System for Retail Supply Chain Planning 193

 

Figure 8.16. Save Scenarios Screen

4.2 User Experiences with the DSS
Experience with the SAM DSS was obtained through an analysis con-

ducted with our sponsor firm, using representative but disguised data.
The retailer’s goal for this analysis was to gain experience with the model
and develop an understanding of the key tradeoffs between vendor ca-
pabilities and unit costs. The details are presented as a case study in
Agrawal et al. (2001). Some of the resulting insights are as follows:

1 Building a stochastic model allows presentation of distributional
information about any system performance metric. This can pro-
vide valuable insight about the extent of intrinsic risk to which a
decision-maker is exposed. The sourcing managers were able to
connect this to their strategies for managing risk, including those
related to the selection of product assortments. This would not be
possible under any deterministic planning methodology.

2 Under reasonable assumptions, SAM’s recommendations can im-
prove expected profits by several percentage points relative to typ-
ical sourcing practices. Since net profit margins in retailing tend
to be very small, this suggests that our methodology can offer very
meaningful gains.
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3 There can be value in using a portfolio of vendors with differing
production flexibility. In practice, while buyers know at an intu-
itive level that flexibility has value, the inability to quantify this
has left them biased toward vendors quoting the lowest unit costs.
Our model easily demonstrates that additional vendor flexibility
can indeed be worth a price premium when demand uncertainty
exists, and we provide a means to evaluate this tradeoff with a
realistic level of detail.

4 Not all production capacity is created equal. Capacity cannot be
properly valued independently of its flexibility constraints, such
as commitment lead time and allowable production change from
quarter to quarter. The effect of these conditions is a function of
the attributes of the type of merchandise, in particular the pre-
dictability of demand and the cost of obsolescence.

5 While conventional wisdom suggests that inventory turnover is de-
termined by the replenishment policies adopted at the store level,
tension between demand seasonality and the vendors’ desire to
maintain stable production schedules profoundly affects retailer
inventory levels. Thus, efforts to increase turnover should also
consider negotiations with vendors to seek greater production flex-
ibility.

6 From an organizational point of view, our methodology can pro-
vide a vehicle for facilitating cross-functional communication and
negotiation. Specifically, in a retail firm the merchandising, sourc-
ing, and finance organizations typically have somewhat conflict-
ing objectives with respect to inventory management strategy. (In
mathematical terms, each group typically perceives a different seg-
ment of the overall objective function.) An early insight for us
and our corporate sponsors was that our DSS could serve as a tool
for brokering the concerns of these groups by solving the global
optimization problem, explicitly quantifying tradeoffs, and, most
importantly, defining a common vocabulary for discussion.

5. Conclusion
Estimating the value of adding or dropping a vendor, renegotiating

the terms of a supply contract, or improving forecast capability requires
the respecification of the production schedule in ways that may differ
dramatically from past plans. The complexity of such decisions renders
the subjective selection of optimal or even near-optimal plans extremely
difficult or impossible. While many retail buyers and merchandise plan-
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ners rely on extensive databases and query tools for decision support,
there are few computer-based methods for optimal decision making or
sensitivity analysis regarding these decisions. Our model and the associ-
ated decision support software provide retail planners with the power to
identify and evaluate a wide variety of potential supply chain improve-
ments that they are not currently able to consider.

Capturing market uncertainty through discrete scenarios is a famil-
iar mechanism that simplifies the required user inputs and allows the
application of linear programming optimization. Because of the many
types of production and sales constraints that may apply in a retail en-
vironment, simplicity of use is essential to the practicality of a decision
support tool. Tests of our model by buyers and planners within a major
retail organization indicate that our framework is compatible with the
production commitment decisions they face.
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