Santa Clara University reserves the right to make program, regulation, and fee changes at any time without prior notice. The University strives to assure the accuracy of the information in this bulletin at the time of publication; however, certain statements contained in this bulletin may change or need correction.

NONDISCRIMINATION POLICY

Santa Clara University prohibits discrimination and harassment on the basis of a person's actual or perceived race, color, national origin, ancestry, sex, sexual orientation, age, religious creed, physical or mental disability, medical condition as defined by California law, marital status, citizenship status, gender identity, gender expression, genetic information, military or veteran status, or other status protected by law in the administration of its educational policies, admissions policies, scholarships and loan programs, athletics, or employment-related policies, programs, and activities; or other University-administered policies, programs, and activities. The University condemns and will not tolerate such harassment or discrimination against any employee, student, visitor, or guest on the basis of any status protected by university policy or law, and upholds a zero tolerance policy for sexual violence and sexual misconduct.

The University will take prompt and effective corrective action including, where appropriate, disciplinary action up to and including dismissal or expulsion. The university may implement interim measures in order to maintain a safe and nondiscriminatory educational environment. Additionally, it is the University's policy that there shall be no retaliation against a person for alleging discrimination, harassment or sexual misconduct, cooperating with an investigation, or participating in an informal or formal resolution procedure.

The Office of EEO and Title IX is responsible for monitoring the university's compliance with federal and state nondiscrimination laws, assisting with all aspects of investigating and resolving reported violations of Policy 311: Prevention of Unlawful Discrimination, Unlawful Harassment and Sexual Misconduct. The EEO and Title IX Coordinator is also designated as the ADA/504 Coordinator responsible for coordinating efforts to comply with federal and state disability laws and regulations. The University encourages those who have witnessed or experienced any form of discrimination, harassment, or sexual misconduct to report the incident promptly, to seek all available assistance, and to pursue informal or formal resolution processes as described in this policy. Inquiries regarding equal opportunity policies, the filing of grievances, or requests for a copy of the University's grievance procedures covering discrimination and harassment complaints should be directed to:

Belinda Guthrie, EEO and Title IX Coordinator
Office of EEO and Title IX
Santa Clara University
900 Lafayette Street
Suite 100
Santa Clara, CA 95053
408-554-4113
bguthrie@scu.edu

A person may also file a complaint within the time required by law with the appropriate federal or state agency. Depending upon the nature of the complaint, the appropriate agency may be the federal Equal Employment Opportunity Commission (EEOC), the federal Office for Civil Rights (OCR), or the California Department of Fair Employment and Housing (DFEH).
Engineering Table of Contents

Directions for Correspondence ... Inside front cover
Letter from the Dean .. vii
Engineering at Santa Clara ... viii
Academic Calendar 2018–2019 ... ix

1. **Santa Clara University** .. 1
 University Vision, Mission, and Fundamental Values 1
 Academic Programs .. 3
 Centers of Distinction ... 4
 Faculty .. 5
 Student Body .. 5
 Alumni .. 5
 Campus ... 6
 Academic Facilities .. 6
 Student Life .. 6
 Athletics and the Arts ... 7

2. **Academic Programs and Requirements** .. 9
 General Information ... 9
 B.S./M.S. Five-Year Dual Degree Program ... 9
 Certificate Programs.. 9
 Master of Science Program .. 10
 Graduate Minor in Science, Technology, and Society (STS) 11
 Engineer’s Degree Program .. 11
 Doctor of Philosophy Program ... 11
 Preliminary Examination ... 12
 Thesis Advisor .. 12
 Doctoral Committee ... 12
 Residence ... 13
 Comprehensive Examinations and Admission to Candidacy 13
 Thesis Research and Defense .. 13
 Thesis and Publication ... 13
 Time Limit for Completing Degrees .. 14
 Non-Enrollment Period ... 14
 Additional Graduation Requirements .. 14
 The Industrial Track .. 14
 Open University Program ... 15
10. Department of Civil, Environmenal, and Sustainable Engineering
 Overview ... 81
 Degree Program .. 81
 Master of Science in Civil, Environmental, and Sustainable Engineering ... 82
 Laboratories ... 84
 Course Descriptions ... 85
 Undergraduate Courses .. 85
 Graduate Courses .. 92

11. Department of Computer Engineering
 Overview ... 99
 Degree Programs .. 99
 Master of Science in Computer Science and Engineering 99
 Master of Science in Software Engineering 101
 Doctor of Philosophy in Computer Science and Engineering 102
 Engineer’s Degree in Computer Science and Engineering 103
 Certificate Programs ... 103
 Laboratories ... 103
 Course Descriptions ... 104
 Undergraduate Courses 104
 Graduate Courses .. 112

12. Department of Electrical Engineering
 Overview .. 127
 Master’s Degree Program and Requirements 127
 Engineer’s Degree Program and Requirements 129
 Ph.D. Program and Requirements 129
 Certificate Programs .. 132
 Laboratories ... 136
 Course Descriptions ... 137
 Undergraduate Courses 137
 Graduate Courses .. 144

13. Department of Engineering
 Course Descriptions ... 161

 Overview ... 167
 Degree Program .. 167
 Master of Science in Engineering Management and Leadership 167
 Engineering Management Five-year Program 169
 Course Descriptions ... 170

15. Department of Mechanical Engineering
 Overview ... 179
 Master of Science Programs 179
 Dynamics and Controls 180
 Materials Engineering 180
 Mechanical Design .. 181
 Robotics and Mechatronic Systems 182
 Thermofluids .. 183
 Doctor of Philosophy Program 183
 Engineer’s Degree Program 184
 Certificate Programs 184
 Laboratories ... 189
 Course Descriptions ... 190
 Undergraduate Courses 190
 Graduate Courses .. 195

16. Power Systems and Sustainable Energy Program
 Required Courses ... 207
 Mechanical Engineering 207
 Electrical Engineering 208
 Computer Engineering 208
 Civil Engineering .. 208

17. The Lockheed Martin-Santa Clara University Program

18. Campus Life
 Campus Ministry ... 221
 Student Media ... 221
 Counseling and Psychological Services (CAPS) 222
 Cowell Student Health Center 222

19. Facilities
 Academic Facilities ... 223
 Adobe Lodge .. 223
 Classroom Buildings 223
 Learning Commons and Library 223
 Lucas Hall ... 223
 Mission Santa Clara .. 223
 Athletics And The Arts 224
 Bellomy Fields .. 224
 de Saisset Museum .. 224
 Stephen Schott Baseball Stadium 224
Letter from the Dean

On behalf of the School of Engineering faculty and staff, I welcome you to a new year in your graduate school journey. If you are newly embarking on the next step in your academic journey, or if you are continuing along a path that we hope you have already found stimulating and fulfilling at Santa Clara, we are here to help you. Some of you are continuing your engineering education along the path that you started as an undergraduate. Others of you might be seeking to change the trajectory of your engineering career. Still others of you might be boldly changing the very field in which you seek to contribute your talents. We here at Santa Clara University are ready to help you on your graduate journey, wherever it started and wherever it will take you. Santa Clara University is committed to providing you a graduate education that combines rigorous instruction in fundamentals with the art of engineering practice. A Santa Clara graduate education will advance not only your technical knowledge and skills, but will provide you the tools and skills to be a life-long learner, skills that are critical in today’s rapidly changing and competitive workplaces that drive engineering innovation. Your graduate education will empower you to truly use your intellect and creativity as an engineer to its fullest expression.

The Santa Clara graduate engineering program aims to produce not only outstanding engineers, but also engineering leaders of uncompromising dedication, integrity and conscience who are able to lead in an increasingly complex global environment. As the Jesuit University in Silicon Valley, Santa Clara University is proud to be a vital and unique part of the limitless innovative force that is the heart of the Valley. Silicon Valley pioneers were driven to explore, to innovate, and to improve society through advances in engineering. That quest continues today not only in the Valley but truly in the minds of every engineer who wants to make a difference. At Santa Clara University, you will find a community of teachers and scholars that will stimulate your imagination, expand your knowledge, and nurture your conscience and compassion so that you can be part of a profession that can and will create a more just, humane, prosperous, and sustainable world.

For over 100 years, the School of Engineering at Santa Clara University has helped students turn their dreams to reality. We stand ready in our second century of engineering excellence to help you in your journey. Welcome to Santa Clara University.

Sincerely,

Alfonso Ortega, Ph.D.
John M. Sobrato Professor of Engineering
Dean, School of Engineering
The undergraduate programs leading to the Bachelor of Science degree in Civil, Electrical, and Mechanical Engineering were first offered at Santa Clara University in 1912; the programs were accredited by the Accreditation Board for Engineering and Technology in 1937. Since that time, the following degree programs have been added: Bachelor of Science in Computer Science and Engineering and in Engineering; Master of Science in Applied Mathematics, Bioengineering, Civil, Environmental & Sustainable Engineering, Computer Science and Engineering, Electrical Engineering, Engineering Management and Leadership, Mechanical Engineering, Software Engineering and Power Systems and Sustainable Energy; Engineer’s degree in Computer Science and Engineering, Electrical Engineering and Mechanical Engineering; and Doctor of Philosophy in Computer Science and Engineering, Electrical Engineering, and Mechanical Engineering. In addition, the School of Engineering offers a variety of certificate programs leading to the Bachelor of Science degree in Computer Science and Engineering, Electrical Engineering, and Mechanical Engineering.

The mission of Santa Clara University’s School of Engineering is to prepare diverse students for professional excellence, responsible citizenship, and service to society. The engineering school does this through:

- Distinctive academic programs that are designed to produce engineers who approach their profession with competence, conscience, and compassion
- Broadly educated faculty, who model and encourage the notion of lifelong learning
- Scholarly activities that create new knowledge and advance the state of the art of technology
- Interactions with professional societies and companies in Silicon Valley and beyond
- Service activities that benefit our diverse constituencies and humanity in general

The School of Engineering will be known and treasured, in Silicon Valley and beyond, for the impact of its graduates and faculty on improving the human condition through engineering education, practice, and scholarship.

ENGINEERING AT SANTA CLARA UNIVERSITY

The undergraduate programs leading to the Bachelor of Science degree in Civil, Electrical, and Mechanical Engineering were first offered at Santa Clara University in 1912; the programs were accredited by the Accreditation Board for Engineering and Technology in 1937. Since that time, the following degree programs have been added: Bachelor of Science in Computer Science and Engineering and in Engineering; Master of Science in Applied Mathematics, Bioengineering, Civil, Environmental & Sustainable Engineering, Computer Science and Engineering, Electrical Engineering, Engineering Management and Leadership, Mechanical Engineering, Software Engineering and Power Systems and Sustainable Energy; Engineer’s degree in Computer Science and Engineering, Electrical Engineering and Mechanical Engineering; and Doctor of Philosophy in Computer Science and Engineering, Electrical Engineering, and Mechanical Engineering. In addition, the School of Engineering offers a variety of certificate programs leading to the Bachelor of Science degree in Computer Science and Engineering, Electrical Engineering, and Mechanical Engineering.

The mission of Santa Clara University’s School of Engineering is to prepare diverse students for professional excellence, responsible citizenship, and service to society. The engineering school does this through:

- Distinctive academic programs that are designed to produce engineers who approach their profession with competence, conscience, and compassion
- Broadly educated faculty, who model and encourage the notion of lifelong learning
- Scholarly activities that create new knowledge and advance the state of the art of technology
- Interactions with professional societies and companies in Silicon Valley and beyond
- Service activities that benefit our diverse constituencies and humanity in general

The School of Engineering will be known and treasured, in Silicon Valley and beyond, for the impact of its graduates and faculty on improving the human condition through engineering education, practice, and scholarship.

ACADEMIC CALENDAR 2018-2019

FALL QUARTER 2018

- **July 16-20** Monday-Friday: Fall 2018 registration period
- **August 21** Tuesday: Tuition and fee payment due
- **September 3** Monday: Labor Day; administrative holiday.
- **September 10** Monday: Drop/Swap fee begins; $50 per course
- **September 10** Monday: Late registration fee begins; $100 fee if no previous enrollment
- **September 17** Monday: Classes begin
- **September 19** Wednesday: New Student Orientation
- **September 21** Friday: Last day to petition for graduate degrees to be conferred in December 2018
- **September 23** Sunday: Last day to change registration or withdraw from classes with a 100% tuition refund (less fees) (Clear registration holds by Friday, 9/21 by 4 p.m.)
- **September 26** Wednesday: Mass of the Holy Spirit, 12 p.m. at the Mission Church. Classes will not meet from 11:45-1:15 p.m. Classes scheduled to begin at 1 p.m. will begin at 1:15 p.m. (some classes may meet, consult with instructor)
- **September 30** Sunday: Last day to withdraw from classes with a 50% tuition refund (less fees)
- **October 5** Friday: Last day to submit incomplete work to faculty for Spring 2018 and Summer Session 2018
- **October 7** Sunday: Last day to withdraw from classes with a 25% tuition refund (less fees)
- **October 12** Friday: Last day to drop class without a W (no tuition refund)
- **October 12** Friday: Last day for faculty to remove Spring 2018 and Summer Session 2018 incompletes
- **October 15-19** Monday-Friday: Winter 2019 registration period
- **November 2** Friday: Last day to drop classes with a W
- **November 19-23** Monday-Friday: Thanksgiving recess; academic holiday (Consult instructor)
- **November 22-23** Thursday-Friday: Thanksgiving recess; academic holiday Classes end
- **November 30** Friday: Last day to drop class without a W (no tuition refund)
- **December 3-7** Monday-Friday: Fall quarter final examinations
- **December 12** Wednesday: Fall quarter grades due
- **December 21** Friday: Tuition and fee payment due
- **December 24-25** Monday-Tuesday: Christmas recess; administrative holiday
- **Dec 31-Jan 1** Monday-Tuesday: New Year’s recess; administrative holiday
SCHOOL OF ENGINEERING

WINTER QUARTER 2019

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 15-19</td>
<td>Monday-Friday</td>
<td>Winter 2019 registration period</td>
</tr>
<tr>
<td>December 21</td>
<td>Friday</td>
<td>Tuition and fee payment due</td>
</tr>
<tr>
<td>December 31</td>
<td>Monday</td>
<td>Drop/Swap fee begins; $50 per course</td>
</tr>
<tr>
<td>January 7</td>
<td>Monday</td>
<td>Classes begin</td>
</tr>
<tr>
<td>January 9</td>
<td>Wednesday</td>
<td>New Student Orientation</td>
</tr>
<tr>
<td>January 11</td>
<td>Friday</td>
<td>Last day to petition for graduate degrees to be conferred in March 2019</td>
</tr>
<tr>
<td>January 13</td>
<td>Sunday</td>
<td>Last day to change registration or withdraw from classes with a 100% tuition refund (less fees) (Clear registration holds by Friday 1/11 by 4 p.m.)</td>
</tr>
<tr>
<td>January 20</td>
<td>Sunday</td>
<td>Last day to withdraw from classes with a 50% tuition refund (less fees)</td>
</tr>
<tr>
<td>January 21</td>
<td>Monday</td>
<td>Martin Luther King Day; administrative holiday (Consult instructor)</td>
</tr>
<tr>
<td>January 25</td>
<td>Friday</td>
<td>Last day to submit incomplete Fall 2018 work to faculty</td>
</tr>
<tr>
<td>January 27</td>
<td>Sunday</td>
<td>Last day to withdraw from classes with a 25% tuition refund (less fees)</td>
</tr>
<tr>
<td>February 1</td>
<td>Friday</td>
<td>Last day drop classes without a W (no tuition refund)</td>
</tr>
<tr>
<td>February 1</td>
<td>Friday</td>
<td>Last day for faculty to remove Fall 2018 incompletes</td>
</tr>
<tr>
<td>February 4-8</td>
<td>Monday-Friday</td>
<td>Spring 2019 registration period</td>
</tr>
<tr>
<td>February 18</td>
<td>Monday</td>
<td>Presidents’ Day; administrative holiday (Consult instructor)</td>
</tr>
<tr>
<td>February 22</td>
<td>Friday</td>
<td>Last day to drop classes with a W</td>
</tr>
<tr>
<td>March 15</td>
<td>Friday</td>
<td>Classes end</td>
</tr>
<tr>
<td>March 18-22</td>
<td>Monday-Friday</td>
<td>Winter quarter final examinations</td>
</tr>
<tr>
<td>March 21</td>
<td>Thursday</td>
<td>Tuition and fee payment deadline</td>
</tr>
<tr>
<td>March 27</td>
<td>Wednesday</td>
<td>Winter quarter grades due</td>
</tr>
</tbody>
</table>

SPRING QUARTER 2019

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 4-8</td>
<td>Monday-Friday</td>
<td>Spring 2019 registration period</td>
</tr>
<tr>
<td>February 22</td>
<td>Friday</td>
<td>Last day to petition for graduate degrees to be conferred in June 2019</td>
</tr>
<tr>
<td>March 21</td>
<td>Thursday</td>
<td>Tuition and fee payment due</td>
</tr>
<tr>
<td>March 25</td>
<td>Monday</td>
<td>Drop/Swap fee begins; $50 per course</td>
</tr>
<tr>
<td>March 25</td>
<td>Monday</td>
<td>Late registration fee begins; $100 fee if no previous enrollment</td>
</tr>
<tr>
<td>April 1</td>
<td>Monday</td>
<td>Classes begin</td>
</tr>
<tr>
<td>April 3</td>
<td>Wednesday</td>
<td></td>
</tr>
<tr>
<td>April 7</td>
<td>Sunday</td>
<td>Last day to change registration or withdraw from classes with a 100% tuition refund (less fees) (Clear registration holds by 4/5 by 4:00 p.m.)</td>
</tr>
<tr>
<td>April 8-12</td>
<td>Monday-Friday</td>
<td>Summer 2019 registration period</td>
</tr>
<tr>
<td>April 14</td>
<td>Sunday</td>
<td>Last day to withdraw from classes with a 50% tuition refund (less fees)</td>
</tr>
<tr>
<td>April 19</td>
<td>Friday</td>
<td></td>
</tr>
<tr>
<td>April 21</td>
<td>Sunday</td>
<td>Last day to withdraw from classes with a 25% tuition refund (less fees)</td>
</tr>
<tr>
<td>April 26</td>
<td>Friday</td>
<td>Last day to drop classes without a W (no tuition refund)</td>
</tr>
<tr>
<td>May 17</td>
<td>Friday</td>
<td>Last day to drop classes with a W</td>
</tr>
<tr>
<td>May 21</td>
<td>Tuesday</td>
<td>Tuition and fee payment deadline</td>
</tr>
<tr>
<td>May 27</td>
<td>Monday</td>
<td>Memorial Day; academic and administrative holiday (Consult instructor)</td>
</tr>
<tr>
<td>June 7</td>
<td>Friday</td>
<td></td>
</tr>
<tr>
<td>June 10-14</td>
<td>Monday-Friday</td>
<td>Spring quarter final examinations</td>
</tr>
<tr>
<td>June 14</td>
<td>Friday</td>
<td>Graduate Commencement</td>
</tr>
<tr>
<td>June 19</td>
<td>Wednesday</td>
<td></td>
</tr>
</tbody>
</table>
SUMMER SESSIONS 2019

April 8-12 Monday-Friday Registration period for all three sessions
May 21 Tuesday Tuition and fee payment deadline
June 17 Monday Late registration fee begins; $100 fee if no previous enrollment
June 17 Monday Drop/Swap fee begins; $50 per course
June 24 Monday Classes begin for Summer Sessions I and II
June 28 Friday Last day to register for all three summer sessions
July 4 Thursday Independence Day observed; administrative holiday. Classes will meet
July 5 Friday Last day to petition for graduate degree to be conferred in September 2019
July 26 Friday Last day to withdraw from classes for Session II only (no tuition refund)
July 26 Friday Classes end for Session II only
July 29-30 Monday-Tuesday Summer Session II final examinations
August 5 Monday Classes begin for Summer Session III
August 30 Friday Last day to withdraw from classes for Session I only (no tuition refund)
August 30 Friday Classes end for Session I only
September 2 Monday Last day to petition for graduate degree to be conferred in September 2019
September 2-6 Monday-Friday Summer Session I final examinations
September 6 Friday Last day to withdraw from classes for Session III only (no tuition refund)
September 6 Friday Classes end for Session III only
September 9-10 Monday-Tuesday Summer Session III final examinations

All dates are inclusive.
Registration dates are subject to change.
Registration holds must be cleared with the appropriate office by 4 p.m. on Friday when an e-campus deadline to add or drop a class falls on a Sunday.
Fall, Winter, Spring and Summer Quarter refund policies: www.scu.edu/bursar

For more information regarding Tuition Refund Policies, please see the Financial Information, Chapter 5 in bulletin.

Santa Clara University

Located in the heart of California’s Silicon Valley, Santa Clara University is a comprehensive Jesuit, Catholic university with more than 8,800 students. Founded in 1851 by the Society of Jesus, California’s oldest operating higher education institution offers a rigorous undergraduate curriculum in arts and sciences, business, and engineering, plus nationally recognized graduate and professional programs in business, law, engineering, education, counseling psychology, pastoral ministries, and theology. The University boasts a diverse community of scholars offering a values-oriented curriculum characterized by small class sizes and a dedication to educating students for competence, conscience, and compassion. The traditions of Jesuit education—educating the whole person for a life of service—are deep in all of its curricular and co-curricular programs.

Santa Clara University is perennially ranked among the top comprehensive universities by U.S. News & World Report and has one of the highest graduation rates for undergraduate students among all comprehensive universities. The University has a national reputation for its undergraduate program that features a distinctive core curriculum, an integrated learning environment, and research opportunities for undergraduate students.

The University was established as Santa Clara College on the site of the Mission Santa Clara de Asís, the eighth of the original 21 California missions. The college originally operated as a preparatory school and did not offer collegiate courses until 1853. Following the Civil War, enrollment increased, and by 1875 the size of the student body was 275. One-third of the students were enrolled in the collegiate division; the remainder attended the college’s preparatory and high school departments.

Santa Clara experienced slow and steady growth during its first 60 years, becoming the University of Santa Clara in 1912, when the schools of engineering and law were added. In 1925, the high school was separated from the University and took the name of Bellarmine College Preparatory in 1928. The Leavey School of Business opened in 1926, and within a decade, became one of the first business schools in the country to receive national accreditation.

For 110 years, Santa Clara was an all-male school. In the fall of 1961, women were accepted as undergraduates, and Santa Clara became the first coeducational Catholic university in California. The decision resulted in an admissions explosion—from 1,500 students to more than 5,000. The size of the faculty tripled, and the University began the largest building program in school history, building eight residence halls, a student union, and an athletic stadium. In 1985, the University adopted “Santa Clara University” as its official name.

UNIVERSITY VISION, MISSION, AND FUNDAMENTAL VALUES

Santa Clara University has adopted three directional statements to describe the kind of university it aspires to become (Strategic Vision), its core purpose and the constituencies it serves (University Mission), and the beliefs that guide its actions (Fundamental Values).
Strategic Vision

Santa Clara University will educate citizens and leaders of competence, conscience, and compassion, and cultivate knowledge and faith to build a more humane, just, and sustainable world.

University Mission

The University pursues its vision by creating an academic community that educates the whole person within the Jesuit, Catholic tradition, making student learning our central focus, continuously improving our curriculum and co-curriculum, strengthening our scholarship and creative work, and serving the communities of which we are a part in Silicon Valley and around the world.

Student learning takes place at the undergraduate and graduate level in an educational environment that integrates rigorous inquiry and scholarship, creative imagination, reflective engagement with society, and a commitment to fashioning a more humane and just world.

As an academic community, we expand the boundaries of knowledge and insight through teaching, research, artistic expression, and other forms of scholarship. It is primarily through discovering, communicating, and applying knowledge that we exercise our institutional responsibility as a voice of reason and conscience in society.

We offer challenging academic programs and demonstrate a commitment to the development of:

• Undergraduate students who seek an education with a strong humanistic orientation in a primarily residential setting
• Graduate students, many of them working professionals in Silicon Valley, who seek advanced degree programs that prepare them to make significant contributions to their fields

In addition to these core programs, we also provide a variety of continuing education and professional development opportunities for non-matriculated students.

Fundamental Values

The University is committed to these core values, which guide us in carrying out our mission and realizing our vision:

Academic Excellence. We seek an uncompromising standard of excellence in teaching, learning, creativity, and scholarship within and across disciplines.

Search for Truth, Goodness, and Beauty. We prize scholarship and creative work that advance human understanding, improve teaching and learning, and add to the betterment of society by illuminating the most significant problems of the day and exploring the enduring mysteries of life. In this search, our commitment to academic freedom is unwavering.

Engaged Learning. We strive to integrate academic reflection and direct experience in the classroom and the community, especially to understand and improve the lives of those with the least education, power, and wealth.

Commitment to Students. As teachers and scholars, mentors and facilitators, we endeavor to educate the whole person. We nurture and challenge students—intellectually, spiritually, aesthetically, morally, socially, and physically—preparing them for leadership and service to the common good in their professional, civic, and personal lives.

Service to Others. We promote throughout the University a culture of service—service not only to those who study and work at Santa Clara but also to society in general and to its most disadvantaged members as we work with and for others to build a more humane, just, faith-filled, and sustainable world.
program in interdisciplinary education (with emphases in curriculum and instruction; science, technology, environmental education, and mathematics [STEEM]; and educational administration). The departments of Education and Counseling Psychology jointly offer the certificate program in Alternative and Correctional Education. The Department of Counseling Psychology offers two degree programs: M.A. in counseling psychology and M.A. in counseling. The M.A. in counseling psychology can lead to state licensure for marriage and family therapists and/or licensed professional clinical counselors. The department includes emphasis programs in health, correctional, and Latino counseling.

The Jesuit School of Theology (JST) is one of only two Jesuit theological centers in the United States operated by the Society of Jesus, as the order of Catholic priests is known. It is one of only two Jesuit theological centers in the country that offer three ecclesiastical degrees certified by the Vatican Congregation for Catholic Education, and it also offers four advanced theological degrees certified by the Association of Theological Schools. In addition, JST offers a spiritual renewal program for clergy, religious, and lay people, and conducts an annual Instituto Hispano that offers a certificate program to advance Hispanic leadership in the pastoral life of the church.

CENTERS OF DISTINCTION

Santa Clara University has three Centers of Distinction that serve as major points of interaction between the University and local and global communities. Each center focuses on a theme that is central to Santa Clara’s distinctive mission as a Jesuit university and offers an educational environment integrating rigorous inquiry and scholarship, creative imagination, reflective engagement with society, and a commitment to fashioning a more humane and just world. Each center engages faculty and students from different disciplines as well as experts and leaders from the community through speakers, conferences, workshops, and experiential learning opportunities.

Miller Center for Social Entrepreneurship

The mission of the Miller Center for Social Entrepreneurship is to accelerate global, innovation-based entrepreneurship in service to humanity. Through an array of programs including its signature Global Social Benefit Institute (GSBI™), the Center engages an international network of social enterprises, investment capital, and technical resources to build the capacity of the global social entrepreneurship movement. As a Center of Distinction at Santa Clara University, the Center leverages its programs to inspire faculty and students with real-world case studies, distinctive curricula, and unique research opportunities, advancing the University’s vision of creating a more just, humane, and sustainable world. Each center engages faculty and students from different disciplines as well as experts and leaders from the community through speakers, conferences, workshops, and experiential learning opportunities.

The Ignatian Center for Jesuit Education promotes and enhances the distinctively Jesuit, Catholic tradition of education at Santa Clara University, with a view toward serving students, faculty, staff, and through them the larger community, both local and global. The Ignatian Center achieves this mission chiefly through four signature programs:

- Spiritual Exercises of St. Ignatius provide opportunities for members of the community to encounter the spiritual sources of the Jesuit tradition.

Through these four programs, the Ignatian Center aspires to be recognized throughout Silicon Valley and beyond as providing leadership for the integration of faith, justice, and the intellectual life.

Markkula Center for Applied Ethics

The Markkula Center for Applied Ethics brings the traditions of ethical thinking to bear on real-world problems. Our mission is to engage individuals and organizations in making choices that respect and care for others. Beyond a full range of events, grants, and fellowships for the Santa Clara University community, the Center serves professionals in business, education, health care, government, journalism, and the social sector, providing training, programs, and roundtables that explore the ethical challenges in the field. In addition, we focus on ethical issues in leadership, technology, and the internet. Through our website and international collaborations, we also bring ethical decision making resources to the wider world.

FACULTY

Santa Clara University’s emphasis on a community of scholars and integrated education attracts faculty members who are as committed to students’ intellectual and moral development as they are to pursuing their own scholarship. The University’s 530 full-time faculty members include Fulbright professors, nationally recognized authors, groundbreaking scientists, and distinguished economic theorists.

STUDENT BODY

Santa Clara University has a student population of 9,015, with 5,438 undergraduate students and 3,296 graduate students. The undergraduate population has a male-to-female ratio of 50-to-50, and about 7 percent of undergraduate students identify themselves as persons of color. About 62 percent of undergraduates are from California, with the others coming from throughout the United States and 44 countries. Seventy-seven percent of undergraduate students receive some kind of financial aid—scholarships, grants, or loans. More than half (53 percent) of the undergraduate population live in University housing, with 90 percent of first-year students and 70 percent of sophomores living on campus. Students experience an average class size of 23, with 42 percent of classes having fewer than 20 students and only 1.6 percent of classes having 50 or more students. The student-to-faculty ratio is 12-to-1.

The University’s commitment to learning is expressed in the fact that 96.2 percent of first-year students advance to the sophomore year, and the percentage of Santa Clara students who graduate is among the highest in the country. The four-year graduation rate for entering first-year students is 78 percent, with a five-year graduation rate of 84 percent and a six-year graduation rate of 85.2 percent.

ALUMNI

Santa Clara University has over 94,000 alumni living in all 50 states and almost 100 countries. More than half of the alumni live in the San Francisco Bay Area, where many are leaders in business, law, engineering, academia, and public service.
CAMPUS

The University is located on a 106-acre campus in the city of Santa Clara near the southern end of the San Francisco Bay in one of the world’s greatest cultural centers. More than 50 buildings on campus house 15 student residences, a main library, a law library, two student centers, the de Saiset Museum, extensive performing arts and athletic facilities, and a recreation and fitness center.

Santa Clara’s campus has the advantage of being located in Silicon Valley, a region known for its extraordinary visionaries, who have designed and created some of the most significant scientific and technological advances of our age. Silicon Valley is more than a location—it is a mindset, and home to more than 3 million residents and 6,000 science and technology-related companies (not including San Francisco, which is located just an hour away).

Santa Clara’s campus is well known for its beauty and mission-style architecture. Opened in 2013, the brick-paved Abby Sobrato Mall leads visitors from the University’s main entrance to the heart of campus—the Mission Santa Clara de Asís. The roses and palm and olive trees of the Mission Gardens surround the historic Mission Church, which was restored in 1928. The adjacent Adobe Lodge is the oldest building on campus. In 1981, it was restored to its 1822 decor.

ACADEMIC FACILITIES

Amidst all this beauty and history are modern, world-class academic facilities. Students study and thrive in places such as the Joanne E. Harrington Learning Commons, Sobrato Family Technology Center, and Orradre Library where individuals and groups can study in an inviting, light-filled, and open environment. Notably, the library features an Automated Retrieval System, a high-density storage area where up to 900,000 books and other publications can be stored and retrieved using robotic-assisted technology.

Another example of Santa Clara’s excellent academic facilities is Lucas Hall, home of the Leavey School of Business. This modern 85,000-square-foot building houses classrooms, meeting rooms, offices, study spaces, and a café. Classrooms are equipped with state-of-the-art videoconferencing equipment as well as a multi-platform system to record faculty lectures for later review by students. Vari Hall (formerly Arts & Sciences), adjacent to Lucas Hall, is home to the Markkula Center for Applied Ethics as well as academic departments, classrooms, and a 2,200-square-foot digital television studio, regarded as among the best studios found on any campus nationwide.

Located near Vari Hall (formerly Arts & Sciences) is the Schott Admission and Enrollment Services Building, a welcome center for campus visitors and home to several University departments. Opened in 2012, the lobby of this green-certified structure includes technology-infused exhibits that illustrate Santa Clara’s Jesuit mission. Among other green features on campus are two solar-powered homes built in 2007 and 2009 for the U.S. Department of Energy’s Solar Decathlon. The importance of athletics to the University is evident everywhere on campus. Among the newest additions to Santa Clara’s athletics facilities are the Stephen Schott Stadium, home field for the men’s baseball team, and the state-of-the-art Stevens Soccer Training Center funded by a gift from Mary and Mark Stevens. The gift also allowed Santa Clara to upgrade the stands in Stevens Stadium (formerly Buck Shaw Stadium), home to the men’s and women’s soccer programs, and build a plaza to celebrate Bronco sports—its past, present, and future. The plaza celebrates the history of Santa Clara University football as well as the legacy and future of men’s and women’s soccer at SCU. Bellomy Field, eight acres of well-lit, grassy playing fields, provides space for club and intramural sports such as rugby and field hockey. Adjacent to Bellomy Field is the well-appointed women’s softball field, which opened in 2013. The Leavey Event Center houses the University’s premier basketball facility. Over the years, the Leavey Event Center has hosted nine West Coast Conference Basketball Championships.

ATHLETICS AND THE ARTS

The University recognizes the arts as an important part of life at Santa Clara University. The Edward M. Dowd Art and Art History Building opened in 2016, housing an integrated fine arts program that is a destination and a center for inspiration, innovation, and engagement in the arts and art history in Silicon Valley. The de Saiset Museum, the University’s accredited museum of art and history, presents changing art exhibitions throughout the year and serves as the caretaker of the University’s California History Collection, which includes artifacts from the Native American, Mission, and early Santa Clara College periods.

SCU Presents represents the University’s commitment to the performing arts on campus, which include performances at venues such as the Louis B. Mayer Theatre, the Fess Parker Studio Theatre, and the Music Recital Hall. The Mayer Theatre is Santa Clara University’s premier theatrical venue, housing 500 intimate seats in either a flexible proscenium or thrust-stage setting. The Fess Parker Studio Theatre has no fixed stage or seating. Its black box design, complete with movable catwalks, provides flexibility in an experimental setting. The 250-seat Music Recital Hall provides a contemporary setting where students, faculty, and guest artists offer a variety of performances.

The Robert F. Benson Memorial Center serves as a hub for campus life. The Benson Center offers dining services and houses the campus bookstore, the campus post office, and meeting rooms. The University’s main dining hall, The Marketplace, resembles an upscale food court with numerous stations and options. For a more informal experience, The Bronco is the Benson Center’s late-night venue, serving beverages and pub-style food.

Another hot-spot for student life, the Paul L. Locatelli, S.J., Student Activity Center, includes a 6,000 square-foot gathering hall with a high ceiling that can accommodate dances and concerts as well as pre- and postgame activities. Designed with environmental sensitivity, the building is energy efficient and has daytime lighting controls and motion sensors to maximize use of natural light. For fitness-minded students, the Pat Malley Fitness and Recreation Center features a 9,500-square-foot weight training and cardiovascular exercise room, three basketball courts, a swimming pool, and other facilities to support the recreational and fitness needs of the campus community. Its black box design, complete with movable catwalks, provides flexibility in an experimental setting. The 250-seat Music Recital Hall provides a contemporary setting where students, faculty, and guest artists offer a variety of performances.

The importance of athletics to the University is evident everywhere on campus. Among the newest additions to Santa Clara’s athletics facilities are the Stephen Schott Stadium, home field for the men’s baseball team, and the state-of-the-art Stevens Soccer Training Center funded by a gift from Mary and Mark Stevens. The gift also allowed Santa Clara to upgrade the stands in Stevens Stadium (formerly Buck Shaw Stadium), home to the men’s and women’s soccer programs, and build a plaza to celebrate Bronco sports—its past, present, and future. The plaza celebrates the history of Santa Clara University football as well as the legacy and future of men’s and women’s soccer at SCU. Bellomy Field, eight acres of well-lit, grassy playing fields, provides space for club and intramural sports such as rugby and field hockey. Adjacent to Bellomy Field is the well-appointed women’s softball field, which opened in 2013. The Leavey Event Center houses the University’s premier basketball facility. Over the years, the Leavey Event Center has hosted nine West Coast Conference Basketball Championships.

The University recognizes the arts as an important part of life at Santa Clara University. The Edward M. Dowd Art and Art History Building opened in 2016, housing an integrated fine arts program that is a destination and a center for inspiration, innovation, and engagement in the arts and art history in Silicon Valley. The de Saiset Museum, the University’s accredited museum of art and history, presents changing art exhibitions throughout the year and serves as the caretaker of the University’s California History Collection, which includes artifacts from the Native American, Mission, and early Santa Clara College periods.

SCU Presents represents the University’s commitment to the performing arts on campus, which include performances at venues such as the Louis B. Mayer Theatre, the Fess Parker Studio Theatre, and the Music Recital Hall. The Mayer Theatre is Santa Clara University’s premier theatrical venue, housing 500 intimate seats in either a flexible proscenium or thrust-stage setting. The Fess Parker Studio Theatre has no fixed stage or seating. Its black box design, complete with movable catwalks, provides flexibility in an experimental setting. The 250-seat Music Recital Hall provides a contemporary setting where students, faculty, and guest artists offer a variety of performances.

The Robert F. Benson Memorial Center serves as a hub for campus life. The Benson Center offers dining services and houses the campus bookstore, the campus post office, and meeting rooms. The University’s main dining hall, The Marketplace, resembles an upscale food court with numerous stations and options. For a more informal experience, The Bronco is the Benson Center’s late-night venue, serving beverages and pub-style food.

Another hot-spot for student life, the Paul L. Locatelli, S.J., Student Activity Center, includes a 6,000 square-foot gathering hall with a high ceiling that can accommodate dances and concerts as well as pre- and postgame activities. Designed with environmental sensitivity, the building is energy efficient and has daytime lighting controls and motion sensors to maximize use of natural light. For fitness-minded students, the Pat Malley Fitness and Recreation Center features a 9,500-square-foot weight training and cardiovascular exercise room, three basketball courts, a swimming pool, and other facilities to support the recreational and fitness needs of the campus community. Its black box design, complete with movable catwalks, provides flexibility in an experimental setting. The 250-seat Music Recital Hall provides a contemporary setting where students, faculty, and guest artists offer a variety of performances.

The importance of athletics to the University is evident everywhere on campus. Among the newest additions to Santa Clara’s athletics facilities are the Stephen Schott Stadium, home field for the men’s baseball team, and the state-of-the-art Stevens Soccer Training Center funded by a gift from Mary and Mark Stevens. The gift also allowed Santa Clara to upgrade the stands in Stevens Stadium (formerly Buck Shaw Stadium), home to the men’s and women’s soccer programs, and build a plaza to celebrate Bronco sports—its past, present, and future. The plaza celebrates the history of Santa Clara University football as well as the legacy and future of men’s and women’s soccer at SCU. Bellomy Field, eight acres of well-lit, grassy playing fields, provides space for club and intramural sports such as rugby and field hockey. Adjacent to Bellomy Field is the well-appointed women’s softball field, which opened in 2013. The Leavey Event Center houses the University’s premier basketball facility. Over the years, the Leavey Event Center has hosted nine West Coast Conference Basketball Championships.

The University recognizes the arts as an important part of life at Santa Clara University. The Edward M. Dowd Art and Art History Building opened in 2016, housing an integrated fine arts program that is a destination and a center for inspiration, innovation, and engagement in the arts and art history in Silicon Valley. The de Saiset Museum, the University’s accredited museum of art and history, presents changing art exhibitions throughout the year and serves as the caretaker of the University’s California History Collection, which includes artifacts from the Native American, Mission, and early Santa Clara College periods.

SCU Presents represents the University’s commitment to the performing arts on campus, which include performances at venues such as the Louis B. Mayer Theatre, the Fess Parker Studio Theatre, and the Music Recital Hall. The Mayer Theatre is Santa Clara University’s premier theatrical venue, housing 500 intimate seats in either a flexible proscenium or thrust-stage setting. The Fess Parker Studio Theatre has no fixed stage or seating. Its black box design, complete with movable catwalks, provides flexibility in an experimental setting. The 250-seat Music Recital Hall provides a contemporary setting where students, faculty, and guest artists offer a variety of performances.
Academic Programs and Requirements

GENERAL INFORMATION

More than 800 students attend Santa Clara University’s graduate engineering programs each quarter. The School of Engineering offers a large variety of programs to meet the needs of these engineering professionals.

B.S./M.S. FIVE-YEAR DUAL DEGREE PROGRAM

The School of Engineering offers qualified Santa Clara University undergraduates the opportunity to earn both a bachelor of science and a master of science degree in five years. This is an excellent way to save time and open-up more career possibilities early on. The degree is offered in bioengineering, civil engineering, computer science and engineering, electrical engineering, engineering management and leadership**, mechanical engineering and software engineering. This program is also open to students in the College of Arts and Sciences who are majoring in mathematics, biology, computer science or engineering physics.

The application fee and GRE General Test requirement are waived. Automatic admission into the five-year program is based on a minimum GPA of 3.0 in the major. Upon notification of acceptance into the B.S./M.S. program, students may begin taking graduate-level courses in their senior year and a maximum of 20 units can be transferred into the graduate program. Students must meet with a graduate advisor and submit a program of studies with the undergraduate transfer credit listed.

Please Note: Undergraduate students will be charged the current undergraduate tuition rate while enrolled in those graduate courses. Once students have been matriculated into the master’s degree program, current graduate tuition rates will be charged.

**For more information on the engineering management and leadership option, please see Chapter 14.

CERTIFICATE PROGRAMS

Certificate programs are designed to provide intensive background in a focused area at the graduate level. With 16-20 required units for completion, each certificate is designed to be completed in a much shorter period of time than an advanced degree. Santa Clara’s certificate programs are appropriate for students working in industry who wish to update their skills or for those interested in changing their career path. All units applied toward the certificate program must be earned within a two year period.
All Santa Clara University courses applied toward the completion of a certificate program earn graduate credit that may also be applied toward a graduate degree, subject to the requirements of the degree program. Students who wish to continue for such a degree must submit a separate application and satisfy all normal admission requirements. The general Graduate Record Examination (GRE) test requirement for graduate admission to the master’s degree will be waived for students who have been formally admitted to and have completed a certificate program with a GPA of 3.5 or better.

Certificate programs are offered in frugal innovation, renewable energy, ASIC design and test, analog circuit design, digital signal processing applications, digital signal processing theory, microwave and antennas, fundamentals of electrical engineering, mechanical design analysis, mechatronics systems engineering, dynamics, controls, and thermofluids. For more specific information on each certificate, please see Chapter 7.

Please Note: Santa Clara University does not issue F-1 visas to applicants who wish to enter directly into this program.

MASTER OF SCIENCE PROGRAM

The master’s program is designed to extend the technical breadth and depth of an engineer’s knowledge. Students in this program complete a program of studies approved by the faculty advisor in the major department. The program must include no less than 45 quarter units and a 3.0 GPA (B average) must be earned in all coursework taken at Santa Clara. Residence requirements of the University are met by completing 36 quarter units of coursework applied toward the approved academic program and a record of acceptable technical achievement. The student’s academic record must include a paper principally written by the student and accepted for publication by a recognized engineering journal prior to the granting of the degree. A letter from the journal accepting the paper must be submitted to the department chairperson. In certain cases, the department may accept publication in the proceedings of an appropriate conference.

DOCTOR OF PHILOSOPHY PROGRAM

The School of Engineering offers master’s programs in applied mathematics, bioengineering, civil environmental and sustainable engineering, computer science and engineering, software engineering, electrical engineering, engineering management and leadership, mechanical engineering and power systems and sustainable energy. The coursework requirements for the degree are determined by each of the major departments. In order to graduate, students must complete the required coursework for the program to which they are admitted and must have a cumulative GPA of 3.0 in all coursework listed on their approved program of study. In addition to this requirement, Engineering Management and Leadership degree candidates must earn a 3.0 GPA in those courses applied to their technical stem and a 3.0 GPA in their engineering management course stem.

Please note: Only classes with assigned grades of C- or higher will count toward the completion of the certificates, M.S. or Ph.D. degrees. The grades of all courses completed during the M.S., Ph.D or certificate program are used to compile final cumulative grade point average (G.P.A.)

Note that the number of engineering management courses accepted for other degrees in the graduate engineering program is restricted to six units in computer engineering, electrical engineering, and most options of mechanical engineering.
Preliminary Examination

The preliminary examination shall be written and oral, and shall include subject matter deemed by the major department to represent sufficient preparation in depth and breadth for advanced study in the major. Only those who pass the written examination may take the oral.

Students currently studying at Santa Clara University for a master’s degree who are accepted for the Ph.D. program and who are at an advanced stage of the M.S. program may, with the approval of their academic advisor, take the preliminary examination before completing the M.S. degree requirements.

Students who have completed the M.S. degree requirements and have been accepted for the Ph.D. program should take the preliminary examination as soon as possible but not more than one and one-half years after beginning the program.

Only those students who pass the preliminary examination shall be allowed to continue in the doctoral program. The preliminary examination may be repeated only once and only at the discretion of the thesis advisor.

Thesis Advisor

It is the student’s responsibility to obtain consent from a full-time faculty member in the student’s major department to serve as his/her prospective thesis advisor.

It is strongly recommended that Ph.D. students find a thesis advisor before taking the preliminary examination. After passing the preliminary examination, Ph.D. students should have a thesis advisor before the beginning of the next quarter following the preliminary examination. Students currently pursuing a master’s degree at the time of their preliminary examination should have a thesis advisor as soon as possible after being accepted as a Ph.D. student.

The student and the thesis advisor jointly develop a complete program of studies for research in a particular area. The complete program of studies (and any subsequent changes) must be filed with Engineering Graduate Programs and approved by the student’s doctoral committee. Until this approval is obtained, there is no guarantee that courses taken will be counted toward the Ph.D. course requirements.

Doctoral Committee

After passing the Ph.D. preliminary exam, a student requests his or her thesis advisor to form a doctoral committee. The committee consists of at least five members, each of which must have earned a doctoral degree in a field of engineering or a related discipline. This includes the student’s thesis advisor, at least two other current faculty members of the student’s major department at Santa Clara University, and at least one current faculty member from another appropriate academic department at Santa Clara University.

The committee reviews the student’s program of study, conducts an oral comprehensive exam, conducts the dissertation defense, and reviews the thesis. Successful completion of the doctoral program requires that the student’s program of study, performance on the oral comprehensive examination, dissertation defense, and thesis itself meet with the approval of all committee members.

Residence

The Ph.D. degree is granted on the basis of academic achievement. The student is expected to complete a minimum of 72 units of graduate credit beyond the master’s degree with an overall GPA of 3.0 or better. Please note: Only classes with assigned grades of C- or higher will count toward the completion of the certificate, M.S. or Ph.D. degree. Of these, 36 quarter units may be earned through coursework, independent study and directed research, and 36 through the thesis. Deviation from this distribution must be approved by the student’s doctoral committee and must not be more than six units. All Ph.D. thesis units are graded on a Pass/No Pass basis. A maximum of 18 quarter units (12 semester units), not previously used for the completion of another degree, may be transferred from any accredited institutions at the discretion of the student’s advisor.

Comprehensive Examinations and Admission to Candidacy

After completion of the formal coursework approved by the doctoral committee, the student shall present his/her research proposal for comprehensive oral examinations on the subject of his/her research work. The student should make arrangements for the comprehensive examinations through the doctoral committee. A student who passes the comprehensive examinations is considered a degree candidate.

The comprehensive examinations normally must be completed within four years from the time the student is admitted to the doctoral program. These examinations may be repeated once, in whole or in part, at the discretion of the doctoral committee.

Thesis Research and Defense

The period following the comprehensive examinations is devoted to research for the thesis, although such research may begin before the examinations are complete. After successfully completing the comprehensive examinations, the student must pass an oral examination on his/her research, conducted by the doctoral committee and whomever they appoint as examiners. The thesis must be made available to all examiners one month prior to the examination. The oral examination shall consist of a presentation of the results of the thesis and the defense. This examination is open to all faculty members of Santa Clara University, but only members of the doctoral committee have a vote.

Thesis and Publication

At least one month before the degree is conferred, the candidate must submit one copy of the final version of the thesis to the department and one copy to the University Library. The thesis will not be considered as accepted until approved by the doctoral committee and one or more refereed articles based on it are accepted for publication in a professional or scientific journal approved by the doctoral committee. The quality of the refereed journal must be satisfied by one of two criteria: (1) the refereed journal should have an impact factor of at least 1.0; or (2) prior to submitting the candidate’s work to a refereed journal, written approvals on satisfying the journal’s quality should be obtained from the candidate’s advisor, the doctoral committee, the department chair, and the dean’s office. This written approval must be kept in the candidate’s file.

All doctoral theses must also be reproduced on microfilm by University Microfilms International, which keeps on deposit the master microfilm copy and responds to requests for copies by individuals and libraries.
Time Limit for Completing Degrees

All requirements for the doctoral degree must be completed within eight years following initial enrollment in the Ph.D. program. Extensions will be allowed only in unusual circumstances and must be recommended in writing by the student’s doctoral committee, and approved by the dean of engineering in consultation with the Graduate Program Leadership Council.

Non-Enrollment Period

Ph.D. students are required to enroll in at least one unit for the fall, winter and spring quarters. Those who do not wish to do so must submit a leave of absence form or a withdrawal form to the Graduate Services office. A leave of absence form is required if a student plans to miss one or two quarters, while any longer absence requires a withdrawal form. Students who wish to resume their Ph.D. studies after withdrawing from the program must apply for readmission, and obtain the signatures of their academic advisor and the department chair.

Students are required to complete their degree within eight years from their original admit term date. The eight year time frame includes quarters during which a student was not enrolled. Those who fail to complete their Ph.D. in eight years can request an extension only under special circumstances. In such cases, the student’s advisor will need to discuss the case with the Graduate Program Leadership Council, which will determine whether an extension is warranted (and for how long).

Note: Students who miss one or more quarters and fail to submit the appropriate form(s) will be discontinued automatically, and will have to reapply to the Ph.D. program. They will need to follow the same procedure as students who withdrew from the program.

Additional Graduation Requirements

The requirements for the doctoral degree in the School of Engineering have been made to establish the structure in which the degree may be earned. The student’s Ph.D. committee looks at the proposed research and the prior background of the student to determine whether or not there are specific courses that must be added as requirements. The University reserves the right to evaluate the undertakings and the accomplishments of the degree candidate in total and award or withhold the degree as a result of its deliberations.

THE INDUSTRIAL TRACK

In addition to our regular Ph.D. program, Engineering Graduate Programs also offer an “industrial track” for working professionals as an option to facilitate the collaboration between academia and industry. Details are as follows:

1. The topic of the research should be coordinated with the needs of the candidate’s employer, and must be agreed upon by all parties. This topic must have a component that is publishable, and is presentable in open forums. If necessary, a collaborative research agreement will be enacted to indicate the rights of the School and the industrial partner.

2. As a part of the application process, candidates must submit a letter of support from their employer. This letter should contain a pledge of financial support, and must identify a co-advisor within the company. The co-advisor shares responsibilities for guiding the candidate’s research with a full-time faculty advisor. This person is also expected to be a member of the doctoral committee.

3. The full-time study component of the residence requirement is waived, but other residence requirements remain the same. Students who opt for this “industrial track” are responsible for meeting all other requirements for the Ph.D. The awarded degree will be the same for all students, regardless of the track that they choose to pursue.

OPEN UNIVERSITY PROGRAM

Engineers who wish to update their skills or learn new technologies without pursuing a specific degree may enroll in the School of Engineering’s Open University program. The Open University program is closed to those students wishing to take Computer Science and Engineering courses.

If a student from the Open University program is accepted into a degree program, a maximum of 16 units may apply toward the degree (if the courses are in the same discipline to which the student is accepted). The general GRE test requirement for admission to the master’s degree program will be waived if the student has completed a set of required courses in the department to which they are applying, and has earned a GPA of 3.5 or higher. A list of these courses can be found on the Graduate Engineering website: www.scu.edu/engineering/academic-programs/waiving-the-gre/

Open University students who are considering enrolling in the master’s program should be aware that each specialization has its own set of requirements, and that the number of “free electives” is very limited. Such students are therefore strongly encouraged to choose their classes in consultation with a faculty advisor from the very beginning.

Students should remember, however, that all coursework taken at SCU, whether as a degree-seeking or an Open University student becomes a part of the student’s academic history.

Please Note: Santa Clara University does not issue F-1 visas to applicants who wish to enter directly into this program.
To submit your online application go to https://slate.scu.edu/apply/. Create an application with your email as the username and create a password. Use this website to view application status and official decision. Applications for admission and related deadlines are available on the Graduate School of Engineering website: www.scu.edu/engineering/graduate/admissions-deadlines/.

APPLICATION REQUIREMENTS

OPEN UNIVERSITY

The Department of Computer Engineering will not be accepting applications for Open University.

For those who want to update their skills and learn new technologies without the commitment of earning a graduate degree, Open University allows students to enroll in graduate-level classes.

For admission, applicants must submit the following materials:

• A completed online Application for Admission to Engineering Graduate Programs, including a nonrefundable $60 application fee
• Official transcript from every university attended* to:
 Santa Clara University
 Graduate Engineering Program
 500 El Camino Real
 Santa Clara, CA 95053-0583
 Email: GradEngineer@scu.edu
 Phone: 408-554-4313
 Fax: 408-554-4323

*Please Note: All applicants with degrees from universities outside of the United States must also submit a transcript evaluation report from Educational Credential Evaluators (ECE) or World Education Services (WES). The report must include a course-by-course evaluation which will verify a GPA (based on a 4.0 scale), and the U.S. equivalence of each educational credential. A copy of your original transcripts will be attached to the report.

For additional information, please refer to the ECE or WES websites: www.ece.org or www.wes.org. (There is no exception to this requirement.)

If students wish to apply to a degree program at a later date, they must follow the same procedure, and submit the same supporting documentation required of degree-seeking applicants. A maximum of 16 units may apply toward the degree if the courses are in the same discipline to which the student is accepted. The general GRE test requirement for admission to the master’s degree program will be waived if the
student has completed a set of required courses in the department to which they are applying, and has earned a GPA of 3.5 or higher. A list of these courses can be found on the Graduate Engineering website: www.scu.edu/engineering/academic-programs/waiving-the-gre/

Note 1: Santa Clara University does not issue F-1 visas to applicants who wish to enter directly into this program.

Note 2: Open University students are not eligible to enroll in undergraduate classes.

Certificate Programs

To submit your online application go to https://slate.scu.edu/apply/. Create an application with your email as the username and create a password. Use this website to view application status and official decision. Depending on the certificate, students will complete 16-18 units of coursework. Applicants for admission to the certificate programs must submit the following materials:

• A completed online Application for Admission to Engineering Graduate Programs, including a nonrefundable $60 application fee
• One official transcript from each academic institution attended, indicating the degree received and date of conferral

Please Note: All applicants with degrees from universities outside of the United States must also submit a transcript evaluation report from Educational Credential Evaluators (ECE) or World Education Services (WES). The report must include a course-by-course evaluation which will verify a GPA (based on a 4.0 scale), and the U.S. equivalence of each educational credential. For additional information, please refer to the ECE or WES website: www.ece.org or www.wes.org (There is no exception to this requirement.)

Also please note that GRE and TOEFL scores are not required for admission. Certificate programs are not appropriate for international students, who must pursue full-time study.

All certificate units in the discipline may be applied toward a master’s degree. Students who wish to pursue such a degree must submit a separate online application and satisfy all normal admission requirements. The application fee will be waived for currently enrolled certificate students. The general GRE and TOEFL test requirement for graduate admission to the master’s degree will be waived for students who complete a certificate with a GPA of 3.5 or higher.

Note 1: Santa Clara University does not issue F-1 visas to applicants who wish to enter directly into this program.

Note 2: The Department of Computer Engineering is currently not accepting applications to the certificate programs.

Master of Science Degrees

To submit your online application go to https://slate.scu.edu/apply/. Create an application with your email as the username and create a password. Use this website to view application status and official decision.

Domestic applicants for admission to the master’s programs must submit the following materials:

• A completed online Application for Admission to Engineering Graduate Programs, including a nonrefundable $60 application fee
• One official transcript from each academic institution attended, indicating the degree received and date of conferral
• Scores from the Test of English as a Foreign Language (TOEFL) or the International English Language Testing Systems (IELTS) exam (applies to non-U.S. citizens or those students who have received a degree from a university outside of the United States). Our institution code is 4851. Test scores over three years old will not be accepted.

Please Note: Students applying to the M.S. program in Applied Mathematics, and Mechanical Engineering may petition to waive the GRE requirement by completing the Petition to Waive GRE Requirement form. However, applicants must be aware that there is no guarantee that the waiver will be granted. The department of Computer Engineering DOES NOT accept GRE waivers.

This option is also available to applicants for the Engineering Management Program who have two or more years of working experience in the U.S. These students will also complete the Petition to Waive GRE Requirement form, as indicated above.

Ph.D. and Engineer’s Degrees

To submit your online application go to https://slate.scu.edu/apply/. Create an application with your email as the username and create a password. Use this website to view application status and official decision.

• Official Graduate Record Examination (GRE) scores, which must be sent directly to Engineering Graduate Programs by the Educational Testing Service (ETS). Our institution code is 4851. For information on the GRE, please visit the website: www.ets.org/

Please Note: Students applying to the M.S. program in Applied Mathematics, and Mechanical Engineering may petition to waive the GRE requirement by completing the Petition to Waive GRE Requirement form. However, applicants must be aware that there is no guarantee that the waiver will be granted. The department of Computer Engineering DOES NOT accept GRE waiver.

This option is also available to applicants for the Engineering Management Program who have two or more years of working experience in the U.S. These students will also complete the Petition to Waive GRE Requirement form, as indicated above.

• Scores from the Test of English as a Foreign Language (TOEFL) or the International English Language Testing Systems (IELTS) exam (applies to non-U.S. citizens or those students who have received a degree from a university outside of the United States). Our institution code is 4851. Test scores over three years old will not be accepted.

Ph.D. and Engineer’s Degrees
Ph.D. and Engineer’s degrees are offered in the departments of Computer Engineering, Electrical Engineering, and Mechanical Engineering.

Domestic applicants must submit the following materials:
- A completed online Application for Admission to Engineering Graduate Programs, including a nonrefundable $60 application fee
- A 500-word statement of purpose emphasizing the applicant’s research interests and outlining the applicant’s professional and academic goals, which must be included with the online application
- One official transcript from each academic institution attended, indicating the degree received and date of conferral
- Official Graduate Record Examination (GRE) scores must be sent directly to Engineering Graduate Programs by the Educational Testing Service (ETS). Our institution code is 4851. For further information on the GRE, please visit the website: www.ets.org/
- Three letters of recommendation are required. These letters should attest to the applicant’s academic preparation and capability for advanced studies

International applicants must submit the following materials:
- A completed online Application for Admission to Engineering Graduate Programs, including a nonrefundable $60 application fee
- A 500-word statement of purpose emphasizing the applicant’s research interests and outlining the applicant’s professional and academic goals, which must be included with the online application
- One official transcript from each academic institution attended, indicating the degree received and date of conferral. All applicants with degrees from universities outside of the United States must submit a transcript evaluation report from Educational Credential Evaluators (ECE) or World Education Services (WES). The report must include a course-by-course evaluation which will verify a GPA based on a 4.0 scale, and the U.S. equivalence of each educational credential. Please refer to the ECE or WES website: www.ece.org or www.wes.org. (There is no exception to this requirement.)
- Scores from the Test of English as a Foreign Language (TOEFL) or the International English Language Testing Systems (IELTS) exam (applies to non-U.S. citizens or those students who have received a degree from a university outside of the United States). Our institution code is 4851. Test scores over three years old will not be accepted.

- Official Graduate Record Examination (GRE) scores must be sent directly to Engineering Graduate Programs by the Educational Testing Service (ETS). Our institution code is 4851. For further information on the GRE, please visit the website: www.ets.org/.
- Three letters of recommendation are required. These letters should attest to the applicant’s academic preparation and capability for advanced studies.

ADMISSION DEFERRALS

Any student who has been admitted to a degree program and wishes to defer their admission for one year must submit a request, in writing, to the Engineering Graduate Programs Admissions Office prior to the beginning of the quarter.
ENGINEERING HONOR CODE

The Engineering Honor Code is a long-standing Santa Clara tradition. Instituted at the request of engineering students, the code states: All students taking courses in the School of Engineering agree, individually and collectively, that they will not give or receive unpermitted aid in examinations or other coursework that is to be used by the instructor as the basis of grading. Students and teachers cooperate and share responsibilities under the code. Teachers are responsible for making clear what aid is permissible and for using procedures that minimize temptations to violate the code. Students are responsible for behaving honorably, for actively ensuring that others as well as themselves uphold the code, and for being responsive to violations. Students dominate the administration of the code, and they take full responsibility for trying cases of alleged violations and for recommending penalties. Alleged violations should be reported to the Office of the Dean.

THE GRADUATE CORE

The Graduate Core is a set of requirements that is common to all departments in the School of Engineering. The Core promotes an educational philosophy that goes far beyond narrow specialization and emphasizes a global and societal orientation. It also reflects the fact that we live in an increasingly complex world, in which engineers must continually deepen their understanding of the interdisciplinary environment in which they operate. Students will be required to take a course in each of the following three areas of the Core (for a minimum of 6 units):

1. Emerging Topics in Engineering
2. Engineering and Business/Entrepreneurship
3. Engineering and Society

Emerging Topics in Engineering

- AMTH 308 Theory of Wavelets
- AMTH 351 Quantum Computing
- AMTH 367 Mathematical Finance
- AMTH 387 Cryptology
- BIOE 256/ENGR 256 Introduction to Nanobioengineering
- CENG 213 Sustainable Materials
- CENG 215 Sustainable Structural Engineering
- CENG 219 Designing for Sustainable Construction
CENG 282 Introduction to Building Information Modeling
ELEN 280/MECH 287 Introduction to Alternative Energy Systems
ELEN 285 Introduction to the Smart Grid
ELEN 360/ENGR 262 Nanomaterials
ENGR 260 Nanoscale Science and Technology
ENGR 273 Sustainable Energy and Ethics
ENGR 337 Sustainability and Green Information Technology
ENGR 371/MECH 371 Space Systems Design and Engineering I
ENGR 372 Space Systems Design and Engineering II
MECH 234 Combustion Technology
MECH 268 Computational Fluid Dynamics I

Engineering and Business/Entrepreneurship
AMTH 367 Mathematical Finance
CENG 208 Engineering Economics and Project Finance
CENG 292 Infrastructure Project Management
COEN 287 Software Development Process Management
ENGR 302 Managing in the Multicultural Environment
ENGR 304 Building Global Teams
ENGR 336 Engineering for the Developing World
ENGR 338 Mobile Applications for Emerging Markets
This requirement can also be satisfied by taking any 2-unit course in Engineering Management (EMGT)

Engineering and Society
BIOE 210 Ethical Issues in Bioengineering
CENG 208 Engineering Economics and Project Finance
COEN 250 Information Security Management
COEN 288 Software Ethics
ELEN 217 Chaos Theory, Metamathematics, and the Limits of Science: An Engineering Perspective on Religion
ENGR 261 Nanotechnology and Society
ENGR 272 Energy Public Policy
ENGR 273 Sustainable Energy and Ethics
ENGR 302 Managing in the Multicultural Environment
ENGR 303 Gender and Engineering
ENGR 304 Building Global Teams
ENGR 306 Engineering and the Law
ENGR 310 Engineering Ethics
ENGR 330 Law, Technology, and Intellectual Property
ENGR 334 Energy, Climate Change, and Social Justice
ENGR 336 Engineering for the Developing World
ENGR 340 Distributed & Renewable Energy for the Developing World
ENGR 341 Innovation, Design and Spirituality
ENGR 342 3D Print Technology and Society
ENGR 343 Science, Religion and the Limits of Knowledge
ENGR 349 Topics in Frugal Engineering

Note 1: Although certain courses (such as ENGR 302, ENGR 304, ENGR 336, and AMTH 367 for example) may appear in multiple categories, they cannot be used to satisfy more than one Core requirement. Students are encouraged to periodically check the graduate engineering website for updates regarding new courses in these areas, https://sites.google.com/a/scu.edu/intranet/current-graduate-students.

Note 2: Core requirements cannot be waived, and no substitutions will be approved. Transfer credit is not approved for core courses, all core courses must be taken at SCU.

CLASSES
Classes are taught in the following timeslots: 7:10-9:00 a.m., 5:10-7:00 p.m., and 7:10-9:00 p.m., Monday through Friday with some Saturday and/or Sunday offerings; 2-unit courses meet one day per week, and four unit courses meet two days per week. All students are expected to attend the first class meeting of the quarter. Failure to do so can result in an academic withdrawal from the course.

STANDARDS OF SCHOLARSHIP
Only courses in which the student has earned assigned grades of A, B, or C, with plus (+) or minus (-) variations, may be counted for the master’s or Ph.D. degree. The student must earn a 3.0 average in the approved 45 units required for the completion of the M.S. degree or the approved 72 units required for the Ph.D. degree. Only credits, not grade points, are transferred from other institutions. A cumulative GPA of less than 2.7 after the completion of 16 units may result in dismissal from the graduate program.

Please note: Only classes with assigned grades of C- or higher will count toward the completion of the certificates, M.S. or Ph.D. degrees. The grades of all courses completed during the certificate, M.S. or Ph.D program are used to compile final grade point average (G.P.A.).

GRADING SYSTEM
The grades A, B, C, and D may be modified by (+) or (-) suffixes, except that the grade of A may not be modified by a (+). Grade point values per unit are assigned as follows: A = 4.0; A- = 3.7; B+ = 3.3; B = 3.0; B- = 2.7; C+ = 2.3; C = 2; C- = 1.7; D+ = 1.3; D = 1.0; D- = 0.7. F= 0., I (incomplete), P (pass), NP (no pass), and W (withdrawn) are all assigned zero points. Unit credit, but not grade point credit, is awarded when the grade of P is assigned. The P (pass) and NP (no pass) options are not available in engineering management courses.

The University also uses the following marks: AUD (audit), I (incomplete), N (continuing work), NP (not passed), NS (no show), and W (withdrawn). No unit credit or grade point value is granted for any of these marks.

Please note: Only classes with assigned grades of C- or higher will count toward the completion of the certificates, M.S. or Ph.D. degrees.
NONGRADED COURSES

Courses such as seminars (with the exception of COEN 400 and ELEN 200), Co-ops, etc., are limited to a total of four units and must be approved by the student’s advisor.

Please Note: Co-op units may not be used toward the completion of a degree.

INCOMPLETE GRADES

A student’s work may be reported incomplete if due to illness or other serious circumstance some essential portion of the coursework remains unfinished after the final examination, or if the thesis has not been completed. An incomplete (I) becomes a failure (F) unless the unfinished work is completed to the satisfaction of the instructor and proper notice is filed with the registrar within four weeks from the beginning of the next scheduled quarter, not including summer session. Makeup work must be in the hands of the instructor no later than the end of the third week so that the instructor can meet the four-week submission deadline.

AUDITING COURSES

A student may take courses with a grading basis of “audit” but need to keep in mind the following:

• The current graduate tuition rate of $1006.00 per unit + the $150.00 engineering fee will be charged.
• No grade points or credit will be earned so the class cannot be counted toward the completion of a certificate, M.S. or Ph.D.
• A student will need to register for the class, then send an email to the Director of Records requesting that the grading basis be changed to “Audit”: lmjocewicz@scu.edu
• The last day to request to audit a course is at the end of the first week of instruction.

REPEATING COURSES

A student may, with the permission of the department, repeat a course in which a grade of C or lower was received on the first attempt. All grades, whether received on the first or second attempt, will be used in computing overall student performance. The units from a course may be counted only once in fulfilling graduation requirements.

WITHDRAWAL FROM COURSES

Students may change their course registration as stated in the Academic Calendar. Withdrawal from any course may be accomplished up to the 7th Friday of the term. After the fourth week of the quarter, a withdrawal will be recorded as W on the transcript. After the tenth Friday, an emergency that qualifies may be handled as an incomplete (I). Dropping a course without formal withdrawal will result in a grade of F. Deadlines are strictly adhered to and will result in loss of tuition refund.

PROGRAM OF STUDIES

During the first quarter of enrollment, a student in the M.S. degree program is required to meet with a faculty advisor to complete a program of studies form. The advisor-approved program of studies form, including any transfer units, must be submitted to the Engineering Graduate Programs Office before the end of the first quarter of enrollment. Failure to submit the program of studies form by the end of the first quarter of enrollment will result in a registration hold. Variations from the approved program of studies form may be made either with the written approval of the advisor or submitting an updated program of studies form with the advisor’s signature to the Engineering Graduate Programs Office. All units and transfer credit must be included on the Program of Studies.

Please Note: Extension, online and continuing education units are not accepted for transfer credit.

COURSES TRANSFERRED FROM SANTA CLARA UNIVERSITY

M.S. students who have an undergraduate degree from Santa Clara University can transfer up to 12 units of eligible graduate level coursework into the program.

• Only those courses completed with a C grade or better will be eligible for transfer.
• The units may not have been used for another degree.
• Since these courses were taken at SCU, the grades will count toward the overall grade point average.

COURSES TRANSFERRED FROM OTHER INSTITUTIONS

All M.S. students have the option to transfer a maximum of six semester or nine quarter units of graduate level coursework from an accredited institution into their degree program with their advisor’s approval. All Ph.D. students have the option to transfer a maximum of 12 semester or 18 quarter units of graduate level coursework from an accredited institution into their degree program with their advisor’s approval. Please keep the following in mind when transferring units:

• Only those courses completed with a C grade or better will be eligible for transfer.
• Extension, continuing education, and online courses may not be transferred.
• The units must not have been used for another degree.
• Only the credit will transfer, but not grades so your overall grade point average will be based on coursework completed at Santa Clara University only.
• An official transcript and course syllabus is required for verification of the units by the student’s advisor and Engineering Graduate Programs.

In order to transfer units into a degree program, please follow this procedure:

• Include those units you wish to transfer in the “Transfer Credit” section of the Program of Studies form and include the Institution Name, Course Number and Title, Grade, Units*, Year and (if applicable) the SCU equivalent course. If no equivalent course is listed the transfer credit will be processed as general transfer credit. (*Note that 1 semester unit is equivalent to 1.5 quarter units. Please put the unit value on your Program of Studies so that the final total will be correct.)
• Only those courses completed with a C grade or better will be eligible for transfer.
• Extension, continuing education, and online courses may not be transferred.
• The units must not have been used for another degree.
• Only the credit will transfer, but not grades so your overall grade point average will be based on coursework completed at Santa Clara University only.
• An official transcript and course syllabus is required for verification of the units by the student’s advisor and Engineering Graduate Programs.

In order to transfer units into a degree program, please follow this procedure:

• Include those units you wish to transfer in the “Transfer Credit” section of the Program of Studies form and include the Institution Name, Course Number and Title, Grade, Units*, Year and (if applicable) the SCU equivalent course. If no equivalent course is listed the transfer credit will be processed as general transfer credit. (*Note that 1 semester unit is equivalent to 1.5 quarter units. Please put the unit value on your Program of Studies so that the final total will be correct.)
• Only the credit will transfer, but not grades so your overall grade point average will be based on coursework completed at Santa Clara University only.
• An official transcript and course syllabus is required for verification of the units by the student’s advisor and Engineering Graduate Programs.

PETITION FOR GRADUATION

It is a student’s responsibility to file a petition for graduation no later than the last day to petition for graduate degrees as indicated in the Academic Calendar. The petition to graduate will only be accepted through online submission and may be found on the graduate engineering website www.scu.edu/engineering/graduate under current student resources at: https://sites.google.com/a/scu.edu/soe-intranet/current-graduate-students
COOPERATIVE EDUCATION OPTION

The objective of cooperative education is to provide students with the opportunity, through the interaction of study and work experience, to enhance their academic knowledge, to further their personal work experience, and to learn about working with people. The Cooperative Education option integrates classroom work with practical industrial experience. It alternates or parallels periods of college education with periods of practical training in industry. The industrial training is related to the field of study in which the student is engaged and often is diversified to afford a wide range of experience. To qualify for this study option, students must complete at least 24 graduate level units at Santa Clara University. Please note that Coen 900 level Coen courses and transfer credit do not count toward the 24 unit requirement.

International students who wish to pursue this option through curricular practical training (CPT) must enroll in ENGR 288. This class can be taken during the first quarter of CPT, or before the training begins. To be eligible to enroll in ENGR 288 students must complete at least 16 units of graduate level courses by the end of their second quarter at SCU, or demonstrate that they will complete 24 units of graduate-level course work by the end of their third quarter. Those who plan to start (or continue) their CPT after they complete at least 24 graduate level units at Santa Clara University, or demonstrate that they will complete 24 units of graduate-level course work by the end of their third quarter. Those who plan to start (or continue) their CPT after they have taken ENGR 288 must enroll in ENGR 289 (which can be taken for credit up to four times).**

**Note 1: The units associated with ENGR 288 and ENGR 289 are additional to the units that are required by the department.

***Note 2: ENGR 288 is not offered in the summer quarter.

CONCURRENT ENROLLMENT

Concurrent Enrollment means that a student is enrolled in two places at the same time. An international student at Santa Clara University may be given permission to engage in Concurrent Enrollment provided the student meets the following USCIS requirements:

- Combined enrollment amounts to a full course of study
- The student has been granted permission from a faculty advisor to enroll at another college (advisor must sign Concurrent Enrollment Form)
- Must receive written approval from DSO at International Student Services
- The student is making normal progress at Santa Clara and is not in danger of probation or disqualification
- The coursework at the other school is NOT vocational and will be accepted for fulfilling degree requirements at SCU

For more information, please contact the International Student Services Office at 408-554-4318 or refer to website: www.scu.edu/globalengagement/international-students

NON-ENROLLMENT PERIOD

Students in the Master’s program are expected to enroll in at least one unit for the fall, winter and spring quarters. Those who do not wish to do so must submit a leave of absence form or a withdrawal form to the Engineering Graduate Programs Office. A leave of absence form is required if a student plans to miss one or two quarters, while any longer absence requires a withdrawal form. Students who wish to resume their Master’s studies after a leave of absence or withdrawing from the program must submit a returning student form. The forms can be found on the graduate engineering website, www.scu.edu/engineering/graduate under current student resources.

MS students are required to complete their degree within six years from their original admit term date. The six year time frame includes quarters during which a student was not enrolled. Note that students who miss one or more quarters and fail to submit the appropriate form(s) will be discontinued automatically, and might have to reapply to the Master’s program. They will need to follow the same procedure as students who took a leave of absence or withdrew from the program.

WITHDRAWAL FROM THE UNIVERSITY

Withdrawal from the University is not officially complete until students clear all of their financial obligations with the Bursar’s Office. Students on deferments or a Federal Perkins Loan must also clear their financial obligations with the Credit Counseling Office.

STUDENT RECORDS AND RELEASE OF INFORMATION

The Family Educational Rights and Privacy Act of 1974 (FERPA) protects the confidentiality of the University records of Santa Clara University students. A student is any person who attends or has attended a class, which includes courses taken through video conference, satellite, Internet, or other electronic telecommunication technologies, and for whom the institution maintains education records. The University is authorized under the provisions of the Act to release any directory information to any person on request, unless a student explicitly request in writing that the University not to so and keep directory information confidential. A student directory information is designated as follows:

- Student’s Name
- Address, campus post office box, local, and permanent addresses (residence hall and room number not disclosed)
- Telephone number
- Email address
- Photograph
- Date and place of birth
- Major field of study
- Classification level/academic standing
- Dates of attendance (defined as academic year or quarter)
- Participation in officially recognized activities and sports
- Weight and height of members of athletic team
- Degrees (including expected or actual degree date), honors and awards received, and dates
- Most recent educational agency or institution attended

During the registration period and throughout the academic year, students may request in writing, through the Office of the Registrar that directory information be kept confidential. Once filed, the request remains in effect until the beginning of the next academic
year, or a shorter period, if designated by the student. Graduating students must notify the Office of the Registrar in writing to remove the nondisclosure notation from their record.

The University is authorized under FERPA to release educational and directory information to appropriate parties without consent if the University finds an articulable and significant threat to the health or safety of a student or other individuals in light of the information available at the time.

Former or current borrowers of funds from any Title IV student loan program should note carefully that requests for nondisclosure of information will not prevent the University from releasing information pertinent to employment, enrollment status, current address, and loan account status to a school lender, subsequent holder, guarantee agency, United States Department of Education, or an authorized agent.

Students have the right to inspect and review their educational records at the following offices:

- Official academic records, including application forms, admissions transcripts, letters of acceptance, and a student’s permanent academic record are on file and maintained in the Office of the Registrar
- Working academic files are also maintained by the deans in their respective offices.
- Records related to students’ nonacademic activities are maintained in the Office of Student Life.
- Records relating to students’ financial status with the University are maintained in the various student financial services offices.

Certain records are excluded by the law from inspection, specifically those created or maintained by a physician, psychiatrist, or psychologist in connection with the treatment or counseling of a student. Parents’ financial information, including statements submitted with scholarship applications, is also excluded by law from inspection. Third parties may not have access to educational records or other information pertaining to students without the written consent of the particular student about whom the information is sought.

Students have the right to request the amendment of their educational records to ensure that they are not inaccurate, misleading, or otherwise in violation of the student’s privacy or other rights. Students may direct complaints regarding academic records to the dean of the college or school in which they are enrolled or to the University Registrar. In addition, students have the right to file a complaint with the United States Department of Education concerning alleged failures by the University to comply with the requirements of the Act. Written complaints should be directed to the Family Policy Compliance Office, Department of Education, 400 Maryland Ave., S.W., Washington, D.C. 20202-5920. For further information regarding Santa Clara University’s FERPA policy please refer to www.scu.edu/ferpa/scu-ferpa-policy/

CAMPUS SECURITY AND CRIME STATISTICS ACT

The U.S. Department of Education requires universities that receive Title IV funding to disclose certain information, including institutional graduation rates, athlete graduation rates, financial assistance awarded, and crime statistics. Information presented in compliance with the Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act is made available to assist current and potential students and employees in making informed decisions regarding their attendance or employment with Santa Clara University. To view the Santa Clara University reports, please refer to the Campus Safety Services website: www.scu.edu/university-operations/campus-safety/

A paper copy of the report may be obtained by writing to Campus Safety Services, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053.
OTHER FEES

Non-refundable application fee, per application ...$60
Non-refundable Enrollment Deposit (will be credited toward student’s account once enrollment is posted) ...$300
Late registration fee ...$100
Course drop/swap fee (per course) ..$50
Late payment fee ..$100
Ph.D. thesis microfilming ...$45
Parking permits (per year)* ..$400
Parking permits (N permit) after 4:30p.m. only (per year)$200

*Please note: parking permit fees information please go to https://university-operations.scu.edu/campus-safety/parking-and-transportation-services/parking-services/

BILLING AND PAYMENT PROCEDURES

Students assume responsibility for all costs incurred as a result of enrollment at Santa Clara University and agree to abide by applicable University policies and procedures. Students may designate a third party (e.g., parent, family member, spouse) to be an authorized user for the purpose of reviewing student account/billing information and remitting payment on the student’s behalf. However, it is ultimately the student’s responsibility to make sure all financial obligations are completed by the published deadlines.

Students receive monthly bills electronically via a third-party vendor that are accessible through University e-campus. A billing notification will be sent to the student’s assigned SCU email account and to the email address of any authorized user. Students may also forward their billing statements electronically to any third party they authorize for remittance. Information on a student’s account cannot be provided to any third party payer unless a completed Family Educational Rights and Privacy Act (FERPA) form authorizing release by the student is on file with the University.

Students are obligated to pay the applicable tuition and fees associated with their enrollment status by the published term payment deadline. Students enrolling after the initial payment deadline may be required to pre-pay for their enrollment. Registered students who do not withdraw formally from the University are responsible for all tuition and fees assessed to their account as well as any penalty charges incurred for nonpayment. Nonattendance does not relieve the student of his or her obligation to pay tuition and fees.

More helpful information, including detailed instructions on Santa Clara’s billing and payment procedures, is located at the website: www.scu.edu/bursar.

Graduate Programs Billing Dates and Deadlines

The following dates are the initial payment deadlines for each quarter:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Billing Available</th>
<th>Payment Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2018</td>
<td>August 1</td>
<td>August 21</td>
</tr>
<tr>
<td>Winter 2019</td>
<td>December 1</td>
<td>December 21</td>
</tr>
<tr>
<td>Spring 2019</td>
<td>March 1</td>
<td>March 21</td>
</tr>
<tr>
<td>Summer 2019</td>
<td>May 1</td>
<td>May 21</td>
</tr>
</tbody>
</table>

PAYMENT METHODS

Santa Clara University offers a variety of payment methods to students to assist with their financial obligations:

Payment by Electronic Check

A student or authorized user may make online payments by authorizing a fund transfer directly from their personal checking or savings account through a third-party website accessible via the University eCampus system. The payer is able to make electronic check payments without incurring a transaction fee.

Payment by Mail

Payment for student account charges are accepted by mail utilizing the University’s cash management service lock box. The payer should download a copy of the student billing statement, enclose it with a personal or cashier’s check payable to “Santa Clara University” and mail both items to: P.O. Box 550, Santa Clara, CA 95052-0550.

Payment in Person

Payments for student account charges may be made in person by cash or check only at the Enrollment Services Center in the Admissions & Enrollment Services Building. The Office is not able to accept any electronic form of payment, including debit or credit cards. However, there are computer kiosks located in the Admissions and Enrollment Services Building for the convenience of students and their payers who wish to make electronic payments.

International Payment by Wire Transfer

International students may submit payment quickly and securely by going to www.flywire.com/scu. Students are able to benefit from excellent exchange rates and payment can usually be made in the student’s home currency.

EXTENDED PAYMENTS OPTIONS

For students wishing to spread payments over a period of time the University offers term payment plans, which are available through the online billing system via eCampus. There is a modest fixed fee to enroll in these plans, but no interest is charged during the payment term. Information about these plans is available on the bursar’s office website: www.scu.edu/bursar

DELINQUENT PAYMENTS

If all charges on a student’s account have not been cleared by payment, financial aid, or loan disbursement, a late payment fee will be assessed to the student’s account and a hold will be placed on the student’s record. A hold on a student’s record prevents the release of transcripts or diplomas, prevents access to any registration services, and may limit access to other University services. Students who have unpaid accounts at the University or who defer payment without approval are subject to dismissal from the University. All unpaid balances will accrue ten percent interest per annum on the balance remaining from the date of default in accordance with California state law.
Delinquent student accounts may be reported to one or more of the major credit bureaus and may be forwarded to an outside collection agency or an attorney for assistance in recovering the debt owed to the University. The student is responsible for all costs incurred to collect outstanding debt, including but not limited to accrued interest, late fees, court costs, collection fees, and attorney fees. All outstanding bills and costs of collection incurred by the University must be paid in full prior to a student re-enrolling at the University.

BILLING DISPUTES

If a student believes there is an error on his or her billing statement, a written explanation should be forwarded to: Santa Clara University, Bursar’s Office, 500 El Camino Real, Santa Clara, CA 95053-0615. The Bursar’s Office must receive written correspondence within 60 days from the billing statement date on which the error appeared. Communication can be made by telephone, but doing so will not preserve the student’s rights.

Communication should include the student’s name, SCU identification number, the amount in question, and a brief explanation. Payment for the amount in question is not required while the investigation is in progress. An adjustment will be made on the student’s account for any incorrect charges. If the amount in question is found to be valid, payment must be submitted to the Bursar’s Office immediately upon notification.

REFUND PAYMENTS

Refunds will be granted only for student accounts reflecting a credit balance. A refund will not be granted based on anticipated aid. All financial aid must be disbursed into a student’s account before a refund is processed. It is the student’s responsibility to make sure that all necessary documentation is completed and submitted to the Financial Aid office so that aid can be disbursed properly and in a timely fashion. Payment received by personal check will have a 21-day hold before a refund can be issued; a 5-day hold for electronic payments.

Fall, Winter, and Spring Quarters

Students who drop courses or withdraw from the University during fall, winter, or spring term will receive a tuition refund in accordance with the following:

- By the end of the first week of classes – 100% tuition refund, less any applicable fees
- By the end of the second week of classes – 50% tuition refund, less any applicable fees
- By the end of the third week of classes – 25% tuition refund, less any applicable fees
- After the third week of classes – zero tuition refund

Summer

Students who drop courses or withdraw from the university during the summer session term will receive a tuition refund in accordance with the following:

- By the end of day of the second class meeting – 100% tuition refund, less any applicable fees
- By the end of day of the third class meeting – 50% tuition refund, less any applicable fees

Saturday/Sunday Courses/Off Cycle Courses

Students enrolled in a weekend course in which the first class meeting is after the first week of the term must provide written notification, to the Graduate Programs Office, of their intent to withdraw or drop any weekend/off cycle course(s). Failure to comply with this process will result in an irreversible forfeit of tuition.

The following refund schedule applies:

- Students will receive a 100% tuition refund, less any applicable fees, if written notification is received by 5 p.m. on the Tuesday immediately following the first class meeting.
- Students will receive a 50% tuition refund, less any applicable fees, if written notification is received by 5 p.m. on the Tuesday immediately following the second class meeting.

To receive tuition refunds from the Bursar’s Office, these course drops must be handled administratively. Students should NOT drop a weekend/off cycle course themselves through ecampus after the first week of the quarter.

Please Note: If you withdraw or drop below half-time status you may no longer be eligible to receive financial aid or student loans. Your account will be adjusted accordingly and the aid returned to the appropriate program. If you have received a refund for these funds, you must reimburse Santa Clara University immediately. For more information on financial aid forfeiture, please visit the Financial Aid website or make an appointment with your financial aid counselor.

One-Unit Courses

Students enrolled in a one-unit course must provide written notification to their respective Records Office of their intent to withdraw or drop any course(s). Failure to comply with this process will result in an irreversible forfeit of tuition.

The following refund schedule applies:

- Students will receive a 100% tuition refund, less any applicable fees, if written notification is received within two business days prior to the first class meeting.
- Students will receive 50% tuition refund, less any applicable fees, after the first class meeting unless the course has only one session, in which case no refund will be granted.

Financial Hardship

Students who withdraw from the University or drop courses due to an illness, injury, or psychological/emotional condition are eligible for a tuition refund in accordance with the schedule above. Tuition insurance may be purchased to cover tuition charges for medically related withdrawals that occur after the first week of the term.

Santa Clara University degree students who withdraw from the University or who are administratively withdrawn from the University after the third week of the term due to a qualifying financial hardship may be eligible for an allocation from the student hardship fund for 25 percent of the tuition charges for that term. Qualifying financial hardships include: (1) death, disabling injury, medical emergency, (2) loss of job by an independent student, (3) medical or other emergency involving a dependent of an independent student, and (4) student deployment for active military duty. The Vice Provost for Student Life or designee, in consultation with the Financial Aid Office, will determine qualifying financial hardships and any allocation from the student hardship fund. Students must submit a request for an allocation from the student hardship fund by the end of the applicable term.
FINANCIAL INFORMATION

No tuition refunds are made because of curtailed services resulting from strikes, acts of God, civil insurrection, riots or threats thereof, or other causes beyond the control of the University.

TUITION INSURANCE PROTECTION

Students and families may protect themselves against financial loss due to unexpected withdrawal from the University for medical reasons by purchasing tuition insurance coverage. The University has identified an insurance company, A.W.G. Dewar Inc., to provide an optional insurance protection plan. This plan is designed to protect from loss of funds paid for tuition should it be necessary to withdraw completely from the University during the term for medical reasons. Information on the tuition insurance plan is available from the Bursar’s Office and on its website.

EDUCATIONAL TAX CREDITS

Students may be eligible for a higher education tax credit designed to help students and their parents finance the cost of education. Tax credits are based on the amount of qualified tuition and fees, less grants and other tax-free educational assistance, and the taxpayer’s adjusted gross income. Students enrolled in an eligible degree program may qualify for a Hope Scholarship Credit or Lifetime Learning Tax Credit. Specific information is available from the Internal Revenue Service.

FINANCIAL AID

Students must be enrolled at least part-time status (4 units) to receive Federal financial aid.

California State Graduate Fellowships

State graduate fellowships are awarded to California residents pursuing a recognized graduate or professional degree who intend to pursue teaching as a career and who have not completed more than four quarters of full-time graduate work as of October 1. Selection is based on state manpower needs, academic performance, and financial need. Students should apply using the Free Application for Federal Student Aid (FAFSA), which is available at website: www.fafsa.ed.gov/.

Loans

Students applying for aid may find the most advantageous method of financing their education through loan programs. Among those available to students of the School of Engineering are the Federal Perkins Loan and Federal Stafford Loans through the School as Lender Program. Applicants should apply using the Free Application for Federal Student Aid (FAFSA), which is available at website: www.fafsa.ed.gov/.

Please Note: A student must be a U.S. citizen or eligible non-citizen to qualify for federal sources of financial assistance.

Deadlines

The Financial Aid Office has established deadlines for consideration of the various programs it administers. All students requesting financial aid from the University should contact the Financial Aid Office at the earliest possible date to request specific deadline information and appropriate application materials. Files completed later than February 1 for new recipients and March 2 for current recipients will receive consideration on a funds-available basis. All financial aid deadlines are posted on the Financial Aid website: www.scu.edu/financialaid.

Veterans and Veterans’ Dependents Assistance

Santa Clara University has been certified by the Department of Veterans Affairs as qualified to enroll students under applicable federal legislation and regulations, including Chapter 35 (child of a deceased or 100 percent disabled veteran, widow of any person who died in the service or died of a service-connected disability, or wife of a veteran with a 100 percent service-connected disability), Chapter 31 (Rehabilitation), Chapter 33 (Post 9/11 G.I. Bill). Individuals interested in attending under any of the Veteran’s assistance should contact the Veteran’s Administration and the University Office of the Registrar.

Information regarding these programs may be obtained from the Santa Clara University’s VA representative, Laura Moreno in the Office of the Registrar.

Teaching and Research Assistantships

The School of Engineering offers a limited number of teaching and research assistantships providing up to eight units of tuition and, in some cases, a modest stipend. For further information, students are encouraged to contact their faculty advisor, or their academic department.

University-Awarded Aid

Individual graduate schools may grant their students a specific amount of financial aid, per term, in the form of Santa Clara University school scholarships. Once the amount has been determined by the school, the information is sent to the Financial Aid Office for processing. The Financial Aid Office awards the aid and sends an e-mail notification to the student’s SCU gmail e-mail address only, informing them of their financial aid package and/or any aid revision. Students will be able to see their school scholarship award on e-campus. The award amount will also appear as “anticipated aid” on the student’s account to alleviate the assessment of holds/late fees from the Bursar’s Office. Generally, financial aid is disbursed to the student’s account ten days before the start of classes each term. If eligible, the Bursar’s Office will issue refunds to students reflecting credit balances after the first week of class.

Cancellation of Financial Aid and Return of Funds

Students who withdraw from the University and who have federal financial aid are subject to the federal regulations applicable to the return of Title IV funds. These regulations assume that a student earns his or her financial aid based on the period of time he or she remains enrolled during a term. A student is obligated to return all unearned federal financial aid funds governed under Title IV.
Unearned financial aid is the amount of disbursed Title IV that exceeds the amount of Title IV aid earned in accordance with the federal guidelines. During the first 60 percent of the term, a student earns Title IV funds in direct proportion to the length of time he or she remains enrolled. That is, the percentage of time during the term that the student remains enrolled is the percentage of disbursable aid for that period that the student has earned.

A student who withdraws after the 60 percent point of the enrollment term earns all Title IV aid disbursed for the period. The amount of tuition and other charges owed by the student plays no role in determining the amount of Title IV funds to which a withdrawn student is entitled.

All funds must be returned to federal programs before funds are returned to state or University financial aid programs and/or the student. The return of funds allocation will be made in the following order for students who have received federal Title IV assistance:

- Unsubsidized Federal Direct Loans (other than Direct PLUS Loans)
- Subsidized Federal Direct Loans
- Federal Perkins Loans
- Federal Direct Grad PLUS Loans
- Federal PELL Grants for which a return is required
- Federal Supplemental Educational Opportunity Grants for which a return is required
- TEACH Grants for which a return is required
- Iraq and Afghanistan Grants for which a return is required.

Graduate Minor in Science, Technology, and Society (STS)

Program Advisor: Dr. Aleksandar Zcevic

PROGRAM DESCRIPTION

The graduate minor in science, technology, and society (STS) is designed to help students gain a deeper understanding of the influence that engineering has on society (and vice versa). Knowledge of this kind has become essential in an increasingly complex and interconnected world, in which purely technical expertise often needs to be supplemented by additional skills. In order to successfully operate in such an environment, engineers must (at the very least) have the ability to communicate clearly, function on interdisciplinary and diverse teams, and make ethically and socially responsible decisions. The minor consists of a Core and a set of electives, and entails a minimum of 12 units of coursework. It is open to all students who are pursuing a master’s degree in engineering, regardless of the specific program in which they are enrolled.

The need to develop such skills has been widely recognized in universities around the country, as witnessed by the growing emphasis on interdisciplinary studies in undergraduate engineering curricula. It is unusual, however, to encounter programs of this kind on the graduate level. Most traditional master’s programs still focus on specialized technical topics, and offer little insight into how practicing engineers might engage global challenges such as climate change, sustainability, or economic disparity (to name just a few).

The primary purpose of the STS minor is to offer graduate students an opportunity to examine some of these key social issues on an advanced level. The scope of the minor is broad, and includes topics that range from the social impact of new technologies, to applied ethics, sustainability, and religion. As such, it reflects an educational philosophy that goes well beyond narrow specialization and promotes a global and societal orientation. All the courses in this program have a distinctly interdisciplinary flavor, and are designed to develop creativity, innovation, and leadership.

PROGRAM REQUIREMENTS

The STS minor consists of a Core and a set of electives, and entails a minimum of 12 units of coursework. The Core courses cover four distinct thematic areas:

- Social and Philosophical Issues in Science and Engineering
- Engineering and Ethics
- Science and Religion
- Sustainability and Engineering
Students will be required to take courses in at least three of the Core areas outlined above (for a minimum of 6 units). The remaining units (up to a total of 12, or more if desired) can be accumulated by taking a combination of electives and additional STS Core courses.

The courses and the different thematic areas to which they belong are listed below. Note that courses that appear in multiple areas can be used to satisfy only one Core requirement (in other words, no “double dipping” is allowed).

Social and Philosophical Issues in Science and Engineering

- ENGR 261 Nanotechnology and Society
- ENGR 272 Energy Public Policy
- ENGR 302 Managing in the Multicultural Environment
- ENGR 303 Gender and Engineering
- ENGR 304 Building Global Teams
- ENGR 336 Engineering for the Developing World
- ENGR 338 Mobile Applications for Emerging Markets
- ENGR 341 Innovation, Design and Spirituality
- ENGR 342 3D Print Technology and Society

Engineering and Ethics

- COEN 288 Software Ethics
- ENGR 273 Sustainable Energy and Ethics
- ENGR 310 Engineering Ethics
- ENGR 334 Energy, Climate Change, and Social Justice

Science and Religion

- ELEN 217 Chaos Theory, Metamathematics and the Limits of Knowledge: A Scientific Perspective on Religion
- ENGR 334 Energy, Climate Change, and Social Justice
- ENGR 341 Innovation, Design and Spirituality

Sustainability and Engineering

- ENGR 271 Energy Conservation
- ENGR 272 Energy Public Policy
- ENGR 273 Sustainable Energy and Ethics
- ELEN 280/MECH 287 Introduction to Alternative Energy Systems
- ELEN 288/COEN 282 Energy Management Systems
- ENGR 334 Energy, Climate Change, and Social Justice
- ENGR 337 Sustainability and Green Information Technology
- ENGR 340 Distributed and Renewable Energy for the Developing World
- ENGR 349 Topics in Frugal Engineering

Admission Procedures

The STS minor option is open to all master’s students in the School of Engineering. Those who wish to pursue this minor must submit an application form to the Graduate Services Office by the end of their third quarter at SCU (at the latest), and must have their program of studies approved by the academic advisor for this program (Dr. Aleksander Zecevic). Links to the application form and the program of studies form can be found at the website: www.scu.edu/engineering/graduate

Students who complete all the technical requirements set by their department, as well as an approved set of STS classes, will receive a master’s degree with a minor in science technology and society. The degree will be conferred by the department to which the student was originally accepted. Please note that the grades obtained in STS courses will be included in the overall GPA, and will carry the same weight as grades obtained in technical classes.

There are no financial or academic penalties for not completing the minor. Such students will receive the standard master’s degree, with no reference to the STS minor.

Financial Aid for the STS Minor

Students who have declared a graduate minor in Science, Technology, and Society (STS) are eligible for a special form of financial aid. The amount of aid is limited to 75% of tuition for up to 12 units (excluding fees). These funds can be applied only to courses taken beyond the 45 units that are required for a Master’s degree.

In order to become eligible for this benefit, students must check the appropriate box that pertains to financial aid on the application form. In addition, their program of studies must be approved by the academic advisor for the program (Dr. Aleksandar Zecevic). Financial aid comes into effect once a student completes 45 units of course work, at which point he or she should follow the procedure outlined below:

1. The quarterly tuition must be paid in full, and in the time frame specified by the Bursar’s Office.
2. In the second week of each quarter, students must provide the program academic advisor with a list of courses in which they are currently enrolled (this will require official proof of registration).
3. Once the academic advisor establishes that the courses conform to the approved programs of studies (both in the technical and in the STS area), students will receive financial aid in the amount of 75% of their tuition expenses for that quarter (excluding fees).
Certificate Programs

GENERAL INFORMATION
Certificate programs are designed to provide intensive background in a narrow area at the graduate level. At approximately one-third of the units required for a master’s degree, the certificate is designed to be completed in a much shorter period of time. These certificate programs are appropriate for students working in industry who wish to update their skills or for those interested in changing their career path.

INTERDISCIPLINARY
Certificate in Frugal Innovation
Advisor: Dr. Aleksandar Zecevic

Over the past two decades, global trends have been forcing businesses to adapt to growing consumer bases in Africa, Asia and Latin America, which are in desperate need of low-cost and high-quality solutions to the challenges that they face. The importance of these new “economic realities” is underscored by the fact that emerging markets are expected to exceed 50% of the world’s GDP in 2017 (according to IMF estimates). In order to excel professionally in such an environment, engineers will have to be equipped with the knowledge and skillsets to appropriately define, design, and implement solutions that are not merely a “stripping down” of Western products to meet the rising demand. Industry, particularly in the Silicon Valley, is becoming increasingly aware of this fact, and has begun to move toward a ‘Triple Bottom Line’ approach to business, which integrates environmental, societal and financial considerations. The Certificate in Frugal Innovation is designed to give students the ability and the tools to adapt to this new model, and to expand their understanding of the impact that engineering has on society.

This program is suitable for working professionals in a wide variety of engineering disciplines. To enroll, students must have a B.S in Engineering from an accredited institution, and should maintain a GPA of at least 3.0 in order to receive the certificate.

Program Requirements
The Certificate in Frugal Innovation entails a minimum of 16 units of course work. It consists of an eight-unit Core, and a set of electives that are organized into two groups. Students are required to take four units from Group A and another four from Group B, as described below.
Required Core Classes (8 units)
- ENGR 336 Engineering for the Developing World (2 units)
- ENGR 338 Mobile Applications and Instrumentation for Emerging Markets (2 units)
- ENGR 340 Distributed and Renewable Energy for the Developing World (2 units)
- ENGR 341 Innovation, Design and Spirituality (2 units)

Elective Group A (4 units)
- ENGR 273 Sustainable Energy and Ethics (2 units)
- ENGR 304 Building Global Teams (2 units)
- ENGR 342 3D Print Technology and Society (2 units)
- ENGR 349 Special Topics in Frugal Engineering (2 units)

Elective Group B (4 units)
- CENG 219 Designing for Sustainable Construction (4 units)
- COEN 389 Energy Efficient Computing (2 units)
- ELEN 280/MECH 287 Introduction to Alternative Energy Systems (2 units)
- ELEN 288/COEN 282 Energy Management Systems (2 units)
- ENGR 302 Managing in the Multicultural Environment (2 units)
- ENGR 334 Energy, Climate Change, and Social Justice (2 units)

Renewable Energy Certificate
Advisors: Dr. Maryam Khanbaghi

Renewable energy is the fastest-growing sector in California and brings together principles and practices from engineering, environmental science, and economics. Silicon Valley, the home of the world’s largest cluster of renewable energy companies and green investors, offers fertile ground to recruit career changers who wish to move into renewable energy and students who want to take advantage of the tremendous career opportunities.

The main goal of this certificate is to introduce students to the field of renewable energy. The intent is to help equip professionals in Silicon Valley with the knowledge that will help them advance in their present career or enter the renewable energy field. To enroll in this certificate an applicant should have a B.S. in Engineering from an accredited school and should maintain a grade point average of 3.0. As with most certificates in the Graduate School of Engineering, the requirement is 16 quarter units. Eight of these units are in Power Systems, four units are in Renewable Energy, with the remaining four units in Sustainability as shown below.

Renewable Energy Certificate
Advisors: Dr. Maryam Khanbaghi

Renewable Energy is the fastest-growing sector in California and brings together principles and practices from engineering, environmental science, and economics. Silicon Valley, the home of the world’s largest cluster of renewable energy companies and green investors, offers fertile ground to recruit career changers who wish to move into renewable energy and students who want to take advantage of the tremendous career opportunities.

The main goal of this certificate is to introduce students to the field of renewable energy. The intent is to help equip professionals in Silicon Valley with the knowledge that will help them advance in their present career or enter the renewable energy field. To enroll in this certificate an applicant should have a B.S. in Engineering from an accredited school and should maintain a grade point average of 3.0. As with most certificates in the Graduate School of Engineering, the requirement is 16 quarter units. Eight of these units are in Power Systems, four units are in Renewable Energy, with the remaining four units in Sustainability as shown below.

Required Courses (16 units total)
Power Systems (8 units)
- ELEN 280/MECH 287 Renewable Energy (2 units)
- ELEN 281A Power Systems: Generation (2 units)
- ELEN 285 Introduction to the Smart Grid (2 units)
- ELEN 287 Storage Device Systems (2 units)

ELEN 282 Photovoltaic Devices and Systems (2 units)
- ELEN/MECH 286 Introduction to Wind Energy Engineering (2 units)

Sustainability
- ENGR 272 Energy Public Policy (2 units)
- ENGR 273 Sustainable Energy and Ethics (2 units)

ELECTRICAL ENGINEERING

ASIC Design and Test
Advisors: Dr. Shoba Krishnan

This certificate program has a dual purpose: (a) to strengthen fundamental knowledge of the design process that helps the designer adapt to future innovations in technology; and (b) to introduce the designer to state-of-the-art tools and techniques. Any change in the requirements must be approved by the academic advisor. The program consists of the eight courses listed below. Any change in the requirements must be approved by the academic advisor.

Required Courses (16 units)
- ELEN 387 VLSI Design I (2 units)
- ELEN 500 Logic Analysis and Synthesis (2 units)
- ELEN 603 Logic Design Using HDL (2 units)
- ELEN 605 High-Level Synthesis (2 units)
- ELEN 608 Design for Testability (2 units)
- ELEN 624 Signal Integrity in IC and PCB Systems (2 units)
- Two electives from ELEN 388, 389, 601, 604, 609, 613, 614 or 620 (2 units each)

Analog Circuit Design
Advisors: Dr. Shoba Krishnan

This certificate provides a background in the basic devices and circuits that are fundamental to analog circuit design. The program will also introduce the student to state-of-the-art analog IC design tools. The program consists of the courses listed below totaling 16 units:

Required Courses (14 units)
- ELEN 252 Analog Integrated Circuits I (2 units)
- ELEN 253 Analog Integrated Circuits II (2 units)
- ELEN 254 Advanced Analog Integrated Circuit Design (4 units)
- ELEN 264 Semiconductor Device Theory I (2 units)
- ELEN 387 VLSI Design I (2 units)
Elective Courses (2 units)
- ELEN 251 Transistor Models for IC Design (2 units)
- ELEN 265 Semiconductor Device Theory II (2 units)
- ELEN 351 RF Integrated Circuit Design (2 units)
- ELEN 352 Mixed Signal IC Design for Data Communications (2 units)
- ELEN 353 Power IC Design (2 units)
- ELEN 388 VLSI Design II (2 units)

Digital Signal Processing Applications
Advisors: Dr. Tokunbo Ogunfunmi, Dr. Sally Wood

This certificate program provides a basic understanding of digital signal processing theory and modern implementation methods as well as advanced knowledge of at least one specific application area. Digital signal processing has become an important part of many areas of engineering, and this certificate prepares students for traditional or novel applications.

Required Courses (10 to 12 units)
- AMTH 210 or AMTH 245 (2 units)
- ELEN 223 Digital Signal Processing System Development (4 units) or ELEN 226 DSP Design in FPGA (2 units)
- ELEN 233E or ELEN 233 and 234 Digital Signal Processing I, II (4 units)
- ELEN 421 Speech Coding I or ELEN 640 Digital Image Processing I (2 units)

Elective Courses (4 to 6 units to make a total of 16 units) may be selected from the list below. Any courses from the required list above that were not selected to meet the requirements may be included in the elective options.
- AMTH 308 Theory of Wavelets (2 units) or AMTH 358 Fourier Transforms (2 units)
- ELEN 223 Digital Signal Processing System Development (4 units)
- ELEN 226 DSP Design in FPGA (2 units)
- ELEN 235 Estimation I (2 units)
- ELEN 241 Introduction to Communications (2 units)
- ELEN 244 Information Theory (2 units)
- ELEN 336 Detection (2 units)
- ELEN 431 Adaptive Signal Processing I (2 units)
- ELEN 640 Digital Image Processing I (2 units)
- ELEN 641 Image and Video Compression (2 units)
- ELEN 643 Digital Image Processing II (2 units)

Fundamentals of Electrical Engineering
Advisor: Dr. Shoba Krishnan

This certificate has been designed for those individuals who have significant work experience in some area of electrical engineering and wish to take graduate-level courses but may lack some prerequisite knowledge because they have not earned the BSEE degree. This one-year program consists of 16 to 28 units, depending on the background of the individual student, and covers electrical engineering core areas. Eight of these units may be credited toward an MSEE degree after successful completion of the certificate.

The required courses are selected with the help of the program advisor according to the student’s background.
- ELEN 21 Introduction to Logic Design (4 units)
- ELEN 33 Digital Systems Architecture (5 units)
- ELEN 50 Electric Circuits I (5 units)
- ELEN 100 Electric Circuits II (5 units)
Microwave and Antennas

Advisors: Dr. Timothy Healy, Dr. Ramesh Abhari

The purpose of this certificate is to meet the increasing need for the knowledge in microwave, antenna and RF integrated circuits in present electronic products. This program is offered for students who have a B.S. in Electrical Engineering. The students are expected to have had knowledge of multivariate calculus and preferably partial differential equations.

The curriculum consists of 16 units: two required courses (4 units) and the 12 units of elective courses listed below:

Required Courses (4 units)
- ELEN 201 Electromagnetic Field Theory I (2 units)
- ELEN 701 Microwave System Architecture (2 units)

Elective Courses (12 units)
- Signal Integrity ELEN 624 (2 units)
- RF Circuits ELEN 351, 354 (2 units each)
- Laboratory oriented ELEN 726 (3 units)
- Passive Components ELEN 706 (2 units)
- Active Components ELEN 711, 712 (2 units each)
- Antennas ELEN 715, 716 (2 units each)
- Bio-Electromagnetics ELEN 203 (2 units)
- Electromagnetic Field Theory II ELEN 202 (2 units)

Substitutions for these courses are only possible with the approval of the certificate advisor and the chair.

MECHANICAL ENGINEERING

Controls

The Controls Certificate is intended for working engineers in mechanical and closely related fields of engineering. The certificate will provide a foundation in contemporary control theory and methods. The Controls Certificate covers classical and modern control systems and analysis. Specialization in digital control, mechatronics, robotics, or aerospace applications is possible with a suitable choice of electives. Completion of the certificate will allow the student to design and analyze modern control systems.

Admission

Applicants must have completed an accredited bachelor’s degree program in mechanical or a closely related field of engineering. They are expected to have prior coursework in undergraduate dynamics and mathematics.

Program Requirements

Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (8 units)
- MECH 217 Introduction to Control (2 units)
- MECH 218 Guidance and Control I (2 units)
- MECH 323 Modern Control Systems I (2 units)
- MECH 324 Modern Control Systems II (2 units)

Elective Courses (8 units)
- AMTH 245 Linear Algebra I (2 units)
- AMTH 246 Linear Algebra II (2 units)
- CENG 211 Advanced Strength of Materials (4 units)
- MECH 207 Advanced Mechatronics I (2 units)
- MECH 208 Advanced Mechatronics II (2 units)
- MECH 209 Advanced Mechatronics III (2 units)
- MECH 219 Guidance and Control II (2 units)
- MECH 329 Introduction to Intelligent Control (2 units)
- MECH 355, 356 Adaptive Control I, II (2 units each)
- MECH 429, 430 Optimal Control I, II (2 units each)

Dynamics

Objective

The Dynamics Certificate is intended for working engineers in mechanical and related fields of engineering. The certificate will provide a fundamental and broad background in engineering dynamics. The Dynamics Certificate includes a strong foundational base in dynamics and applications in optimization, robotics, mechatronics, or dynamics of aircraft or spacecraft (depending on the chosen elective courses). Completion of the certificate will allow the student to formulate and solve the complex dynamics problems that arise in such fields as robotics and space flight.

Admission

Applicants must have completed an accredited bachelor’s degree program in mechanical or a closely related field of engineering. They are expected to have prior coursework in undergraduate dynamics and mathematics.

Program Requirements

Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (16 units)
- MECH 205, 206 Aircraft Flight Dynamics I, II (2 units each)
- MECH 214, 215 Advanced Dynamics I, II (2 units each)
Materials Engineering

Objective
The Materials Engineering Certificate is intended for working engineers in mechanical, materials, or manufacturing engineering. The certificate will provide either an upgrade in materials understanding, or advanced study in a particular aspect of the subject. Completion of the certificate will allow the student to develop a deeper understanding of materials and their applications in design and manufacturing.

Admission
Applicants must have completed an accredited bachelor’s degree program in mechanical, civil, aerospace, or related field. They are expected to have prior coursework in strength of materials, thermodynamics, fluid mechanics, and mathematics through differential equations.

Program Requirements
Students must complete 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (12 units)
• MECH 281 Fracture Mechanics and Fatigue (2 units)
• MECH 330 Atomic Arrangements, Defects, and Mechanical Behavior (2 units)
• MECH 331 Phase Equilibria and Transformations (2 units)
• MECH 332 Electronic Structure and Properties (2 units)
• MECH 333 Experiments in Materials Science (2 units)
• MECH 345 Modern Instrumentation and Control (2 units)

Elective Courses (4 units)
• AMTH 210 Introduction to Probability I and AMTH 211 Continuous Probability (2 units each)
• AMTH 217 Design of Scientific Experiments and AMTH 219 Analysis of Scientific Experiments (2 units each)
• CENG 211 Advanced Strength of Materials (4 units)
• ENGR 260 Nanoscale Science and Technology (2 units)
• ENGR 262 Nanomaterials (2 units)
• MECH 273 Designing with Plastic Materials (2 units)
• MECH 274 Processing Plastic Materials (2 units)
• MECH 277 Injection Mold Tool Design (2 units)
• MECH 334 Elasticity (2 units)
• MECH 350 and 351 Composite Materials I and II (2 units each)
Mechatronics Systems Engineering

Objective
The Mechatronics Systems Engineering Certificate is intended for working engineers in mechanical engineering and related fields. The certificate program introduces students to the primary technologies, analysis techniques, and implementation methodologies relevant to the detailed design of electro-mechanical devices. Completion of the certificate will allow the student to develop systems that involve the sensing, actuation and control of the physical world. Knowledge such as this is vital to engineers in the modern aerospace, robotics and motion control industries.

Admission
Applicants must have completed an accredited bachelor’s degree program in mechanical, aerospace, electrical, engineering physics, or a related field. They are expected to have prior coursework in mathematics through differential equations, introductory linear control theory, and introductory electronics and programming.

Program Requirements
Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (8 units)
- MECH 207 Advanced Mechatronics I (3 units)
- MECH 208 Advanced Mechatronics II (3 units)
- MECH 217 Introduction to Control (2 units)

Elective Courses (8 units)
- MECH 218 Guidance and Control I (2 units)
- MECH 219 Guidance and Control II (2 units)
- MECH 275A Design for Competitiveness (2 units)
- MECH 310 Advanced Mechatronics IV (2 units)
- MECH 311 Modeling and Control of Telerobotic Systems (4 units)
- MECH 315 Digital Control Systems I (2 units)
- MECH 316 Digital Control Systems II (2 units)
- MECH 323 Modern Control Systems I (2 units)
- MECH 324 Modern Control Systems II (2 units)
- MECH 329 Intelligent Control (2 units)
- MECH 337 Robotics I (2 units)
- MECH 338 Robotics II (2 units)
- MECH 339 Robotics III (2 units)
- MECH 345 Modern Instrumentation (2 units)

An independent study or Capstone project would be suitable as one of the electives. In addition, other courses may serve as electives at the discretion of the program advisor.

Thermofluids

Objective
The Thermofluids Certificate is intended for working engineers in mechanical, chemical, or a closely related field of engineering. The certificate will provide fundamental theoretical and analytic background, as well as exposure to modern topics and applications. Specialization in fluid mechanics, thermodynamics, or heat transfer is possible with suitable choice of electives. Completion of the certificate will allow the student to design heat transfer and fluid solutions for a range of modern applications.

Admission
Applicants must have completed an accredited bachelor’s degree program in mechanical or a closely related field of engineering. They are expected to have prior undergraduate coursework in fluid mechanics, thermodynamics and heat transfer.

Program Requirements
Students must complete 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (12 units)
- MECH 228 Equilibrium Thermodynamics (2 units)
- MECH 236 Conduction Heat Transfer (2 units)
- MECH 238 Convective Heat Transfer I (2 units)
- MECH 240 Radiation Heat Transfer (2 units)
- MECH 266 Fundamentals of Fluid Mechanics (2 units)
- MECH 270 Viscous Flow I (2 units)

Elective Courses (4 units)
- MECH 202 Mathematical Methods in Mechanical Engineering (4 units)
- MECH 225 Gas Dynamics I (2 units)
- MECH 226 Gas Dynamics II (2 units)
- MECH 230 Statistical Thermodynamics (2 units)
- MECH 239 Convective Heat Transfer II (2 units)
- MECH 241 Radiation Heat Transfer II (2 units)
- MECH 242 Nanoscale Heat Transfer (2 units)
- MECH 268 Computational Fluid Mechanics I (2 units)
- MECH 269 Computational Fluid Mechanics II (2 units)
- MECH 271 Viscous Flow II (2 units)
- MECH 288 Energy Conversion I (2 units)
- MECH 289 Energy Conversion II (2 units)
- MECH 345 Modern Instrumentation and Control (2 units)
Department of Applied Mathematics

Senior Lecturer: Stephen A. Chiappari (Chair)
Renewable Term Lecturer: Aaron Melman

MASTER OF SCIENCE PROGRAM

The Applied Mathematics Program is open to those students who have earned a B.S. degree in engineering, science, or mathematics, provided that the student has completed a program in undergraduate mathematics that parallels the program of the mathematics major at Santa Clara University. The undergraduate program at Santa Clara includes calculus and differential equations, abstract algebra, linear algebra, advanced calculus and/or real analysis; and a minimum of five upper-division courses chosen from the areas of analysis, complex variables, partial differential equations, numerical analysis, logic, probability, and statistics.

Courses for the master’s degree must result in a total of 45 units. These units may include courses from other fields with permission of the Applied Mathematics Department advisor. A minimum of 12 quarter units must be in 300-level courses.

Concentration in Mathematical Finance within the Master of Science in Applied Mathematics.

In addition to its freestanding master’s degree program, the Department of Applied Mathematics offers a concentration in mathematical finance within its master’s degree program. Specific course requirements change from time to time. For further information, please consult with the chair of the department.
COURSE DESCRIPTIONS

Undergraduate Courses

AMTH 106. Differential Equations
Explicit solution techniques for first order differential equations and higher order linear differential equations. Use of numerical and Laplace transform methods. Only one of MATH 22 and AMTH 106 may be taken for credit. Prerequisite: MATH 13. (4 units)

AMTH 108. Probability and Statistics
Definitions of probability, sets, sample spaces, conditional and total probability, random variables, distributions, functions of random variables, sampling, estimation of parameters, testing hypotheses. Prerequisite: MATH 14. (4 units)

AMTH 112. Risk Analysis in Civil Engineering
Set theory and probability, random variables, conditional and total probability, functions of random variables, probabilistic models for engineering analysis, statistical inference, hypothesis testing. Prerequisite: MATH 14 and at least junior standing. (4 units)

AMTH 118. Numerical Methods
Numerical solution of algebraic and transcendental equations, numerical differentiation and integration, and solution of ordinary differential equations. Solution of representative problems on the digital computer. Prerequisite: AMTH 106 or MATH 22 and one of the following: COEN 11, 44 or 45 or CSCI 10. (4 units)

AMTH 120. Engineering Mathematics
Review of ordinary differential equations (ODEs) and Laplace transform, vector calculus, linear algebra, orthogonal functions and Fourier Series, partial differential equations (PDEs), and introduction to numerical solutions of ODEs. Cross-listed with MECH 120. Prerequisite: AMTH 106. (4 units)

AMTH 194. Peer Educator in Applied Mathematics
Peer educators in applied mathematics work closely with a faculty member to help students understand course material, think more deeply about course material, benefit from collaborative learning, feel less anxious about testing situations, and help students enjoy learning. Prerequisite: Instructor Approval. (2 units)

AMTH 200. Advanced Engineering Mathematics I
Method of solution of the first, second, and higher order differential equations (ODEs). Integral transforms including Laplace transforms, Fourier series and Fourier transforms. Cross-listed with MECH 200. Prerequisite: AMTH 106 or equivalent. (2 units)

AMTH 201. Advanced Engineering Mathematics II
Method of solution of partial differential equations (PDEs) including separation of variables, Fourier series and Laplace transforms. Introduction to calculus of variations. Selected topics from vector analysis and linear algebra. Cross-listed with MECH 201. Prerequisite: AMTH/MECH 200. (2 units)

AMTH 202. Advanced Engineering Mathematics
Method of solution of first, second, and higher order ordinary differential equations, Laplace transforms, Fourier series, and Fourier transforms. Method of solution of partial differential equations, including separation of variables, Fourier series, and Laplace transforms. Selected topics in linear algebra, vector analysis, and calculus of variations. Also listed as MECH 202. Prerequisite: AMTH 106 or equivalent. (4 units)

AMTH 210. Probability I
Definitions, sets, conditional and total probability, binomial distribution approximations, random variables, important probability distributions, functions of random variables, moments, characteristic functions, joint probability distributions, marginal distributions, sums of random variables, convolutions, correlation, sequences of random variables, limit theorems. The emphasis is on discrete random variables. (2 units)

AMTH 211. Probability II
Continuation of AMTH 210. A study of continuous probability distributions, their probability density functions, their characteristic functions, and their parameters. These distributions include the continuous uniform, the normal, the beta, the gamma with special emphasis on the exponential, Erlang, and chi-squared. The applications of these distributions are stressed. Joint probability distributions are covered. Functions of single and multiple random variables are stressed, along with their applications. Order statistics, Correlation coefficients and their applications in prediction, limiting distributions, the central limit theorem. Properties of estimators, maximum likelihood estimators, and efficiency measures for estimators. Prerequisite: AMTH 210. (2 units)

AMTH 212. Probability I and II
Combination of AMTH 210 and 211. (4 units)

AMTH 214. Engineering Statistics I
Frequency distributions, sampling, sampling distributions, univariate and bivariate normal distributions, analysis of variance, two- and three-factor analysis, regression and correlation, design of experiments. Prerequisite: Solid background in discrete and continuous probability. (2 units)
AMTH 215. Engineering Statistics II
Continuation of AMTH 214. Prerequisite: AMTH 214. (2 units)

AMTH 217. Design of Scientific Experiments
Statistical techniques applied to scientific investigations. Use of reference distributions, randomization, blocking, replication, analysis of variance, Latin squares, factorial experiments, and examination of residuals. Prior exposure to statistics useful but not essential. Prerequisite: Solid background in discrete and continuous probability. (2 units)

AMTH 219. Analysis of Scientific Experiments
Continuation of AMTH 217. Emphasis on the analysis of scientific experiments. The theory of design of experiments so that maximal information can be derived. Prerequisites: AMTH 211 or 212 and 217. (2 units)

AMTH 220. Numerical Analysis I
Solution of algebraic and transcendental equations, finite differences, interpolation, numerical differentiation and integration, solution of ordinary differential equations, matrix methods with applications to linear equations, curve fittings, programming of representative problems. (2 units)

AMTH 221. Numerical Analysis II
Continuation of AMTH 220. Prerequisite: AMTH 220. (2 units)

AMTH 222. Design and Analysis of Scientific Experiments
Combination of AMTH 217 and AMTH 219. Prerequisite: AMTH 211 or 212. (4 units)

AMTH 225. Vector Analysis I

AMTH 226. Vector Analysis II
Continuation of AMTH 225. Prerequisite: AMTH 225. (2 units)

AMTH 230. Differential Equations with Variable Coefficients

AMTH 231. Special Functions and Laplace Transforms
Review of the method of Frobenius in solving differential equations with variable coefficients. Gamma and beta functions. Solution of Bessel’s differential equation, properties and orthogonality of Bessel functions. Bessel Fourier series. Laplace transform, basic transforms, and applications. Prerequisite: AMTH 230. (2 units)

AMTH 232. Biostatistics
Statistical principles used in bioengineering; distribution-based analyses and Bayesian methods applied to biomedical device and disease testing: methods for categorical data, comparing groups (analysis of variance), and analyzing associations (linear and logistic regression). Special emphases on computational approaches used in model optimization, test-method validation, sensitivity analysis (ROC curves), and survival analysis. Also listed as BIOE 232. Prerequisite: AMTH 108, BIOE 120, or equivalent. (2 units)

AMTH 232L. Biostatistics Laboratory
Laboratory for AMTH 232. Also listed as BIOE 232L. Co-requisite: AMTH 232. (1 unit)

AMTH 235. Complex Variables I
Algebra of complex numbers, calculus of complex variables, analytic functions, harmonic functions, power series, residue theorems, application of residue theory to definite integrals, conformal mappings. (2 units)

AMTH 236. Complex Variables II
Continuation of AMTH 235. Prerequisite: AMTH 235. (2 units)

AMTH 240. Discrete Mathematics for Computer Science
Relations and operation on sets, orderings, combinatorics, recursion, logic, method of proof, and algebraic structures. (2 units)

AMTH 245. Linear Algebra I
Vector spaces, transformations, matrices, characteristic value problems, canonical forms, and quadratic forms. (2 units)

AMTH 246. Linear Algebra II
Continuation of AMTH 245. Prerequisite: AMTH 245. (2 units)

AMTH 247. Linear Algebra I and II
Combination of AMTH 245 and 246. (4 units)

AMTH 256. Applied Graph Theory I
Elementary treatment of graph theory. The basic definitions of graph theory are covered; the fundamental theorems are explored. Subgraphs, complements, graph isomorphisms, and some elementary algorithms make up the content. Prerequisite: Mathematical maturity. (2 units)

AMTH 257. Applied Graph Theory II
Extension of AMTH 256. Networks, Hamiltonian and planar graphs are covered in detail. Edge colorings and Ramsey numbers may also be covered. Prerequisite: AMTH 256. (2 units)

AMTH 297. Directed Research
By arrangement. Prerequisite: Permission of the chair of applied mathematics. May be repeated for credit with permission of the chair of applied mathematics. (1–8 units)

AMTH 308. Theory of Wavelets
Construction of Daubechies’ wavelets and the application of wavelets to image compression and numerical analysis. Multi resolution analysis and the properties of the scaling function, dilation equation, and wavelet filter coefficients. Pyramid algorithms and their application to image compression. Prerequisites: Familiarity with MATLAB or other high-level language, Fourier analysis, and linear algebra. (2 units)

AMTH 313. Time Series Analysis

AMTH 315. Matrix Theory I
Properties and operations, vector spaces and linear transforms, characteristic root; vectors, inversion of matrices, applications. Prerequisite: AMTH 246 or 247. (2 units)

AMTH 316. Matrix Theory II
Continuation of AMTH 315. Prerequisite: AMTH 315. (2 units)
AMTH 318. Advanced Topics in Wavelets
An overview of very recent developments in the theory and application of wavelets. Study of a new generation of wavelet-like objects, such as beamlets, which exhibit unprecedented capabilities for compression and analysis of 3D data. The beamlet framework consists of five major components: The beamlet dictionary, a dyadically organized library of line segments over a range of locations, orientations, and scales. The beamlet transform, a collection of line integrals of the given 3D data along the line segments in the beamlet dictionary. The beamlet pyramid, the set of all beamlet transform coefficients arranged in a hierarchical data structure according to scale. The beamlet graph, the graph structure in which vertices correspond to voxel corners of the underlying 3D object, and the edges correspond to beamlets connecting pairs of vertices. The beamlet algorithms, to extract information from the beamlet graph consistent with the structure of the beamlet graph. Study of each component in detail. Implementation issues. Selected applications in the areas of computer graphics, pattern recognition, and data compression. Prerequisite: AMTH 308. (2 units)

AMTH 340. Linear Programming I
Basic assumptions and limitations, problem formulation, algebraic and geometric representation. Simplex algorithm and duality. (2 units)

AMTH 341. Linear Programming II
Continuation of AMTH 340. Network problems, transportation problems, production problems. Prerequisite: AMTH 340. (2 units)

AMTH 342. Linear Programming
Combination of AMTH 340 and 341. (4 units)

AMTH 344. Linear Regression
The elementary straight-line “least squares least-squares fit,” and the fitting of data to linear models. Emphasis on the matrix approach to linear regressions. Multiple regression; various strategies for introducing coefficients. Examination of residuals for linearity. Introduction to nonlinear regression. Prerequisite: AMTH 211 or 212. (2 units)

AMTH 351. Quantum Computing
Introduction to quantum computing, with emphasis on computational and algorithmic aspects. Prerequisite: AMTH 246 or 247. (2 units)

AMTH 358. Fourier Transforms
Definition and basic properties. Energy and power spectra. Applications of transforms of one variable to linear systems, random functions, communications. Transforms of two variables and applications to optics. Prerequisites: Calculus sequence, elementary differential equations, fundamentals of linear algebra, and familiarity with MATLAB (preferably) or other high-level programming language. (2 units)

AMTH 360. Advanced Topics in Fourier Analysis
Continuation of AMTH 358. Focus on Fourier analysis in higher dimensions, other extensions of the classical theory, and applications of Fourier analysis in mathematics and signal processing. Prerequisite: AMTH 358 or instructor approval. (2 units)

AMTH 362. Stochastic Processes I
Types of stochastic processes, stationarity, ergodicity, differentiation and integration of stochastic processes. Topics chosen from correlation and power spectral density functions, linear systems, band-limit processes, normal processes, Markov processes, Brownian motion, and option pricing. Prerequisite: AMTH 211 or 212 or instructor approval. (2 units)

AMTH 363. Stochastic Processes II
Continuation of AMTH 362. Prerequisite: AMTH 362 or instructor approval. (2 units)

AMTH 364. Markov Chains
Markov property, Markov processes, discrete-time Markov chains, classes of states, recurrence processes and limiting probabilities, continuous-time Markov chains, time-reversed chains, numerical techniques. Prerequisite: AMTH 211 or 212 or 362 or ELEN 233 or 236. (2 units)

AMTH 367. Mathematical Finance
Basic principles of finance and economic investments. Random processes with white noise. Topics in control theory, optimization theory, stochastic analysis, and numerical analysis. Mathematical models in finance. Financial derivatives. Software to implement mathematical finance models. Undergraduate mathematical background in calculus, probability, and matrices or instructor approval. Calculus background should be up to and including multivariable calculus. Probability background should include knowledge of mean, variance, binomial and normal random variables, the covariance of random variables and the central limit theorem. Matrices background need only cover matrix and vector multiplication and the transpose and inverse of a matrix. Some background in computer programming is recommended as well. Also listed as FNCE 3489 and as MATH 125 and FNCE 116. (4 units)

AMTH 370. Optimization Techniques I
Optimization techniques with emphasis on experimental methods. One-dimensional search methods. Multidimensional unconstrained searches: random walk, steepest descent, conjugate gradient, variable metric. Prerequisites: Ability to program in some computer language and AMTH 246 or 247. (2 units)

AMTH 371. Optimization Techniques II
Optimization problems in multidimensional spaces involving equality constraints and inequality constraints by gradient and nongradient methods. Special topics. Prerequisite: AMTH 370. (2 units)

AMTH 372. Semi-Markov and Decision Processes
Semi-Markov processes in discrete and continuous time. Continuous-time Markov processes, processes with an infinite number of states, rewards, discounting, decision processes, dynamic programming, and applications. Prerequisite: AMTH 211 or 212 or 362 or 364 or ELEN 233 or 236. (2 units)

AMTH 374. Partial Differential Equations I
Relation between particular solutions, general solutions, and boundary values. Existence and uniqueness theorems. Wave equation and Cauchy’s problem. Heat equation. (2 units)

AMTH 375. Partial Differential Equations II
Continuation of AMTH 374. Prerequisite: AMTH 374. (2 units)

AMTH 376. Numerical Solution of Partial Differential Equations
Numerical solution of parabolic, elliptic, and hyperbolic partial differential equations. Basic techniques of finite differences, finite volumes, finite elements, and spectral methods. Direct and iterative solvers. Prerequisites: Familiarity with numerical analysis, linear algebra, and MATLAB. (2 units)
AMTH 377. Design and Analysis of Algorithms
Advanced topics in design and analysis of algorithms: amortized and probabilistic analysis; greedy technique; dynamic programming; max flow/matching. Intricacy: lower bounds; P, NP, and NP completeness; branch-and-bound; backtracking. Current topics: primality testing and factoring; string matching. Also listed as COEN 279. Prerequisite: Familiarity with data structures. (4 units)

AMTH 377/COEN 279. Advanced Design and Analysis of Algorithms
Amortized and probabilistic analysis of algorithms and data structures: disjoint sets, hashing, search trees, suffix arrays and trees. Randomized, parallel, and approximation algorithms. Also listed as COEN 379. Prerequisite: AMTH 377/COEN 279. (4 units)

AMTH 378. Cryptology
Mathematical foundations for information security (number theory, finite fields, discrete logarithms, information theory, elliptic curves). Cryptography: Encryption systems (classical, DES, Rijndael, RSA). Cryptanalytic techniques. Simple protocols. Techniques for data security (digital signatures, hash algorithms, secret sharing, zero-knowledge techniques). Prerequisite: Mathematical maturity at least at the level of upper-division engineering students. (4 units)

AMTH 379. Advanced Topics in Cryptology
Topics may include advanced cryptography and cryptanalysis. May be repeated for credit if topics differ. Prerequisite: AMTH 378. (2 units)

AMTH 397. Master’s Thesis
By arrangement. Limited to master’s students in applied mathematics. (1–9 units)

AMTH 399. Independent Study
By arrangement. Prerequisite: Instructor approval. (1–4 units)

Department of Bioengineering

Professor: Yuling Yan (Department Chair)
Associate Professors: Prashanth Asuri, Unyoung (Ashley) Kim, Biao (Bill) Lu, Zhiwen (Jonathan) Zhang
Assistant Professor: Ismail Emre Araci
Lecturers: Maryam Mobed-Miremadi, Julia Scott
Adjunct Faculty: Farzana Ansari, Zeynep Araci, Paul Davison, Brian Green, Ying Hao, Gary Li, Enas Mahmoud, Satish Manickam, Menahem Nissi, Gerardo Noriega, Janet Warrington

OVERVIEW
Bioengineering is the fastest-growing area of engineering and holds the promise of improving the lives of all people in very direct and diverse ways. Bioengineering focuses on the application of electrical, chemical, mechanical, and other engineering principles to understand, modify, or control biological systems. As such the curriculum teaches principles and practices at the interface of engineering, medicine and the life sciences. The Department of Bioengineering currently offers a M.S. degree program with a focus on bionanoeconomics, biomaterials and tissue engineering, and biomolecular engineering. A number of faculty offer research projects to bioengineering students that are engaging and involve problem-solving at the interface of engineering, medicine and biology.

Dr. Yan’s research interests center on bioimaging, image and signal analysis, and AI-assisted medical diagnosis. Notable achievements of her lab include the development of new imaging modalities to study laryngeal dynamics and function, with associated analytical methods for the classification of laryngeal pathologies.

Dr. Zhang is currently engaged in research on several NIH-funded projects spanning protein engineering to drug discovery.

Dr. Araci’s research goals are directed toward the development and application of novel microfluidic and optofluidic technologies for biology and medicine. His work is focused on two major areas: i) implantable and miniaturized devices for telemedicine and ii) single molecule protein counting.

Dr. Asuri’s research interests involve integrating tools and concepts from biomaterials engineering, biotechnology, and cell biology to explore the role of biomaterial properties such as porosity, matrix stiffness, etc. on protein structure and function and in regulating cell fate.

Dr. Kim investigates the application of integrated microfluidic systems for multiple applications in diagnostics as well as experimental science.

Dr. Lu’s research focuses on medical translations of protein engineering that includes protein therapeutics and drug delivery as well as molecular sensor and imaging technology.

Dr. Mobed-Miremadi’s research interests are in the areas of mesoscience specifically the interface of cellular engineering/chemical engineering, bio-device development based on membrane-based therapies and bio-fabrication.
DEGREE PROGRAM

The bioengineering graduate program at Santa Clara University is designed to accommodate the needs of students interested in advanced study in the areas of medical devices/bioinstrumentation and molecular and cellular bioengineering. An individual may pursue the degree of Master of Science (M.S.), either as a full-time or part-time student, through a customized balance of coursework, directed research and/or thesis research. Students are also required to supplement their technical work with coursework on other topics that are specified in the graduate engineering core curriculum.

Master of Science in Bioengineering

To be considered for admission to the graduate program in bioengineering, an applicant must meet the following requirements:

- A bachelor’s degree in bioengineering or related areas from an ABET accredited four-year B.S. degree program, or its equivalent
- An overall grade point average (GPA) of at least 3.0 (based on a 4.0 maximum scale)
- Graduate Record Examination (GRE)-general test
- For students whose native language is not English, Test of English as a Foreign Language (TOEFL) or the International English Language Testing Systems (IELTS) exam scores are required before applications are processed. Applicants who have taken graduate-level courses at other institutions may qualify to transfer a maximum of nine quarter units of approved credit to their graduate program at Santa Clara University.

Upon acceptance, or conditional acceptance, to the graduate program in bioengineering, a student will be required to select a graduate advisor (full-time faculty member) from within the Department of Bioengineering. The student’s advisor will be responsible for approving the student’s course of study. Any changes to a student’s initial course of study must have the written approval of the student’s advisor.

To qualify for the degree of Master of Science in Bioengineering, students must complete a minimum of 45 quarter units, including required core and elective courses, within the School of Engineering. Required and elective courses for the bioengineering programs are provided below. Students undertaking thesis work are required to engage in research that results, for example, in the development of a new method or approach to solve a bioengineering relevant problem, or a technical tool, a design criteria, or a biomedical application, that results, for example, in the development of a new method or approach to solve a bioengineering relevant problem, or a technical tool, a design criteria, or a biomedical application. The bioengineering graduate program at Santa Clara University is designed to accommodate the needs of students interested in advanced study in the areas of medical devices/bioinstrumentation and molecular and cellular bioengineering. An individual may pursue the degree of Master of Science (M.S.), either as a full-time or part-time student, through a customized balance of coursework, directed research and/or thesis research. Students are also required to supplement their technical work with coursework on other topics that are specified in the graduate engineering core curriculum.

Course requirements

- Graduate Core (minimum six units including BIOE 210 Bioethics) (See descriptions in Chapter 4, Academic Information)
- Applied Mathematics (4 units) Select from AMTH 200 & 201 (or 202), 210 & 211 (or 212), or consult with advisor
- Bioengineering Core (15 or 21 units)

Students must take six units from one of the five primary focus areas (additional six units are required for Computational Bioengineering or Translational Bioengineering), four units from other focus areas, three units from biostatistics (BIOE 232 L&L) and two quarter research seminar units (BIOE 200, 2 x 1 unit).

- Five primary focus areas are:
 1. Biomolecular Engineering/Biotechnology BIOE 282, 283, 286, 300, 301, 302
 2. Biomaterials and Tissue Engineering BIOE 208, 240, 245, 269, 273, 378
 3. Microfluidics/Biosensors and Imaging BIOE 260, 268, 276, 277
 4. Computational Bioengineering BIOE 251, 252, 261, 263, 281, 310, 312
 5. Translational Bioengineering BIOE 207, 208, 209, 263, 279, 302, 307, 320, 380

Advanced Applied Mathematics* AMTH 240, 364, 370, 371, 377

*additional six units required for primary focus in Computational Bioengineering or Translational Bioengineering

Ph.D. in Electrical Engineering/Bioengineering

The departments of Electrical Engineering and Bioengineering are collaborating to offer a Ph.D. in interdisciplinary topics related to Bioengineering. Faculty from both departments will co-advising the Ph.D. students and the degree will be awarded by the Department of Electrical Engineering.

Bioengineering Laboratory Facilities

The Anatomy & Physiology Laboratory provides a full range of activities to study human anatomy and organ function. Through computational modeling, organ dissection, and design projects, students will develop essential skills in conceiving and implementing engineering solutions to medical problems.

The Imaging/Image and Signal Analysis Laboratory carries out basic and translational research on voice. Current research in the laboratory includes the development of imaging modalities to study laryngeal dynamics and function, and novel approaches for image/biosignal-based analysis and assessment of voice pathologies. The lab also supports the development of new detection and analytical methods using optical probes for applications in high-contrast fluorescence imaging in cells and tissues.
The Biological Micro/Nanosystems Laboratory supports research and teaching activities in the broad areas of microfluidics/biosensing. Utilizing microfluidic technologies, spectroscopy, and microfabrication techniques, we develop innovative microfluidic platforms for applications in basic biology, diagnostics, and cellular engineering.

The Biomedical Engineering Laboratory focuses on the use of hydrogels to develop in vitro platforms that explore the role of in vivo like microenvironmental cues on controlling protein structure and function and regulating cell fate. The lab also supports the design and characterization of biomaterial nanocomposites for applications in tissue engineering.

The Biomolecular Engineering Laboratory conducts “bioengineering towards therapy.” The idea is to engineer novel materials (particularly proteins and peptides) and devices and apply them to study basic biological and medical questions that ultimately lead to drug discovery and disease diagnosis.

The Biophotonics & Bioimaging Laboratory supports research and teaching on portable imaging systems for wearable/implantable biosensors as well as on optical coherence tomography (OCT) probes for stereotactic neurosurgery. The time lapse fluorescence microscopy setup is used for measuring enzyme activity and single cell protein expression at the single molecular level.

The Biosignals Laboratory provides a full range of measurement and analysis capabilities including electrocardiography (ECG), electroencephalography (EEG), and electromyography (EMG) measurement system, vocal signal recording, and analysis software.

The Micro-devices & Microfluidics Laboratory focuses on the fabrication and testing of microfluidic devices for biomedical research and teaching. The soft-lithography room is equipped with necessary instruments (e.g., mixer, spinner, plasma cleaner) to build micro-devices using a wide variety of materials and processes. Multiple microfluidic test setups (i.e., computer controlled solenoid valves and microscopes) allow several tests to be run simultaneously.

The Tissue Engineering Laboratory supports research and teaching activities related to mammalian cell and tissue culture. Activities include but are not limited to 2D and 3D mammalian cell culture, investigation of the role of biophysical cues on cancer cell migration and response to drugs, and genetic manipulation of mammalian cells.

COURSE DESCRIPTIONS

Undergraduate Courses

BIOE 100. Bioengineering Research Seminar

A series of one-hour seminars will be presented by guest professors and researchers on their particular research topics in bioengineering or related fields. Students are required to attend four to five seminars and submit a one-page report summarizing the presentation for each seminar. May be repeated for credits up to three times. P/NP grading. Also listed as BIOE 200. (1 unit)

BIOE 107. Medical Device Invention - From Ideas to Business Plan

This course will introduce students to various tools and processes that will improve their ability to identify and prioritize clinical needs, select the best medical device concepts that address those needs, and create a plan to implement inventions. Also listed as BIOE 207. (2 units)

BIOE 108. Biomedical Devices: Role of Polymers

This course is designed to highlight the role of polymers in the design and fabrication of various medical devices ranging from simple intravenous drip systems to complex cardiac defibrillator implants and transcatheter heart valves. Topics include polymer basics, biocompatibility, biodegradation and other tangentially related topics such as regulatory body approvals and intellectual property. Also listed as BIOE 208. (2 units)

BIOE 109. Translational Development for Emerging Biomedical Devices

This course exposes the student to ongoing case-based interventional cardiology diagnostic and therapeutic biomedical device and clinical translational problems, where real world bioengineering innovative solutions are being envisioned and at times successfully being applied by startup teams of Bioengineers and Medical professionals. Bioengineering device design concepts and clinical translational development considerations are analyzed and case-based team project reports are assigned for final grading. Prerequisites: BIOE 10 and BIOE 21, BIOE 108 or BIOE 153 preferred. (4 units)

BIOE 115L. Fundamentals of Cell Culture Laboratory

This lab will introduce the basic fundamentals and applications of mammalian cell culture techniques. Prerequisite: BIOE 22 or BIOL 1C. (1 unit)

BIOE 120. Experimental Methods in Bioengineering

This course will cover the principles of data representation, analysis, and experimental designs in bioreactors, biomaterials, and medical devices. Topics include error analysis, modeling, normality testing, hypothesis testing, and design of experiments. Special emphasis will be placed on the interpretation of data from high-throughput assays used in “omics”/tissue engineering, and formulation designs used for optimal drug delivery. Prerequisite: AMTH 106. (4 units)

BIOE 153. Biomaterials Science

Basic principles of material properties, biomaterials categories, biomaterials engineering concepts and selected applications and practical aspects are taught in this class. This course is a foundation for an entry level medical device engineer or bioengineering advanced degree. Prerequisite: CHEM 13, PHYS 33 or 13. (4 units)

BIOE 154. Introduction to Biomechanics

Engineering mechanics and applications in the analysis of human body movement, function, and injury. Review of issues related to designing devices for use in, or around, the human body including safety and biocompatibility. Prerequisites: BIOE 10, PHYS 33. (4 units)

BIOE 155. Biological Transport Phenomena

The transport of mass, momentum, and energy are critical to the function of living systems and the design of medical devices. This course develops and applies scaling laws and the methods of continuum mechanics to biological transport phenomena over a range of length and time scales. Prerequisites: BIOE 10, PHYS 33, AMTH 106. (4 units)

BIOE 157. Introduction to Biofuel Engineering

This course will cover the basic principles used to classify and evaluate biofuels in terms of thermodynamic and economic efficiencies as well as environmental impact for resource recovery. Special emphasis will be placed on emerging applications namely microbial fuel cell technology and photo-bioreactors. Also listed as BIOE 257/ENGR 257. Prerequisites: BIOE 21 (or BIOL 1B), CHEM 13, PHYS 33. (2 units)
BIOE 161. Bioinstrumentation
Transducers and biosensors from traditional nanotechnology; bioelectronics and measurement system design; interface between biological system and instrumentation; data analysis; clinical safety. Laboratory component will include traditional clinical measurements and design and test of a measurement system with appropriate transducers. Prerequisites: BIOE 10, BIOE 21 or BIOL 1B, ELEN 50. Co-requisite: BIOE 161L. (4 units)

BIOE 161L. Bioinstrumentation Laboratory
Laboratory for BIOE 161. Co-requisite: BIOE 161. (1 unit)

BIOE 162. Signals and Systems for Bioengineers
Origin and characteristics of bioelectric, bio-optical, and bioacoustic signals generated from biological systems. Behavior and response of biological systems to stimulation. Acquisition and interpretation of signals. Signal processing methods include FFT, spectral analysis, and time-frequency analysis. Laboratory component will include modeling of signal generation and analysis of signals such as electrocardiogram (ECG), electromyogram (EMG), and vocal sound pressure waveforms. Prerequisites: BIOE 10, COE 45, ELEN 50, AMTH 106. Co-requisite: BIOE 162L. (4 units)

BIOE 162L. Signals and Systems for Bioengineers Laboratory
Laboratory for BIOE 162. Co-requisite: BIOE 162. (1 unit)

BIOE 163. Bio-Device Engineering
This course will instruct students with the fundamental principles of bio-device design, fabrication and biocompatibility, and let students experiment with the state-of-the-art bio-devices. Students will gain the hands-on experience with these bio-instruments which are also used in the field. Emphasis is given to the cutting-edge applications in biomedical diagnostics and pharmaceutical drug discovery and development, particularly detection and monitoring interaction, and activity of biomolecules, such as enzymes, receptors, antibody, nucleic acids, and bio-analytes. Prerequisites: BIOE 22 or BIOL 1C and CHEM 31. Co-requisite: BIOE 163L. (4 units)

BIOE 163L. Bio-Device Engineering Laboratory
Laboratory for BIOE 163. Co-requisite: BIOE 163. (1 unit)

BIOE 164. Signals and Systems for Bioengineers
Focuses on basic concepts, principles, and experimental measurements of bioelectric, bio-optical, and bioacoustic systems which are important in biomedical applications. Laboratory component will include in vitro experiments with optical transducers and recording systems. Prerequisites: BIOE 10, BIOE 162, and CHEM 31. Co-requisite: BIOE 164L. (4 units)

BIOE 164L. Bio-Device Engineering Laboratory
Laboratory for BIOE 164. Co-requisite: BIOE 164. (1 unit)

BIOE 165. Introduction to Tissue Engineering
Introduces the basic principles underlying the design and engineering of functional biological substitutes to restore tissue function. Cell sourcing, manipulation of cell fate, biomaterial properties and cell-matrix interactions, and specific biochemical and biophysical cues presented by the extracellular matrix will be discussed, as well as the current status and future possibilities in the development of biological substitutes for various tissue types. Prerequisite: BIOE 22 or BIOL 1C. (4 units)

BIOE 166. Biophotonics and Bioimaging Laboratory
The lab will provide the hands-on experience for basic imaging and microscopy techniques as well as advanced techniques such as fiber-optics and optical coherence tomography. Some of the experiments that will be conducted are: measuring the focal length of lenses and imaging using a single lens and a lens system, determining the magnification of optical systems (e.g. of a microscope), interference in Young’s double slit and in Michelson configuration, diffraction, polarization and polarization rotation. Also listed as BIOE 268L. Co-requisite: BIOE 168. (1 unit)

BIOE 167. Medical Imaging Systems
Overview of medical imaging systems including sensors and electrical interfaces for date acquisition, mathematical models of the relationship of structural and physiological information to sensor measurements, resolution and accuracy limits based on the acquisition system parameters, impact of the imaging system on the volume being imaged, data measured, and conversion process from electronic signals to image synthesis. Analysis of the specification and interaction of the functional units of imaging systems and the expected performance. Focus on MRI, CT, and ultrasound. Also listed as ELEN 167 and BIOE 267. Prerequisite: BIOE 162 or ELEN 110 or MECH 142. (4 units)

BIOE 168. Biophotonics and Bioimaging Laboratory
Laboratory for BIOE 167. Co-requisite: BIOE 167. (1 unit)

BIOE 169. Introduction to Tissue Engineering
Introduces the basic principles underlying the design and engineering of functional biological substitutes to restore tissue function. Cell sourcing, manipulation of cell fate, biomaterial properties and cell-matrix interactions, and specific biochemical and biophysical cues presented by the extracellular matrix will be discussed, as well as the current status and future possibilities in the development of biological substitutes for various tissue types. Prerequisite: BIOE 22 or BIOL 1C. (4 units)

BIOE 170. Advanced Topics in Tissue Engineering
Overview of the progress achieved in developing tools, technologies, and strategies for tissue engineering-based therapies for a variety of human diseases and disorders. Lectures will be complemented by a series of student-led discussion sessions and student team projects. Also listed as BIOE 270. Prerequisite: BIOE 172 or instructor approval. (2 units)

BIOE 171. Physiology and Anatomy for Engineers
Examines the structure and function of the human body and the mechanisms for maintaining homeostasis. The course will provide a molecular-level understanding of human anatomy and physiology in select organ systems. The course will include lectures, class discussions, case studies, computer simulations, field trips, lab exercises, and team projects. Prerequisite: BIOE 21 or BIOL 1B. Co-requisite: BIOE 171L. (4 units)

BIOE 171L. Physiology and Anatomy for Engineers Laboratory
Laboratory for BIOE 171. Co-requisite: BIOE 171. Laboratory. (1 unit)

BIOE 172. Introduction to Tissue Engineering
Introduces the basic principles underlying the design and engineering of functional biological substitutes to restore tissue function. Cell sourcing, manipulation of cell fate, biomaterial properties and cell-matrix interactions, and specific biochemical and biophysical cues presented by the extracellular matrix will be discussed, as well as the current status and future possibilities in the development of biological substitutes for various tissue types. Prerequisite: BIOE 22 or BIOL 1C. (4 units)

BIOE 173. Advanced Topics in Tissue Engineering
Overview of the progress achieved in developing tools, technologies, and strategies for tissue engineering-based therapies for a variety of human diseases and disorders. Lectures will be complemented by a series of student-led discussion sessions and student team projects. Also listed as BIOE 273. Prerequisite: BIOE 172 or instructor approval. (2 units)

BIOE 174. Microfabrication and Microfluidics for Bioengineering Applications
Microfluidics uses principles from a broad range of disciplines including fluid mechanics, material science and optics for miniaturization, and automation of biochemical applications. This course will introduce the basic physical and engineering concepts which have practical importance in microfluidics and will allow better understanding of molecule and cell manipulation in the microdomain. The course aims to introduce students to the state-of-art applications of various microfluidic techniques (e.g. mLSi, droplet and paper-based), in biological and biomedical research through lectures and discussion of current literature. Prerequisites: BIOE 10, BIOE 21 or BIOL 1B, PHYS 33. Co-requisite: BIOE 174L. (4 units)

BIOE 174L. Microfabrication and Microfluidics for Bioengineering Applications Laboratory
Multilayer soft-lithography will be taught and integrated microfluidic chips will be built. Basic pressure driven microfluidic chip tests will be performed. A team design project that stresses interdisciplinary communication and problem solving is required in this course. Co-requisite: BIOE 174. (1 unit)
BIOE 175. Biomolecular and Cellular Engineering I

This course will focus on solving problems encountered in the design and manufacturing of biopharmaceutical products, including antibiotics, antibodies, protein drugs and molecular biosensors, with particular emphasis on the principle and application of protein engineering and reprogramming cellular metabolic networks. Prerequisites: BIOE 22 or BIOL 1C, CHEM 31, or equivalent knowledge and instructor approval. BIOE 153 is recommended. Co-requisite: BIOE 175L. (4 units)

BIOE 175L. Biomolecular and Cellular Engineering I Laboratory

Laboratory for BIOE 175. Co-requisite: BIOE 175. (1 unit)

BIOE 176. Biomolecular and Cellular Engineering II

This course will focus on the principle of designing, manufacturing synthetic materials and their biomedical and pharmaceutical applications. Emphasis of this class will be given to chemically synthetic materials, such as polymers, inorganic and organic compounds. Also listed as BIOE 226. Prerequisites: BIOE 22 or BIOL 1C, CHEM 31, or equivalent knowledge and instructor approval. BIOE 171 and BIOE 175 are recommended. (4 units)

BIOE 179. Introduction to Neural Engineering

This course provides a foundation in the neural principles underlying existing and upcoming neurotechnologies. The goal is to understand the design criteria necessary for engineering interventions in neural structure and function with application to neurological diseases, disorders, and injuries. Topics include brain imaging and stimulation, neural implants, nanotechnologies, stem cell and tissue engineering. This course includes lectures, literature critiques, and design projects. Also listed as BIOE 275. Prerequisites: BIOE 21 or BIOL 1B. BIOE 171 recommended. (2 units)

BIOE 180. Clinical Trials: Design, Analysis and Ethical Issues

This course will cover the principles behind the logistics of design and analysis of clinical trials from the statistical and ethical perspectives. Topics include methods used for quantification of treatment effect(s) and associated bias interpretation, cross-over designs used in randomized clinical trials and clinical equipoise. Also listed as BIOE 380. Prerequisites: BIOE 10, BIOE 120 or AMTH 108, or instructor approval. (4 units)

BIOE 185. Physiology and Disease Biology

The course will provide a molecular-level understanding of physiology and disease biology, an overview of gastrointestinal diseases, and an introduction to medical devices used in the diagnosis and treatment as well as challenges in this field. The course will include lectures, class discussions, case studies, and team projects. Also listed as BIOE 285. Prerequisite: BIOE 21 or BIOL 1B. BIOE 171 recommended. (2 units)

BIOE 186. Current and Emerging Techniques in Molecular Bioengineering

The course is designed to introduce basic and practical biotechniques to students with minimum training and background in biomolecular engineering. The basic principles and concepts of modern biotechniques will be illustrated and highlighted by studying real cases in lectures. Also listed as BIOE 286. Prerequisite: BIOE 22 or BIOL 1C. (2 units)

BIOE 188. Co-op Education

This course is designed to prepare students for the working environment, and enable them to relate their experience in the industry to their academic program. They will then engage in practical work experience related to their academic field of study and career objectives. All students must enroll in BIOE 188 before enrolling in BIOE 189. Students can take BIOE 188 during the first quarter of work experience, or before an internship begins. International students who wish to start (or continue) their CPT after they have taken BIOE 188 must be enrolled in BIOE 189. Prerequisites: Junior status and cum GPA ≥ 2.75. (2 units)

BIOE 189. Work Experience and Co-op Technical Report

Credit is given for a technical report on a specific activity, such as a design or research activity, after completing a co-op work assignment. Letter grades will be based on the content and quality of the report. May be taken more than once. Prerequisites: Junior status, cum GPA ≥ 2.75, and approval of department co-op advisor. (2 units)

BIOE 194. Design Project I

Specification of an engineering project, selected with the mutual agreement of the student and the project advisor. Complete initial design with sufficient detail to estimate the effectiveness of the project. Initial draft of the project report. Prerequisite: Senior standing. (2 units)

BIOE 195. Design Project II

Continued design and construction of the project, system, or device. Second draft of project report. Prerequisite: BIOE 194. (2 units)

BIOE 196. Design Project III

Continued design and construction of the project, system, or device. Final report. Prerequisite: BIOE 195. (2 units)

BIOE 198. Internship

Directed internship in local bioengineering and biotech companies or research in off-campus programs under the guidance of research scientists or faculty advisors. Required to submit a professional research report. Open to upper-division students. (Variable units)

BIOE 199. Supervised Independent Research

By arrangement. Prerequisite: Advisor approval. (1–4 units)

Graduate Courses

BIOE 200. Graduate Research Seminar

Seminar lectures on the progress and current challenges in fields related to bioengineering. P/NP grading. Also listed as BIOE 100. (1 unit)

BIOE 203. Bio-Electromagnetics

Fundamentals of electromagnetics applied to bioengineering. Dielectric characteristics of biological materials. Tissue characterization. Wave propagation in layered medium. RF/Microwave interaction mechanisms in biological materials. Electromagnetic field absorption and SAR. Safety and standards. Microwave hyperthermia. Design of on-body and implant antennas. Also listed as ELEN 203. Prerequisite: ELEN 201 or BIOE 168/268. (2 units)

BIOE 207. Medical Device Invention - From Ideas to Business Plan

This course will introduce students to various tools and processes that will improve their ability to identify and prioritize clinical needs, select the best medical device concepts that address those needs, and create a plan to implement inventions. Also listed as BIOE 107. (2 units)

BIOE 208. Biomedical Devices: Role of Polymers

This course is designed to highlight the role of polymers play in the design and fabrication of various medical devices ranging from simple intravenous drip systems to complex cardiac defibrillator implants and transcatheter heart valves. Topics include polymer basics, biocompatibility, biodegradation and other tangentially related topics such as regulatory body approvals and intellectual property. Also listed as BIOE 108. (2 units)
BIOE 209. Development of Medical Devices in Interventional Cardiology
This course will be an in-depth, case-based review of medical devices that are currently used in clinical practice, meeting the heart patient’s medical needs. Directed reading will be assigned and the in-class discussions will focus on bioengineering design considerations including: measurements of physiology vs anatomy, intracoronary blood flow vs pressure, invasive vs non-invasive imaging; as well as, the significant economic challenges facing innovative start-ups developing medical devices within our changing health care delivery system. (2 units)

BIOE 210. Ethical Issues in Bioengineering
This course serves to introduce bioengineering students to ethical issues related to their work. This includes introductions to ethical theories, ethical decision-making, accessibility and social justice concerns, issues in personalized medicine, environmental concerns, and so on. This course will also cover ethical and technical issues related to biomedical devices. (2 units)

BIOE 226. Biomolecular and Cellular Engineering II
This course will focus on the principle of designing, manufacturing synthetic materials and their biomedical and pharmaceutical applications. Emphasis of this class will be given to chemically synthetic materials, such as polymers, inorganic and organic compounds. Also listed as BIOE 176. Prerequisites: BIOE 22 or BIOE 1C, CHEM 31, or equivalent knowledge and instructor approval. BIOE 171 and BIOE 175 are recommended. (4 units)

BIOE 232. Biostatistics
This course will cover the statistical principles used in Bioengineering encompassing distribution-based analyses and Bayesian methods applied to biomedical device and disease testing; methods for categorical data, comparing groups (analysis of variance) and analyzing associations (linear and logistic regression). Special emphases will be placed on computational approaches used in model optimization, test-method validation, sensitivity analysis (ROC curve) and survival analysis. Also listed as AMTH 232. Prerequisite: AMTH 108 or BIOE 120 or equivalent. (2 units)

BIOE 232L. Biostatistics Laboratory
Laboratory for BIOE 232. Also listed as AMTH 232L. Co-requisite: BIOE 232. (1 unit)

BIOE 240. Biomaterials Engineering and Characterization
This course will cover the fundamental principles of soft biomaterials characterization in terms of mechanical and rheological properties related to biocompatibility. Areas of focus in the lab include study and fabrication of implantable hydrogels for eukaryotic cell immobilization in scaffolds and microcapsules, cytotoxicity measurements in the engineered microenvironment and nutrient diffusion visualized by fluorescence microscopy. Prerequisite: CHEM 13. Co-requisite: BIOE 240L. (2 units)

BIOE 245. Introductory Biotribology for Orthopedic Implants
This course will provide an introduction to surface mechanics and tribology as applied to biological systems and medical devices, with specific focus on orthopedic tissues and implants. Students will learn about the mechanisms of friction, lubrication, and wear in tissues and considerations for the design of implants to minimize adverse interactions in vivo while maximizing lifespan. Topics will include dry, lubricated, and mixed mode contact and the physiological conditions resulting in each case. Class discussions will primarily center around assigned readings of published literature guided by lecture topics. Prerequisites: BIOE 240 or BIOE 153, 154, BIOE 21 (or BIOE 1B). (2 units)

BIOE 249. Topics in Bioengineering
An introduction to the central topics of bioengineering including physiological modeling and cellular biomechanics (e.g., modeling of the human voice production and speech biomechanics), biomedical imaging, visualization technology and applications, biosignals and analysis methods, bioinstrumentation and bio-nanotechnology. Also listed as ENGR 249. (2 units)

BIOE 251. Introduction to Bioinformatics
This course provides an introduction to tools and databases important for bioengineering including, DNA, RNA, and protein. Topics include but not limited to pairwise sequence alignment, multiple sequence alignment, hidden Markov models and protein sequence motifs, phylogenetic analysis, and fragment assembly. Protein structure and domain analysis, as well as genome rearrangement and DNA computing, are also covered. Students will become proficient in searching multiple databases (Genome, GenBank, Protein, and Conserved Domain), retrieving and analyzing sequences, and working with metadata. Students will design a new gene/protein or write an original program to complete an independent search project. Prerequisite: BIOE 22 or BIOL 1C. Programming experience and BIOL 175 recommended. (2 units)

BIOE 252. Computational Neuroscience I
This course provides a foundation in cellular and molecular neuroscience and applied computational techniques for the purpose of modeling neuronal and whole brain structural and functional network organization. The central ideas, methods, and practice of modern computational neuroscience will be discussed in the context of relevant applications in biomedical interventions. (2 units)

BIOE 256. Introduction to NanoBioengineering
This course is designed to present a broad overview of diverse topics in nano-bioengineering, with emphasis on areas that directly impact applications in biotechnology and medicine. Specific examples that highlight interactions between nano-materials and various biomolecules will be discussed, as well as the current status and future possibilities in the development of functional nano-hybrids that can sense, assemble, clean, and heal. Also listed as ENGR 256. (2 units)

BIOE 257. Introduction to Biofuel Engineering
This course will cover the basic principles used to classify and evaluate biofuels in terms of thermodynamic and economic efficiencies as well environmental impact for resource recovery. Special emphases will be placed on emerging applications namely Microbial Fuel Cell Technology and Photo-bioreactors. Also listed as ENGR 257 and BIOE 157. Prerequisites: BIOE 21 or BIOL 1B, CHEM 13, PHYS 33. (2 units)

BIOE 258. Synthetic Biology & Metabolic Engineering
This course covers current topics and trend in the emerging field of synthetic biology. These topics include applying the retro-synthetic analysis approach in classic organic chemistry, identifying and engineering metabolic pathways and mechanisms for bioproduction of antibiotics, biofuel compounds, novel bio-building blocks and non-natural proteins. Genetic regulation of biosynthetic pathways, e.g. genetic circuit will also be discussed. (2 units)

BIOE 259. Engineering In Drug Delivery
Engineering is a major contributor to the advancement of drug delivery systems, which improves treatment and enhances patients quality of life. In this course, we will explore engineering principles,
applications, and techniques in drug delivery systems. The purpose of this course is to identify roles of engineers in the pharmaceutical industry and how to propose a solution to emerging topics in this subject. (2 units)

BIOE 260. Selected Topics in Bio-Transport Phenomena
This course will cover the principles of mass and oxygen transport and across extra-corporeal devices and bio-membrane design principles, dialyzers, blood-oxygenators, hollow-fiber based bio-artificial organs and PK/PD. Prerequisite: BIOE 155 or equivalent. BIOE 232 recommended. (2 units)

BIOE 261. Omics: Global High-throughput Technologies in Life Sciences Discovery Research
This course provides a practical application focused survey of global high-throughput technologies in life sciences discovery research. The impact of all facets of study design and execution is showing invaluable molecular insights from genomics, metagenomics, transcriptomics, metabolomics, and proteomics methods will be explored. Strategies for integration and interpretation of data-rich read-outs will be applied to case studies focused on research and development of companion diagnostics. Prerequisite: BIOE 22 or BIOL 1C. (2 units)

BIOE 263. Applications of Genome Engineering and Informatics in Mammalian System
Advances in genome engineering technologies offer versatile solutions to systematic interrogation and alteration of mammalian genome function. Among them, zinc finger transcription factor nuclease (ZNF), transcription activator-like effector nuclease (TALEN) and CRISPR-associated RNA-guided Cas9 endonuclease (CRISPR/Cas9) have become major drivers for innovative applications from basic biology to biotechnology. This course covers principles and real cases of genome engineering using either ZFN/TALEN or CRISPR/Cas9-based system. Key applications will be discussed in a comparative fashion to better understand the advantages/disadvantages of each system. In addition, informatics tools that facilitate the application design, implementation, data analysis will be covered. Prerequisite: BIOE 22 or BIOL 1C or equivalent. (2 units)

BIOE 266. Advanced Nano-Bioengineering
In Introduction to Nano-bioengineering (BIOE 256), students were introduced to how nanomaterials offer the unique possibility of interacting with biological entities (cells, proteins, DNA, etc) at their most fundamental level. This course will provide a detailed overview of nanobioengineering approaches that support research in life sciences and medicine. Topics will include nanotopographical control of in vivo and in vitro cell fate, miniaturization and parallelization of biological assays, and early diagnosis of human disease. Prerequisite: BIOE 256. (2 units)

BIOE 267 Medical Imaging Systems
Overview of medical imaging systems including sensors and electrical interfaces for data acquisition, mathematical models of the relationship of structural and physiological information to sensor measurements, resolution and accuracy limits based on the acquisition system parameters, impact of the imaging system on the volume being imaged, data measured, and conversion process from electronic signals to image synthesis. Analysis of the specification and interaction of the functional units of imaging systems and the expected performance. Focus on MRI, CT, and ultrasound. Also listed as ELEN 167 and BIOE 167. Prerequisite: BIOE 162 or ELEN 110 or MECH 142. (4 units)

BIOE 268. Biophotonics and Bioimaging
This course starts with an introduction of optics and basic optical components (e.g. lenses, mirrors, diffraction grating etc). Then focuses on light propagation and propagation modeling to examine interactions of light with biological matter (e.g. absorption, scattering). Other topics that will be covered in this course are: laser concepts, optical coherence tomography, microscopy, confocal microscopy, polarization in tissue, absorption, diffuse reflection, light scattering, Raman spectroscopy, Fluorescence lifetime imaging. Also listed as BIOE 168. Prerequisite: BIOE 22 or BIOL 1C, CHEM 31, PHYS 53. (4 units)

BIOE 268L. Biophotonics and Bioimaging Laboratory
The lab will provide the hands-on experience for basic imaging and microscopy techniques as well as advanced techniques such as fiber-optics and optical coherence tomography. Some of the experiments that will be conducted are: measuring the focal length of lenses and imaging using a single lens and a lens system, determining the magnification of optical systems (e.g. of a microscope), interference in Young’s double slit and in Michelson configuration, diffraction, polarization and polarization rotation. Also listed as BIOE 168L. (1 unit)

BIOE 269. Stem Cell Bioengineering
A majority of recent research in bioengineering has focused on engineering stem cells for applications in tissue engineering and regenerative medicine. The aim of this graduate level course is to illuminate the breadth of this interdisciplinary research area, with an emphasis on engineering approaches currently being used to understand and manipulate stem cells. The course topics will include basic principles of stem cell biology, methods to engineer the stem cell microenvironment, and the potential of stem cells in modern medicine. (2 units)

BIOE 270. Mechanobiology
This course will focus on the mechanical regulation of biological systems. Students will gain an understanding of how mechanical forces are converted into biochemical activity. The mechanisms by which cells respond to mechanical stimuli and current techniques to determine these processes will be discussed. Class discussions will primarily center around assigned readings of published literature guided by lecture topics. Prerequisite: BIOE 154. (2 units)

BIOE 273. Advanced Topics in Tissue Engineering
Overview of the progress achieved in developing tools, technologies, and strategies for tissue engineering-based therapies for a variety of human diseases and disorders. Lectures will be complemented by a series of student-led discussion sessions and student team projects. Also listed as BIOE 173. Prerequisite: BIOE 172 or instructor approval. (2 units)

BIOE 275. Introduction to Neural Engineering
This course provides a foundation in the neural principles underlying existing and upcoming neurotechnologies. The goal is to understand the design criteria necessary for engineering interventions in neural structure and function with application to neurological diseases, disorders, and injuries. Topics include brain imaging and stimulation, neural implants, nanotechnologies, stem cell and tissue engineering. This course includes lectures, literature critiques, and design projects. Also listed as BIOE 179. Prerequisite: BIOE 21 or BIOL 1B. BIOE 171 recommended. (2 units)

BIOE 276. Microfluidics and Lab-on-a-Chip
The interface between engineering and miniaturization is among the most intriguing and active areas of inquiry in modern technology. This course aims to illuminate and explore microfluidics and LOC
(lab-on-a-chip) as an interdisciplinary research area, with an emphasis on emerging microfluidics disciplines, LOC device design, and micro/nanofabrication. Prerequisite: BIOE 155 or instructor approval. (2 units)

BIOE 277. Biosensors
This course focuses on underlying engineering principles used to detect DNA, small molecules, proteins, and cells in the context of applications in diagnostics, fundamental research, and environmental monitoring. Sensor approaches include electrochemistry, fluorescence, optics, and impedance with case studies and analysis of commercial biosensors. (2 units)

BIOE 279. Stem Cell & Regenerative Medicine
Few events in science have captured the same level of sustained interest and imagination of the non-scientific community as Stem Cells and Regenerative Medicine. The fundamental concept of Regenerative Medicine is appealing to scientists, physicians, and lay people alike: to heal tissue or organ defects that the current medical practice deems difficult or impossible to cure. Regenerative medicine is a new branch of medicine that attempts to change the course of chronic disease, in many instances regenerating failing organ systems lost due to age, disease, damage, or congenital defects. The area is rapidly becoming one of the most promising treatment options for patients suffering from tissue failure. This course covers principles and real cases of stem cell and regenerative medicine. Its major applications will be discussed in a comparative fashion to better understand the advantages/disadvantages of each system. Overall, this course provides a deeper exploration of the next generation biotechnology - a wide variety of cells, biomaterials, interfaces and applications for tissue engineering. Prerequisite: BIOE 269. (2 units)

BIOE 280. Special Topics in Biotherapeutic Engineering
This class will cover current topics on the engineering of biomimetic drugs, particularly protein drugs, and the development of vaccine, therapeutic antibody and biomarkers. Prerequisite: BIOE 270 or equivalent. (2 units)

BIOE 281. Introduction to Pattern Recognition
Methods of pattern recognition are useful in many applications such as information retrieval, data mining, document image analysis and recognition, biometrics and bioinformatics. The topics covered in this course concern statistical classification methods, which include generative methods such as those based on Bayes decision theory and related techniques of parameter estimation and density estimation. Discriminative methods such as nearest-neighbor classification and support vector machines will also be introduced. Artificial neural networks, classifier combination and clustering are other major components of pattern recognition. Prerequisite: BIOE 232 (2 units)

BIOE 282. BioProcess Engineering
This course will cover the principles of designing, production and purification of biologicals using living cells in a large scale and industrial scale, including bio-reactor design. Prerequisite: BIOE 21 or BIOL 1B, BIOE 10, AMTH 106 or equivalent. (2 units)

BIOE 283. BioProcess Engineering II
This course will cover principles of bio-separation processes. Driving forces behind upstream and downstream separation processes from post-culture cell collection to end stage purification will be analyzed. Special emphasis will be placed on scale-up and economics of implementation of additional purification processes vs cost illustrated by the use of Simulink software. Prerequisite: BIOE 282 or equivalent. (2 units)

BIOE 285. Physiology and Disease Biology
The course will provide a molecular-level understanding of physiology and disease biology, an overview of gastrointestinal diseases, and an introduction to medical devices used in the diagnosis and treatment as well as challenges in this field. The course will include lectures, class discussions, case studies, and team projects. Also listed at BIOE 185. Prerequisite: BIOE 21 or BIOL 1B, BIOE 171 recommended. (2 units)

BIOE 286. Biotechnology
The course is designed to introduce basic and practical biotechniques to the students with minimum training and background in biomolecular engineering. The basic principles and concepts of modern biotechniques will be illustrated and highlighted by studying the real cases in lectures. Also listed as BIOE 186. Prerequisite: BIOE 22 or BIOL 1C. (2 units)

BIOE 287. Pharmaceutical Drug Development and Chemical Analysis
This course will introduce the fundamental principles of drug discovery and development, also discussing important drug targets in drug discovery. While discussing analytical-chemical characteristics of selected drug substances, basic concepts for the common analytical methods that are used in the quantitative and qualitative chemical analysis of pharmaceutical drugs will be addressed. International Pharmacopoeias, Regulations and Guidelines will also be reviewed briefly. (2 units)

BIOE 294. Graduate Capstone Project I
Specification of a translational bioengineering project, selected with the mutual agreement of the student and the project advisor, completion of initial design and feasibility analysis, and submission of a preliminary study report. (2 units)

BIOE 295. Graduate Capstone Project II
Continued design and development of the project (system or prototype), and submission of a draft project report. Prerequisite: BIOE 294. (2 units)

BIOE 296. Graduate Capstone Project III
Continued design and development of the project (system or prototype), and submission of the final project report. Prerequisite: BIOE 295. (2 units)

BIOE 297. Directed Research
By arrangement. (1–6 units)

BIOE 298. Internship
Directed internship in partner bioengineering/biotech companies or research in off-campus programs under the guidance of research scientists or faculty advisors. Required to submit a professional research report. P/NP grading. (Variable units)

BIOE 300. Antibody Bioengineering
This course will cover major areas of antibody engineering including recent progress in the development of antibody-based products and future direction of antibody engineering and therapeutics. The product concept and targets for antibody-based products are outlined and basic antibody structure, and the underlying genetic organization which allows easy antibody gene manipulation, and the isolation of novel antibody binding sites will be described. Anti-body library design and affinity maturation techniques and deep-sequencing of antibody responses, together with biomarkers, imaging and companion diagnostics for antibody drug and diagnostic applications of antibodies, as well as clinical design strategies for antibody drugs, including phase one and phase zero trial design will be covered. Prerequisite: BIOE 176 or equivalent. (2 units)
BIOE 301. Protein Engineering and Therapeutics

Protein-based therapeutics has played an increasingly important role in medicine. Future protein drugs are likely to be more extensively engineered to improve their efficacy in patients. Such technologies might ultimately be used to treat cancer, neurodegenerative diseases, diabetes, and cardiovascular or immune disorders. This course will provide an overview of protein therapies and its enabling technology, protein engineering. Topics will cover the following areas of interest: therapeutic bioengineering, genome and drugable genes, classification of pharmacological proteins, advantages and challenges of protein-based therapeutics, principles of recombinant protein design, approaches of protein production, and potential modifications. Specific applications will include drug delivery, gene therapy, vaccination, tissue engineering, and surface engineering. Students will work on teams where they will take examples of concepts, designs, or models of protein therapeutics from literature and determine their potential in specific engineering applications. **Prerequisite:** BIOE 176 or equivalent. (2 units)

BIOE 302. Gene and Cell Therapy

This course covers principles and applications of gene and cell therapy. Key concepts and technologies such as gene and gene expression, gene variation and genetic defect, therapeutic vector design and construction, as well as ex vivo and in vivo gene delivery will be discussed. The course will culminate in a design project focused on implementing gene or cell-based solutions for a specific disease. After taking this course, participants will: 1) Know concepts and principles of gene therapy; 2) Understand multiple aspects of gene therapy, including disease gene identification, therapeutic gene design and expression vector construction, as well as gene delivery strategy and efficacy evaluation; 3) Gain skills to use analytical software to aid design; 4) Gain skills to use sequence manipulation software in expression vector design; 5) Gain skills to use genome database and other related databases; and 6) Present and critically analyze original research concerning gene and cell therapy. (2 units)

BIOE 307. Medical Device Product Development

The purpose of this course is to provide background information and knowledge to start or enhance a career in medical device product development. Discusses medical device examples, product development processes, regulation, industry information, and intellectual property. Also listed as EMGT 307. **Prerequisite:** BIOE 10. (2 units)

BIOE 310. Machine Learning

This course presents an introduction to Machine Learning, the study of computing systems that improve their performance with experience, including discussions of each of the major approaches. The primary focus of the course will be on understanding the underlying theory and algorithms used in various learning systems. **Prerequisite:** AMTH 210, AMTH 246, AMTH 377. (4 units)

BIOE 312. Artificial Intelligence

Artificial intelligence viewed as knowledge engineering. Historical perspective. Problems of representation: AI as a problem in language definition and implementation. Introduces representations, techniques, and architectures used to build applied systems and to account for intelligence from a computational point of view. Applications of rule chaining, heuristic search, constraint propagation, constrained search, inheritance, and other problem-solving paradigms. Applications of identification trees, neural nets, genetic algorithms, and other learning paradigms. Speculations on the contributions of human vision and language systems to human intelligence. **Prerequisite:** AMTH 240. (4 units)

BIOE 320. Immunotherapy

The goal of this course is to provide conceptual, preclinical and clinical background necessary to understand the strengths and limits of the main types of cancer immunotherapy and to assess efficacy of the treatment using immunoassays. Emphasis will be given to antibody-drug conjugates, checkpoint blockade, CAR-T cell therapy, cancer vaccines, cytokines and interferon, through lectures and journal club presentations. (2 units)

BIOE 378. Advanced Biomaterials

The objective of this course is to examine the range of new biomaterials potentially applicable to medical and biotechnology devices. The content will focus on chemistry and fabrication of polymeric biomaterials, surface properties, nano-scale analytical tools, effects of the biological environment and interaction with cells and tissues. In teams of 2 to 4, students will prepare and orally present a research study for a solution to a medical problem requiring one or more biomaterials, using tissue engineering and regenerative approaches. Students should be familiar with or prepared to learn medical, anatomical and physiological terminology. Written assignments are an annotated bibliography drawn from research literature on the topic of the design study and an individually-written section of the team's report. Material from lectures and student presentations will be covered in short quizzes and a final examination. (2 units)

BIOE 380. Clinical Trials: Design, Analysis, and Ethical Issues

This course will cover the principles behind the logistics of design and analysis of clinical trials from the statistical and ethical perspectives. Topics include methods used for quantification of treatment effect(s) and associated bias interpretation, cross-over designs used in randomized clinical trials and clinical equipoise. Also listed as BIOE 180. **Prerequisites:** BIOE 10, BIOE 120 or AMTH 108, or instructor approval. (4 units)

BIOE 397. Master's thesis research

By arrangement. (1–9 units)
Department of Civil, Environmental, and Sustainable Engineering

OVERVIEW

The Department of Civil, Environmental, and Sustainable Engineering offers graduate programs in the areas of structural engineering, general civil engineering, and construction engineering and management. The focus of the educational effort is on modeling, analysis, and practical methods used to design and construct structures and other civil engineering-related infrastructure systems. As such, many of the courses offered are beneficial to civil and construction engineers, and construction managers interested in advancing their knowledge and enhancing their technical skills.

DEGREE PROGRAM

The civil, environmental, and sustainable engineering graduate program at Santa Clara University is designed to accommodate the needs of students interested in advanced study. An individual may pursue the degree of Master of Science (M.S.) as either a full-time or part-time student through a customized balance of coursework, design projects, and directed research. Program participants are also required to supplement their technical work with coursework on project management topics addressed in the graduate engineering core curriculum.

The structural engineering (SE) track provides students with an opportunity to effectively link theory and practice by completing a combination of analysis- and design-oriented courses. Options within the structural engineering track allow students to either complete a capstone design project or a faculty-directed research investigation. This program track is aimed at individuals looking to prepare for a career in consulting structural engineering or in structural plan review.

The general civil engineering (GCE) track has been configured to provide students with additional analytical and design coursework in several related areas of civil engineering. This could potentially include work in water resources engineering, environmental engineering, transportation engineering, and geotechnical engineering. A capstone design or research project with a required sustainability component is used to integrate these different elements. This track is geared towards individuals preparing for a career in land development, municipal engineering, or public works.
The construction engineering and management (CEM) track is designed to prepare students with skills and knowledge required to effectively manage time, cost, safety, quality and sustainability requirements of construction projects. The track has some flexibility to accommodate students with interests in practical applications or research investigations. This track is designed for students with career objectives of managing building or heavy construction projects for contractors, owners, and developers.

Master of Science in Civil, Environmental, and Sustainable Engineering

To be considered for admission to the graduate program in Civil, Environmental, and Sustainable Engineering, an applicant must meet the following requirements:

- A bachelor’s degree in civil engineering from an Accreditation Board for Engineering and Technology (ABET)-accredited four-year program or its equivalent
- An overall grade point average (GPA) of at least 2.75 (based on a 4.0 maximum scale)
- Graduate Record Examination (GRE) general test
- For students whose native language is not English, Test of English as a Foreign Language (TOEFL) or the International English Language Testing Systems (IELTS) exam scores are required before applications are processed.
- In very rare cases, applicants not meeting the above requirements may be given conditional acceptance into the M.S. program. A formal acceptance may then be given upon the successful completion of a defined course of studies.

Applicants who have taken graduate-level courses at other institutions may qualify to transfer a maximum of nine quarter units of approved credit to their graduate program at Santa Clara University.

Upon acceptance or conditional acceptance to the graduate program in Civil, Environmental, and Sustainable Engineering, a student will be required to select a graduate advisor (full-time faculty member) from within the Department of Civil, Environmental, and Sustainable Engineering. The student’s advisor will be responsible for approving the student’s course of study. Any changes to a student’s initial course of study must have the written approval of the student’s advisor.

To qualify for the degree of Master of Science in Civil, Environmental, and Sustainable Engineering, the students must complete a minimum of 45 quarter units, including elective and required core courses, within the School of Engineering. Required and elective courses for the structural engineering, general civil engineering, and construction management tracks are provided below. Students may elect to do a design project or research project. Students undertaking a design project would apply a new technique or method in the design report. Students undertaking a research project would develop a new technique, method, component, or design criteria, and this must be documented in a conference or journal publication or report.

Course requirements for the SE, GCE, and CEM track are summarized in the following table:

<table>
<thead>
<tr>
<th>Structural Engineering Track</th>
<th>General Civil Engineering Track</th>
<th>Construction Engineering and Management Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Technical Coursework</td>
<td>Required Technical Coursework</td>
<td>Required Technical Coursework</td>
</tr>
<tr>
<td>CENG 205 (2)</td>
<td>CENG 219* (4)</td>
<td>CENG 218 (3)</td>
</tr>
<tr>
<td>CENG 206 (2)</td>
<td>CENG 237 (4)</td>
<td>CENG 219* (4)</td>
</tr>
<tr>
<td>CENG 222 (4)</td>
<td>CENG 238 (4)</td>
<td>CENG 281 (3)</td>
</tr>
<tr>
<td>CENG 233* (4)</td>
<td>CENG 250 (4)</td>
<td>CENG 282* (3)</td>
</tr>
<tr>
<td>CENG 235 (4)</td>
<td>CENG 249 (4)</td>
<td>CENG 284 (3)</td>
</tr>
<tr>
<td>CENG 236 (4)</td>
<td>CENG 282* (2)</td>
<td>CENG 286 (4)</td>
</tr>
<tr>
<td>CENG 237 (4) (24 units)</td>
<td>(22 units)</td>
<td>CENG 287 (4) (24 units)</td>
</tr>
</tbody>
</table>

Elective Technical Coursework

<table>
<thead>
<tr>
<th>Elective Technical Coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 units from:</td>
</tr>
<tr>
<td>CENG 207 (2)</td>
</tr>
<tr>
<td>CENG 213 (3/1)</td>
</tr>
<tr>
<td>CENG 215 (3/1)</td>
</tr>
<tr>
<td>CENG 218 (3)</td>
</tr>
<tr>
<td>CENG 220 (4)</td>
</tr>
<tr>
<td>CENG 231 (4)</td>
</tr>
<tr>
<td>CENG 232 (2)</td>
</tr>
<tr>
<td>CENG 238 (4)</td>
</tr>
<tr>
<td>CENG 239 (2)</td>
</tr>
<tr>
<td>CENG 240 (2)</td>
</tr>
<tr>
<td>CENG 241 (2)</td>
</tr>
<tr>
<td>CENG 244 (2)</td>
</tr>
<tr>
<td>CENG 246 (4)</td>
</tr>
<tr>
<td>CENG 292 (3)</td>
</tr>
<tr>
<td>CENG 293 (2 - 4)</td>
</tr>
<tr>
<td>CENG 295 (4 - 6)</td>
</tr>
<tr>
<td>CENG 297 (2 - 4)</td>
</tr>
</tbody>
</table>

Applied Mathematics

<table>
<thead>
<tr>
<th>Applied Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 units from: AMTH 210 (2)</td>
</tr>
<tr>
<td>AMTH 214 (2) & 215 (2)</td>
</tr>
<tr>
<td>AMTH 210 (2) & 211 (2)</td>
</tr>
<tr>
<td>AMTH 220 (2) & 221 (2)</td>
</tr>
<tr>
<td>AMTH 245 (2) & 246 (2)</td>
</tr>
</tbody>
</table>

Project Management, Leadership, and Communications

<table>
<thead>
<tr>
<th>Project Management, Leadership, and Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 units from: CENG 282* (2)</td>
</tr>
<tr>
<td>EMGT 255* (2)</td>
</tr>
<tr>
<td>EMGT 271* (2)</td>
</tr>
<tr>
<td>EMGT 330* (2)</td>
</tr>
<tr>
<td>EMGT 335* (2)</td>
</tr>
<tr>
<td>ENGR 329* (3)</td>
</tr>
<tr>
<td>ENGR 3503 (3)</td>
</tr>
<tr>
<td>MGMT 3503 (3)</td>
</tr>
</tbody>
</table>

Graduate Core

A minimum of 6 units from pre-approved courses
Upon the approval of the student’s advisor, alternative elective courses may be taken. Courses used to satisfy the 45-unit minimum total for the Master of Science in Civil, Environmental, and Sustainable Engineering degree cannot be used to satisfy any previous undergraduate degree program requirement. This includes cross-listed undergraduate courses at Santa Clara University and/or their equivalent courses at other institutions. Where required courses in the SCU graduate civil, environmental, and sustainable engineering programs have been completed prior to graduate-level matriculation at SCU, additional elective courses may be required to satisfy the minimum unit total requirement as necessary.

LABORATORIES

The Civil, Environmental, and Sustainable Engineering Laboratories contain equipment and facilities to support research and teaching in materials engineering, structural engineering, stress analysis, soil mechanics, geology, transportation engineering and surveying, environmental engineering, and hydraulics.

The Simulation and Design Laboratory maintains Windows-based personal computers that are used extensively in course assignments, design projects, and research. Commercial software packages in all the major areas of civil engineering are available on the systems, with full documentation available to students.

The Concrete Testing Laboratory contains facilities for mixing, casting, curing, and testing concrete cylinders and constructing reinforced concrete test specimens.

The Environmental Laboratory is equipped with the instrumentation needed for basic chemical and biological characterization of water, wastewater, and air samples. Several pilot-scale treatment systems are also available.

The Geology Laboratory is equipped with extensive rock and mineral samples, as well as topographic, geologic, and soil maps.

The Hydraulics Laboratory is shared with the Mechanical Engineering Department. The laboratory contains a tilting flume that can be fitted with various open-channel fixtures.

The Soil Mechanics Laboratory contains equipment for testing soils in shear, consolidation, and compaction, and for conducting other physical and chemical tests. Field testing and sampling equipment is also available. A complete cyclic triaxial testing system with computer control is used for both research and instructional purposes.

The Structures and Materials Testing Laboratory is equipped with three universal testing machines and an interim high-bay structural test system. These machines/systems are used for testing a variety of construction materials and assemblies under quasi-static and pseudo-dynamic loading. Complementing this equipment are a series of digital and analog instruments, and high-speed data acquisition and control systems.

The Structural Laboratory Annex (offsite) is a high-bay test facility equipped with a closed-loop hydraulic system, high-speed data acquisition and control systems, and variety of digital instrumentation. The Annex has the capability to test unique building components that incorporate wall/frames and floor systems.

The Surveying Laboratory has a wide variety of equipment, including automatic levels, digital theodolites, total stations, and GPS-based surveying instruments available for instructional purposes.

The Traffic Laboratory has electronic volume counters that are used in studies to classify vehicles and measure their speeds in user-specified ranges and periods of time.

COURSES DESCRIPTIONS

Lower-Division Undergraduate Courses

CENG 7. Graphic Communication
Introduction to technical drawing including isometric and multi-view drawings, use of sectional views and dimensioning, understanding blueprints and scales. Co-requisite: CENG 7L. (3 units)

CENG7L. Graphic Communication Laboratory
Freehand drawing, manual and computer-aided drafting of physical models, construction of models from drawings. Co-requisite: CENG 7. (1 unit)

CENG 10. Surveying

CENG 10L. Laboratory for CENG 10
Field work using common surveying instrumentation and equipment. Co-requisite: CENG 10. (1 unit)

CENG 15. Computer Applications in Civil Engineering
Solution techniques for civil engineering problems using common computer software. Introduction to matrix analysis, graphical and numerical solution methods, regression analysis, and linear optimization using some of the basic features in spreadsheet and math analysis programs to aid engineering solutions. Introduction to Visual Basic programming. A paper and presentation on an analytical topic developed with analytical tools used in the course. Co-requisites: CENG 15L and CENG 41. (2 units)

CENG 15L. Laboratory for CENG 15
Hands-on work using analytical tools contained in common software programs to solve problems, and written and oral communication of solutions. Co-requisite: CENG 15. (1 unit)

CENG 20. Geology

CENG 20L. Laboratory for CENG 20
Identification, examination, and characterization of rock specimens. Co-requisite: CENG 20. (1 unit)

CENG 41. Mechanics I: Statics
Resolution and composition of force systems and equilibrium of force systems acting on structures and mechanisms. Distributed forces. Friction. Moments of inertia. Prerequisite: PHYS 31. (4 units)

CENG 43. Mechanics II: Strength of Materials
Analysis of stresses and strains in machines and structural members. Fundamental study of the behavior and response of statically determinate and indeterminate structural members subjected to axial, torsional, flexural, shear, and combined stresses. Introduction to the stability of columns. Prerequisite: CENG 41. Co-requisite: CENG 43L. (4 units)

CENG 43L. Laboratory for CENG 43
Testing of structural elements subjected to axial tension and compression loads, bending, torsion, and combined loading. Analysis of test data and laboratory report writing. Co-requisite: CENG 43. (1 unit)
CENG 44A. Strength of Materials I
Stress-strain relationships for structural elements subjected to axial, torsional, flexural, shear, and combined loading. Fundamental study of the behavior and response of deformable, statically determinate structural systems. Stress and strain transformations and analysis using Mohr’s circle. Prerequisite: CENG 41. Co-requisite: CENG 44AL. (3 units)

CENG 44AL. Strength of Materials Laboratory
Testing of structural elements subjected to axial tension and compression loads, bending, torsion, and combined loading. Analysis of test data and laboratory report writing. Co-requisite: CENG 44A. (1 unit)

CENG 44B. Strength of Materials II
Continuation of topics covered in CENG 44A. Shear flow and shear center. Indeterminate systems. Introduction to plastic behavior and column stability. Prerequisite: CENG 44A. (2 units)

Upper-Division Undergraduate Courses

CENG 115. Civil Engineering Materials
Review of the structure and properties, production processes, and experimental methods used for determining key properties of common civil engineering materials with a focus on steel, concrete, and wood. Non-conventional building materials and their applications are studied along with sustainability implications of any material choice. Prerequisites: CHEM 11 and CENG 44A. Co-requisite: CENG 115L. (4 units)

CENG 115L. Laboratory for CENG 115
Laboratory testing of steel, concrete, wood, and other non-conventional civil engineering construction materials. Co-requisite: CENG 115. (1 unit)

CENG 118. Construction Engineering
Introduction to construction roles and responsibilities, construction project phases, building systems, bidding and cost estimating, resource utilization, planning and scheduling, project documentation, safety and quality management. Also listed as CENG 218. Prerequisite: Junior standing. (3 units)

CENG 119. Design for Sustainable Construction
Design strategies for sustainable commercial and residential construction. Use of LEED criteria for assessing sustainable buildings. Team-based project planning, design, and construction. Economic evaluation of sustainable technologies. Prefabrication. Overall project management. Also listed as CENG 219. Prerequisite: Junior standing. (4 units)

CENG 121A. Geotechnical Engineering
Origin, development, and properties of soils. Classification of soils and applications of engineering mechanics to soils as an engineering material. Water in soils. Soil-testing methods. Compaction, stabilization, consolidation, shear strength, and slope stability. Prerequisites: CENG 20 and 44A. Co-requisite: CENG 121AL. (3 units)

CENG 121AL. Laboratory for CENG 121
Application of soil testing methods. Co-requisite: CENG 121. (1 unit)

CENG 121B. Geotechnical Engineering
Theory and basic factors related to earth pressure, slope stability, and foundations. Prerequisite: CENG 121A. (3 units)

CENG 123. Environmental Reaction Engineering
Reaction stoichiometry and kinetics. Reactions of environmental significance. Dynamic and equilibrium system modeling. Reactor configurations and their effects on extent of reaction. Prerequisites: CHEM 11 or equivalents, AMTH 106, and junior standing. (3 units)

CENG 123L. Laboratory for CENG 123
Use of experimentation and computer modeling to analyze solutions in aqueous equilibrium. Steady-state and dynamic analysis of reactor systems. Co-requisite: CENG 123. (1 unit)

CENG 124. Water Law and Policy
Introduction to the legal and regulatory concepts related to water. Examines rights, policies, and laws, including issues related to water supply and access (water transfers/ water markets, riparian and appropriative doctrines), flood control, water pollution and quality (the Clean Water Act, EPA standards, in stream flows for fish), and on-site storm water management/flood control. A focus on California water law and policy is complemented with some national and international case studies. Cross-listed with CENG 258 and ENVS 124. (4 units)

CENG 125. Municipal Engineering Design
Various aspects of civil engineering as applied in municipal (public works) design practice. Maps and plats; site layout and earthworks; drainage; streets and utilities. Prerequisites: CENG 10 and 15. Co-requisite: CENG 125L. (3 units)

CENG 125L. Laboratory for CENG 125
Development of CAD drawings for a design project. Co-requisite: CENG 125. (1 unit)

CENG 128. Engineering Economics and Business
Time value of money, economic analysis of engineering projects, planning and capital budgeting, rate-of-return analysis, depreciation, cash-flow analysis, organizational behavior, business organization forms, design of organizational structures, financial analysis and management. Prerequisite: Junior standing. (3 units)

CENG 132. Structural Analysis
Distribution of loads in structural systems. Analysis of statically determinate and indeterminate beams, trusses, and frames. Influence lines for beams and trusses. Introduction to structural modeling, and elastic analysis using commercial software programs. A team-based structural analysis project and presentation is required. Prerequisite: CENG 44A. Co-requisite: CENG 44B. (4 units)

CENG 133. Wood Design
Design of wood structural systems. Design of sawn and structural composite lumber members for tension, compression, bending, and shear. Introduction to shear wall and diaphragm design. Design of connections. Also listed as CENG 233. Prerequisite: CENG 132. (4 units)

CENG 134. Structural Steel Design I
Design of structural steel buildings. Design of steel members for tension, flexure, shear, compression, and combined loading. Design of composite floor beams. Introduction to connection design. Prerequisite: CENG 148. (4 units)

CENG 135. Reinforced Concrete Design
Design of one-way slabs, tee beams, and doubly-reinforced beams for flexure and shear; moment coefficient method; deflection estimates; longitudinal bar cutoffs and detailing; biaxial bending and slender columns. Prerequisite: CENG 148. Co-requisite: CENG 135L. (4 units)
CENG 135L. Laboratory for CENG 135
Experimental tests of reinforced concrete building components; problem solving and review sessions; field trip(s). Co-requisite: CENG 135. (1 unit)

CENG 136. Advanced Concrete Structures
Confinement, moment-curvature and shear-displacement response; modeling; design and detailing of special moment frames, shear walls, and diaphragms; pre-stressed concrete beams. Also listed as CENG 236. Prerequisite: CENG 135. (4 units)

CENG 137. Earthquake Engineering Design
Introduction to seismic sources, wave propagation, and effects on structures. Spectral representations of demands. Design according to current code provisions, and using simplified pushover methods. Also listed as CENG 237. Prerequisite: CENG 148. (4 units)

CENG 138. Geotechnical Engineering Design I
Foundation exploration; bearing capacity and settlement analysis; spread foundations; piles and caissons; earth-retaining structures; loads on underground conduits; subsurface construction. Also listed as CENG 238. Prerequisite: CENG 121. (4 units)

CENG 138L. Geotechnical Engineering Design Laboratory
Structural design of footings, piles, and retaining walls. Also listed as CENG 238L. Prerequisite: CENG 148. Co-requisite: CENG 138. (1 unit)

CENG 139. Groundwater Hydrology
Groundwater occurrence, flow principles, flow to wells, and regional flow. Groundwater contamination, management, and models. Field methods. Field trips. Also listed as CENG 259. Prerequisite: CENG 141. (3 units)

CENG 140. Water Resources Engineering
Concepts, analysis, and engineering design related to various aspects of water resources: hydrologic cycle, evaporation, infiltration, precipitation, snow, flood frequency, water supply, and runoff management. Impacts of development, land use, and climate changes on water supply, and importance of these changes to society. Field trips. Prerequisite: CENG 141 or instructor approval. Co-requisite: CENG 140L. (4 units)

CENG 140L. Laboratory for CENG 140
Computational exercises for water resources analysis, field trips demonstrating hydrologic monitoring systems and complex regional water management systems. Co-requisite: CENG 140. (1 unit)

CENG 141. Fluid Mechanics and Hydraulic Engineering
Fundamentals of fluid behavior with an emphasis on water. Covers basic fluid properties, flow classification, and fluid statics including forces on submerged surfaces. Introduces and applies fundamental relationships: conservation of mass, momentum, and energy. Hydraulic applications include flow in pipes and pipe networks, steady flow in open channels, and hydraulic machinery. Laboratory. Prerequisite: CENG 41, PHYS 31. Co-requisite: CENG 141L. (4 units)

CENG 141L. Fluid Mechanics and Hydraulic Engineering Laboratory
Experiments demonstrating the principles of fluid flow and hydraulics for flow in pipes and in open channels. Use of modern data acquisition and writing of formal lab reports. Co-requisite: CENG 141. (1 unit)

CENG 142. Water Resources Design
Design of system components for water supply and flood control projects, including storage facilities, closed conduits, open channels, well fields, and pumping systems. Also listed as CENG 242. Prerequisites: CENG 140 and CENG 141 or instructor approval. (4 units)

CENG 143. Environmental Engineering
Water and air quality. Water supply and pollution control; air pollution control. Management of solid wastes. Prerequisites: CHEM 11, MATH 12, and junior standing. Co-requisite: CENG 143L. (5 units)

CENG 143L. Laboratory for CENG 143
Laboratory analysis of aqueous samples and ideal reactor systems. Analysis of non-point pollution prevention strategies. Solid waste characterization. Co-requisite: CENG 143. (1 unit)

CENG 144. Environmental Systems Design
Design of treatment and distribution systems for potable water. Design of collection and treatment systems for water pollution control and wastewater reclamation. Prerequisites: CENG 141 and 143. Co-requisite: CENG 144L. (3 units)

CENG 144L. Laboratory for CENG 144
Use of commercial software packages to design elements of potable water and wastewater management systems. Oral presentations. Co-requisite: CENG 144. (1 unit)

CENG 145. Transportation Engineering Design
Transportation systems analysis and design. Traffic flow. Geometric design of systems. Principles of highway design. Planning, construction, and operation of transportation systems. Prerequisites: CENG 10 and junior standing. (4 units)

CENG 146. Design of Cold-Formed Steel Frame Structures
Introduction to cold-formed steel frame load-bearing and non-load-bearing construction. Current design and construction practice. Practical design of members for tension, compression, shear, and torsion. Connection detailing. Also listed as CENG 246. Prerequisite: CENG 148. (4 units)

CENG 147. Pavement Design
Paving materials. Geometric and structural design of highways. Urban street layout and details. Layout and design of airport runways. Also listed as CENG 247. Prerequisites: CENG 115 and 121. (4 units)

CENG 148. Structural Systems
Performance requirements and structural systems; design load, load combinations, and load path. Accommodation of fire, sound, thermal, and mechanical requirements on structural systems; Alternative design philosophies. An introduction to design of steel and reinforced concrete beams and columns. Prerequisite: CENG 132. Co-requisite: CENG 148L. (4 units)

CENG 148L. Structural Systems Laboratory

CENG 149. Civil Systems Engineering
Introduction to engineering systems analysis and management technologies and their applications to civil engineering problems, such as transportation, assignment, critical path, and maximum flow problems. Topics include linear programming, nonlinear programming, probability and queuing theory, as well as relevant applications to civil engineering problems. Also listed as CENG 249. Prerequisites: MATH 13 and junior standing. (4 units)

CENG 150. Traffic Engineering: Design and Operations
Basic characteristics of motor-vehicle traffic, highway and intersection capacity, applications of traffic control devices, traffic data studies, signal design, traffic safety. Also listed as CENG 250. Prerequisite: CENG 145. (4 units)
CENG 151. Special Topics in Transportation Engineering
Coverage of special topics in transportation engineering including dynamic traffic flow forecasting, analysis and application of traffic flow patterns, and static and dynamic traffic analysis and modeling for short-term and long-term planning and optimization. Also listed as CENG 251. Prerequisite: CENG 145. (4 units)

CENG 152. Project Impacts on the Community and the Environment
Introduction to the decision-making concepts and strategies that ultimately determine the feasibility of a proposed development project. Chronological aspects of project planning, evaluation, and implementation. Identification of impacts on the community and the environment. (4 units)

CENG 160. GIS in Water Resources
Introduction to Geographic Information Systems (GIS) technology with applications in watershed analysis and hydrology. Obtaining and processing digital information for watersheds, mapping terrain, spatial analysis, computing river networks from digital elevation models, preparing data for hydrologic modeling for water supply and flood studies. Also listed as CENG 260. Prerequisites: Junior standing and experience with Windows directory and file management. (3 units)

CENG 161. Sustainable Water Resources
Analysis and design of water resource systems, from flood control projects to drinking water supply, as environmental constraints and societal values shift. Includes sustainable and low impact design techniques, climate impacts on water, assessing sustainability, life-cycle economics, and current topics. Also listed as CENG 261. Prerequisite: CENG 140 or instructor approval. (3 units)

CENG 162. Computational Water Resources
Use of professional applications software to design and evaluate facility components and systems for water resources engineering projects. Also listed as CENG 262. Prerequisite: CENG 140, which may be taken concurrently. (3 units)

CENG 163. Solid Waste Management
Characterization of solid waste streams. Overview of collection, transport, processing, and disposal options. Waste stream reduction and resource recovery strategies. Also listed as CENG 263. (4 units)

CENG 164. Construction Management
Project stakeholders authorities, project organization, compensation schemes, bidding, contracts, quality control, preconstruction operations, project documentation, electronic administration, labor laws and relations, safety, risk and liability sharing, payments and change orders, schedule delay analysis, claims, and disputes, project closeout. Also listed as CENG 284. Prerequisite: Junior standing. (3 units)

CENG 165. Project Closeout
Use of commercial scheduling software. Group project on construction planning. Also listed as CENG 286. Prerequisite: Junior standing. Co-requisite: CENG 186L. (3 units)

CENG 166L. Construction Planning and Control Laboratory
Laboratory for CENG 166. Also listed as CENG 266L. Co-requisite: CENG 186. (1 unit)

CENG 167. Construction Operations and Equipment
Earthmoving with dozers, scrapers, and excavators; hauling, compacting and finish. Piling, lifting; concrete operations, asphalt paving, equipment economics, operations planning using computer simulation, and discrete-event simulation. Group project on construction operations analysis. Also listed as CENG 287. Prerequisite: Junior standing. Co-requisite: CENG 187L. (3 units)

CENG 168L. Construction Operations and Equipment Laboratory
Laboratory for CENG 167. Also listed as CENG 287L. Co-requisite: CENG 187. (1 unit)

CENG 168. Co-op Education
Integration of classroom study and practical experience in a planned program designed to give students practical work experience related to their academic field of study and career objectives. The course alternates (or parallels) periods of classroom study with periods of training in industry or government. Satisfactory completion of the work assignment includes preparation of a summary report on co-op activities. P/NP grading. May not be taken for graduate credit. (1–2 units)

CENG 169. Co-op Technical Report
Technical report on a specific activity such as a design or research project, etc., after completing a co-op assignment. Approval of department advisor required. Letter grade based on content and quality of report. May not be taken for graduate credit. Prerequisite: CENG 188. (2 units)

CENG 170. Civil Engineering Project Development
Introduction to problem-solving methodology for the design of civil engineering systems and components. Selection of Capstone Design Project, definition of problem, and conceptual design. Prerequisite: Junior standing. (1 unit)

CENG 171. Elements of Civil Engineering Practice
Further development of problem-solving methodology: introduction to project management. Applications of engineering techniques and procedures to civil engineering design. Schematic designs, alternatives analysis and cost estimates. Preliminary design of critical components or subsystems of Capstone Design Project. Environmental impact assessment. Prerequisite: CENG 192A. Co-requisite: CENG 192C. (2 units)

CENG 172. Professional Development Seminar
Importance of licensing and lifelong learning in the practice of civil engineering. Advanced workshops on topics relevant to Capstone Design Projects. Review of topics covered on FE/EIT professional licensing exam. Prerequisite: Senior standing or instructor approval. (1 unit)

CENG 173. Detailed Project Design
Investigation of an approved Capstone Design Project. The design process, including problem formulation, analysis, preliminary design, final design, and plans, is completed. Formal presentation of preliminary and final designs. Prerequisite: CENG 192B. (4 units)
CENG 194. Design Project Communication
Completion of design project documentation and public presentation of results. Prerequisite: CENG 193. (1 unit)

CENG 197. Special Topics in Civil Engineering
Subjects of current interest. May be taken more than once if topics differ. (1–4 units)

Graduate Courses

CENG 205. Finite Element Methods I
Introduction to structural and stress analysis problems using the finite element method. Use of matrix methods, interpolation (shape) functions and variational methods. Formulation of global matrices from element matrices using direct stiffness approach. Development of element matrices for trusses, beams, 2D, axisymmetric and 3D problems. Theory for linear static problems and practical use of commercial FE codes. Also listed as MECH 250. (2 units)

CENG 206. Finite Element Methods II
Isoparametric elements and higher order shape functions for stiffness and mass matrices using numerical integration. Plate and shell elements. Mesh refinement and error analysis. Linear transient thermal and structural problem using finite element approach. Eigenvalue/eigenvector analysis, frequency response and direct integration approaches for transient problems. Application of commercial FE codes. Also listed as MECH 251. Prerequisite: CENG 205. (2 units)

CENG 207. Finite Element Methods III
Solution of nonlinear problems using finite element analysis. Methods for solving nonlinear matrix equations. Material, geometric, boundary condition (contact) and other types of nonlinearities and applications to solid mechanics. Transient nonlinear problems in thermal and fluid mechanics. Application of commercial FE codes to nonlinear analysis. Also listed as MECH 252. Prerequisite: CENG 206. (2 units)

CENG 208. Engineering Economics and Project Finance
Time value of money, cash-flow, rate of return, and depreciation; financing approaches and sources; applications to large scale energy projects such as wind and solar energy, cogeneration, biomass, and geothermal. (3 units)

CENG 211. Advanced Strength of Materials

CENG 213. Sustainable Materials
Evaluation of material sustainability. Material characteristics, microstructure, and mechanical properties of selected materials such as bamboo, straw, adobe, lime, and reduced cement concretes. Processing and durability considerations. Course project. Co-requisite: CENG 213L. (3 units)

CENG 213L. Laboratory for CENG 213
Sample preparation and evaluation of mechanical properties in the laboratory. Co-requisite: CENG 213. (1 unit)

CENG 215. Sustainable Structural Engineering
Use of sustainable materials in structural design; characteristics and design of systems such as bamboo frames and trusses, straw bale walls, low-cement concrete, and composite barrel vaults. Course project. Prerequisite: CENG 148 or instructor approval. Co-requisite: CENG 215L. (3 units)

CENG 215L. Laboratory for CENG 215
Preparation and testing of structural sub-assemblies in the laboratory. Co-requisite: CENG 215. (1 unit)

CENG 217. Sustainable Infrastructure for Developing Countries
Sustainable options for providing water and energy to communities, adaptation to local resources and constraints, processing and reuse of waste products, transportation alternatives. (4 units)

CENG 218. Construction Engineering
Introduction to construction roles and responsibilities, construction project phases, building systems, bidding and cost estimating, resource utilization, planning and scheduling, project documentation, safety and quality management. Also listed as CENG 118. (3 units)

CENG 219. Designing for Sustainable Construction
Design strategies for sustainable commercial and residential construction. Use of LEED criteria for assessing sustainable construction. Team-based project planning, design, and construction. Economic evaluation of sustainable technologies. Project management. Also listed as CENG 119. (4 units)

CENG 220. Structural Dynamics
Analysis and behavior of simple linear oscillators. Natural mode shapes and frequencies for distributed and lumped mass systems. Introduction to nonlinear vibrations. (4 units)

CENG 221. Advanced Dynamics
Continuation of CENG 220. Distributed parameter systems. Nonlinear transient dynamics. Dynamic response in the frequency domain. Component mode methods. Prerequisite: CENG 220. (2 units)

CENG 222. Advanced Structural Analysis
Advanced methods for the analysis of statically indeterminate and non-conventional structural systems. Explicit modeling of cross-sections and joints in structural systems. Hands-on experience with modern commercial analysis software. (4 units)

CENG 223. Stability of Structures

CENG 226. Plastic Theory of Structures
Concepts of plastic behavior of structures. Collapse mechanisms for beams and frames. Applications of energy methods in solution procedures. (2 units)
CENG 228. Fracture Mechanics of Solids

CENG 231. Bridge Engineering
An introduction to modern bridge structural systems, bridge loading, bridge deck slab design, girders, and substructure. Prerequisites: CENG 134 and CENG 135. (4 units)

CENG 232. Masonry Engineering
Design of unreinforced and reinforced masonry structures, including shear-wall and bearing-wall systems. Prerequisite: CENG 135. (2 units)

CENG 233. Wood Design
Design of wood structural systems. Design of sawn and structural composite lumber members for tension, compression, bending, and shear. Introduction to shear wall and diaphragm design. Design of connections. Also listed as CENG 136. Prerequisite: CENG 132. (4 units)

CENG 234. Structural Steel Design II
Design of lateral systems, including new and innovative systems, and connections. Introduction to hybrid and composite design. Application of performance-based design requirements for steel structures. Prerequisite: CENG 134. (4 units)

CENG 236. Advanced Concrete Structures
Confinement, moment-curvature and shear-displacement response; modeling; design and detailing of special moment frames, shear walls, and diaphragms; pre-stressed concrete beams. Also listed as CENG 136. Prerequisite: CENG 135. (4 units)

CENG 237. Earthquake Engineering Design
Introduction to seismic sources, wave propagation, and effects on structures. Spectral representations of demands. Design according to current code provisions, and using simplified pushover methods. Also listed as CENG 137. (4 units)

CENG 238. Geotechnical Engineering Design
Foundation exploration; bearing capacity and settlement analysis; spread foundations; piles and caissons; earth-retaining structures; loads on underground conduits; subsurface construction. Also listed as CENG 138. Prerequisite: CENG 121. (4 units)

CENG 238L. Geotechnical Engineering Design Laboratory
Structural design of footings, piles, and retaining walls. Also listed as CENG 138L. Prerequisite: CENG 148 or instructor approval. Co-requisite: CENG 238. (1 unit)

CENG 239. Earthquake Engineering II

CENG 239L. Earthquake Engineering Laboratory
Co-requisite: CENG 239. (1 unit)

CENG 240. Soil-Structure Interaction
Introduction of soil-structure analysis for evaluating seismic response. Dynamic interaction between the structure and its surrounding soil. Soil-structure interaction models. Prerequisites: CENG 237 and CENG 238. (2 units)

CENG 241. Introduction to Blast Analysis
This introductory course will cover well-established procedures and principles used to design structures to resist the effects of accidental explosions. Concepts covered include: design considerations; risk analysis and reduction; acceptable performance criteria; levels of protection; air-blast loading phenomena; blast loading functions; current state of practice of structural blast analysis, design and detailing requirements. (2 units)

CENG 242. Water Resources Design
Design of system components for water supply and flood control projects, including storage facilities, closed conduits, open channels, well fields, and pumping systems. Also listed as CENG 142. Prerequisites: CENG 140 and CENG 141 or instructor approval. (4 units)

CENG 242L. Laboratory for CENG 242
Hands on use of commercial software packages to test water supply and flood control projects. Co-requisite: CENG 242. (1 unit)

CENG 243. Blast-Resistant Design of Concrete Structures
Introduction to the design of walls, slabs, beams and columns for far and close-in explosion effects; dynamic design considerations; detailing requirements, connections; acceptable performance criteria; damage assessment and levels of protection. (2 units)

CENG 244. Progressive Collapse and Structural Integrity
Introduction to procedures and principles used to analyze and design structures to mitigate the possibility of the progressive collapse. Concepts covered include: examples and causes, mechanisms of occurrence of progressive collapse, analysis and modeling principles, current state of practice, design and detailing considerations for steel and concrete moment frame structures, levels of protection and risk reduction concepts; course project. (2 units)

CENG 245. Special Topics in Transportation Engineering
Coverage of special topics in transportation engineering including dynamic traffic flow forecasting, analysis and application of traffic flow patterns, and static and dynamic traffic analysis and modeling for short-term and long-term planning and optimization. Also listed as CENG 151. Prerequisite: CENG 145. (4 units)

CENG 246. Design of Cold-Formed Steel Frame Structures
Introduction to cold-formed steel frame load-bearing and non-load-bearing construction. Current design and construction practice. Practical design of members for tension, compression, shear, and torsion. Connection detailing. Also listed as CENG 146. (4 units)

CENG 247. Pavement Design
Paving materials. Geometric and structural design of highways. Urban street layout and details. Layout and design of airport runways. Also listed as CENG 147. Prerequisites: CENG 115 and 121. (4 units)

CENG 249. Civil Systems Engineering
Introduction to engineering systems analysis and management technologies and their applications to civil engineering problems, such as transportation, assignment, critical path, and maximum flow problems. Topics include linear programming, nonlinear programming, probability and queuing theory, as well as relevant applications to civil engineering problems. Also listed as CENG 149. (4 units)

CENG 250. Traffic Engineering: Design and Operations
Basic characteristics of motor-vehicle traffic, highway and intersection capacity, applications of traffic control devices, traffic data studies, signal design, traffic safety. Also listed as CENG 150. Prerequisite: CENG 145. (4 units)
CENG 256. Public Transportation
Evolution of mass transit in the United States. Characteristics of major components of mass transit: bus, light- and rapid-rail transit. Prominent systems of mass transit in selected major U.S. cities. Parallel transit systems. Financing and administering of transit and paratransit systems. New technology applications in mass transit. Course requires students to get hands-on experience on one of the major transit systems in the Bay Area as a case study. (3 units)

CENG 258. Water Law and Policy
Introduction to the legal and regulatory concepts related to water. Examines rights, policies, and laws, including issues related to water supply and access (water transfers/water markets, riparian and appropriative doctrines), flood control, water pollution and quality (the Clean Water Act, EPA standards, in stream flows for fish), and on-site storm water management/flood control. A focus on California water law and policy is complemented with some national and international case studies. Cross-listed with CENG 124 and ENVS 124. (4 units)

CENG 259. Groundwater Hydrology
Groundwater occurrence, flow principles, flow to wells, and regional flow. Groundwater contamination, management, and modeling. Field methods. Field trips. Also listed as CENG 139. Prerequisite: CENG 141. (3 units)

CENG 260. GIS in Water Resources
Introduction to Geographical Information Systems (GIS) technology with applications in watershed analysis and hydrology. Obtaining and processing digital information for watersheds, mapping terrain, spatial analysis, computing river networks from digital elevation models, preparing data for hydrologic modeling for water supply and flood studies. Also listed as CENG 160. (3 units)

CENG 261. Sustainable Water Resources
Analysis and design of water resource systems, from flood control projects to drinking water supply, as environmental constraints and societal values shift. Includes sustainable and low impact design techniques, climate impacts on water, assessing sustainability, life-cycle economics, and current topics. Also listed as CENG 161. Prerequisite: CENG 140 or instructor approval. (3 units)

CENG 262. Computational Water Resources
Use of professional applications software to design and evaluate facility components and systems for water resources engineering projects. Laboratory. Also listed as CENG 162. Prerequisites: CENG 140 and 141, which may be taken concurrently. (3 units)

CENG 263. Solid Waste Management
Characterization of solid waste streams. Overview of collection, transport, processing, and disposal options. Waste stream reduction and resource recovery strategies. Also listed as CENG 163. (4 units)

CENG 264. Construction Management
Project stakeholders authorities, project organization, compensation schemes, bidding, contracts, quality control, pre-construction operations, project documentation, electronic administration, labor laws and relations, safety, risk and liability sharing, payments and change orders, schedule delay analysis, claims, and disputes, project closeout. Also listed as CENG 184. (3 units)

CENG 265. Construction Law for Civil Engineers
Analysis and design of water resource systems, from flood control projects to drinking water supply, as environmental constraints and societal values shift. Includes sustainable and low impact design techniques, climate impacts on water, assessing sustainability, life-cycle economics, and current topics. Also listed as CENG 161. Prerequisite: CENG 140 or instructor approval. (3 units)

CENG 266. Construction Planning and Control
Work breakdown structure; work sequencing and logic; activity duration estimates; schedule network representations; critical path method; resources loading, allocation, and leveling; planning of repetitive tasks; cost estimates; time-cost tradeoffs; project cash flow analysis; and, time-cost control. Use of commercial scheduling software. Group project on construction planning. Also listed as CENG 186. Co-requisite: CENG 286L. (3 units)

CENG 267. Construction Operations and Equipment Laboratory
Laboratory for CENG 287. Also listed as CENG 187L. Co-requisite: CENG 287. (1 unit)

CENG 268. Engineering Decision Analysis
Risk management, decision trees, fault trees, multi-attribute decision-making, sensitivity analysis, fuzzy numbers, fuzzy logic, optimization, reliability analysis, and Monte-Carlo simulation. Group project on engineering decisions. Prerequisite: AMTH 108 or instructor approval. (4 units)

CENG 269. Construction Productivity Analysis
Productivity improvement as applied to construction operations. Quantitative methods and procedures for measuring, analyzing and improving the productivity at construction job sites. (3 units)

CENG 270. Infrastructure Project Management
Management concepts and strategies for civil infrastructure projects. Identification of scope, schedule, and budget. Quality assurance and control. Processes for tracking progress and budget. Examination of actual projects. (2 units)
OVERVIEW

"Computing sits at the crossroads among the central processes of applied mathematics, science, and engineering. The three processes have equal and fundamental importance in the discipline, which uniquely blends theory, abstraction, and design."

The most successful graduates in the field of computing are those who understand computers as systems—not just the design of hardware or software, but also the relationships and interdependencies between them and the underlying theory of computation.

The department offers a variety of degree and certificate programs, including courses that cover the breadth of the discipline, from the engineering aspects of hardware and software design to the underlying theory of computation.

DEGREE PROGRAMS

Students are required to meet with their advisors to define and file a program of study during their first quarter. In general, no credit is allowed for courses that duplicate prior coursework, including courses listed as degree requirements. Students should arrange adjustment of these requirements with their academic advisor when they file their program of study.

With the prior written consent of the advisor, master’s students may take a maximum of 12 units of coursework for graduate credit from selected senior-level undergraduate courses.

Master of Science in Computer Science and Engineering (MSCSE)

All students admitted to the MSCSE program are expected to already have competence in the fundamental subjects listed below, as required within an accredited program for a B.S. in Computer Engineering or Computer Science. An applicant without such background (but has completed college level calculus and advanced programming) may
still be admitted, provided the deficiencies are corrected by coursework that is in addition to the normal degree requirements and that is completed within the first year of graduate study. Alternatively, a student may take a similar course at another approved accredited institution. Online, continuing education, extension courses, and courses without a closed book exam are not accepted. The subjects and corresponding SCU courses that may be used to correct the deficiencies include:

1. Logic design
 - COEN 21 or 921C
2. Data structures
 - COEN 12 or 912C
3. Computer organization & assembly language
 - COEN 20 or 920C or ELEN 33
4. Discrete math
 - AMTH 240
5. Probability
 - AMTH 210
6. One of the following: Differential Equations (AMTH 106), Numerical Analysis (AMTH 220, 221), or Linear Algebra (AMTH 245, 246)
7. One additional advanced programming course or one year of programming experience in industry

The SCU COEN and ELEN courses listed above and AMTH 106 are considered undergraduate-level and may not be used to satisfy the requirements for the M.S. in Computer Science and Engineering. However, students who have satisfied item 6 above, but who have never studied numerical analysis, may use AMTH 220/221 as electives; students who have satisfied item 6 above, but who have never studied linear algebra, may use AMTH 245/246 as electives. Laboratory components are not required for the above courses.

Degree Requirements

1. **MSCSE Core**
 - COEN 210, 279, and 283
 - Students who have taken one or more of these core courses or their equivalent must, replace said course(s) with the advanced course equivalent (COEN 313, 379, and/or 383) or, with their advisor’s approval, replace said course(s) with elective(s).

2. **MSCSE Electives**
 - A student must take a minimum of 8 units of COEN 300-899 courses. CSE electives are not restricted to the specialization tracks but must be approved by the advisor. Specialization tracks include suggested (not required) courses for each area of specialization; choosing a specialization track is not mandatory and suggested courses may be replaced by other graduate courses with advisor’s approval. Specialization tracks are:
 - Data Science: COEN 240, 272, 280, 281, and at least one of the following: COEN 241, 242, 266, 317, 338, 380, AMTH 212, 247, and other courses as approved by the advisor
 - Internet of Things: COEN 233, 243, and at least 12 units from COEN 241, 242, 268, 331, 350, 389, and other courses as approved by the advisor
 - Software Engineering: COEN 260, 275, 285, 286, 385, and 386
 - Information Assurance: COEN 225, 250, 252, 351; AMTH 387; and at least one of the following: COEN 226, 253, 254, or 350

3. **SCU Engineering Graduate Core Requirements (a minimum of 6 units).** See Chapter 4, Academic Information.
4. **Electives:** Sufficient units to bring the total to at least 45. (The maximum number of non-COEN graduate units allowed is 10 units, including those from the Engineering Graduate Core, and courses must be approved by the advisor.)

Master of Science in Software Engineering (MSSE)

The MSSE degree requires a minimum of 45 quarter units of work. All applicants for the Master of Science in Software Engineering program must have a bachelor’s degree from an accredited four-year program. The ideal candidate has completed a bachelor’s degree in computer science or computer engineering; however, exceptional candidates who hold a bachelor’s degree in another closely related field may apply for consideration if they can clearly demonstrate the ability to perform graduate-level work in software engineering.

The program consists of the SCU Engineering Graduate Core, a software engineering core, a set of software engineering electives, and a capstone project. Students are allowed to sample courses across diverse software disciplines, including databases, networks, parallel and distributed systems, graphical user interfaces, artificial intelligence, and computer languages. Students must work with their advisor to select 15 units of appropriate software engineering electives. The capstone project comprises three consecutive terms of effort and provides an opportunity for students to apply their technical breadth and the core engineering principles toward the development of a complex, team-oriented software project. Ideally, projects will involve collaboration with industry. The capstone project integrates the engineering knowledge acquired in the core courses with the technical breadth acquired in the diverse electives. Thus, students must complete all requirements of the core prior to registering for the first capstone project course. They must also complete six units of electives prior to registering for the second two units of the capstone course, COEN 485, to ensure the project teams have the appropriate blend of technical background and engineering knowledge.

Degree Requirements

1. **SCU Engineering Graduate Core Requirements:** (a minimum of 6 units): See Chapter 4, Academic Information.

2. **MSSE Core**
 - COEN 260, 275, 285, 286, 385, and 386

- Multimedia Processing: COEN 201, 202, 238, and 338; and at least 6 units from AMTH 211, COEN 290, 339, 340, 343, 347, ELEN 241, 244, or 444
- Computer Architecture and Systems: COEN 307, 313, 318, and 320; and at least 4 units from COEN 203, 204, 207, 208, 218, 301, 303, 319
- Other possible specializations with advisor’s approval
3. Software engineering electives
 • 15 units selected with the approval of the academic advisor
4. Software Engineering Capstone Project: COEN 485 (repeated in three consecutive terms for a total of 6 units)
 • Students must complete COEN 286 and 386 before enrolling in COEN 485
 • Students are expected to register for three consecutive quarters of COEN 485
 • Students may not register for more than 2 units of COEN 485 in any one term
5. COEN 288 (also satisfies Engineering Graduate core requirement for Engineering and Society)
6. Electives: Sufficient units to bring the total to at least 45

Please Note: Students should meet with their advisors to define and file their program of study during their first quarter.

Doctor of Philosophy in Computer Science and Engineering

The doctor of philosophy (Ph.D.) degree is conferred by the School of Engineering primarily in recognition of competence in the subject field and the ability to investigate engineering problems independently, resulting in a new contribution to knowledge in the field. The work for the degree consists of engineering research, the preparation of a thesis based on that research, and a program of advanced study in engineering, mathematics, and related physical sciences. The student’s work is directed by the department, subject to the general supervision of the School of Engineering. See Chapters 2 and 3, Academic Programs and Requirements and Admissions, for details on admission and general degree requirements. The following departmental information augments the general requirements.

Preliminary Exam

A preliminary written exam is offered at least once per year by the School of Engineering as needed. The purpose is to ascertain the depth and breadth of the student’s preparation and suitability for Ph.D. work.

Faculty Advisor

The student and his or her advisor jointly develop a complete program of study for research in a particular area. The complete program of study (and any subsequent changes) must be filed with the Engineering Graduate Programs Office and approved by the student’s doctoral committee. Until this approval is obtained, there is no guarantee that courses taken will be acceptable toward the Ph.D. course requirements.

Doctoral Committee

After passing the Ph.D. preliminary exam, a student requests his or her thesis advisor to form a doctoral committee. The committee consists of at least five members, each of which must have earned a doctoral degree in a field of engineering or a related discipline. This includes the student’s thesis advisor, at least two other current faculty members of the student’s major department at Santa Clara University, and at least one current faculty member from another appropriate academic department at Santa Clara University.

The committee reviews the student’s program of study, conducts an oral comprehensive exam, conducts the dissertation defense, and reviews the thesis. Successful completion of the doctoral program requires that the student’s program of study, performance on the oral comprehensive examination, dissertation defense, and thesis itself meet with the approval of all committee members.

Time Limit for Completing Degree

All requirements for the doctoral degree must be completed within eight years following initial enrollment in the Ph.D. program. Extensions will be allowed only in unusual circumstances and must be recommended in writing by the student’s doctoral committee, and approved by the dean of engineering in consultation with the Graduate Program Leadership Council (GPLC).

Engineer’s Degree in Computer Science and Engineering

The program leading to the engineer’s degree is particularly designed for the education of the practicing engineer. The degree is granted on completion of an approved academic program and a record of acceptable technical achievement in the candidate’s field of engineering. The academic program consists of a minimum of 45 units beyond the master’s degree. Courses are selected to advance competence in specific areas relating to the engineering professional’s work. Evidence of technical achievement must include a paper principally written by the candidate and accepted for publication by a recognized engineering journal prior to the granting of the degree. A letter from the journal accepting the paper must be submitted to the Office of the Dean, School of Engineering. In certain cases, the department may accept publication in the proceedings of an appropriate conference.

Admission to the program will generally be granted to those students who demonstrate superior ability in meeting the requirements for their master’s degree. Normally, the master’s degree is earned in the same field as that in which the engineer’s degree is sought. Students who have earned a master’s degree from Santa Clara University must file a new application (by the deadline) to continue work toward the engineer’s degree. A program of study for the engineer’s degree should be developed with the assistance of an advisor and submitted during the first term of enrollment.

CERTIFICATE PROGRAMS

Certificate programs are designed to provide intensive background in a narrow area at the graduate level. At roughly one-third of the units of a master’s degree program, the certificate is designed to be completed in a much shorter period of time. These certificate programs are appropriate for students working in industry who wish to enhance their skills in an area in which they already have some background knowledge. There are three certificate programs: Software Engineering, Information Assurance, and Networking. We are currently not accepting applications for certificate programs.

LABORATORIES

The Artificial Intelligence (AI) Laboratory conducts research across diverse facets of AI, including foundational and applied machine learning, and computational creativity, exploring the capabilities of AI systems to be autonomously creative as well as act as co-creative partners.

The Data Science Laboratory is devoted to the extraction of knowledge from data and to the theory, design, and implementation of information systems to manage, retrieve, mine, and utilize data.

The Digital Systems Laboratory (operated jointly with the Department of Electrical Engineering) provides complete facilities for experiments and projects ranging in complexity from a few digital integrated circuits to FPGA-based designs. The laboratory also includes a variety of development systems to support embedded systems and digital signal processing.
The **Green Computing Laboratory** is devoted to energy-efficient computing, i.e., the study and analysis of energy consumption in operating systems and networks and the development of energy-aware software.

The **Internet of Things Technologies Research Laboratory** focuses on the design and development of (1) systems with sensing and actuation capabilities, (2) energy-efficient and reliable networking protocols, and (3) data analytics, for applications such as healthcare, advanced manufacturing, and smart cities.

The **Multimedia Compression Laboratory** supports research in image and video coding (compression and decompression).

The **Sustainable Computing Laboratory** is dedicated to research in systems software and data storage technologies. The projects it supports focus on durable, scalable, and efficient solutions to computing problems, and the application of systems software technologies to broader sustainability problems.

The **Trustworthy Computing Laboratory** conducts research on ensuring the security and trustworthiness of distributed systems and networks.

The **Wireless Networks Laboratory** is shared by Computer Engineering and Electrical Engineering. The lab carries out research projects on the lower three layers of wireless networks.

COURSE DESCRIPTIONS

Please Note: Depending on enrollment, some courses may not be offered every year.

Lower-Division Undergraduate Courses

COEN 10. Introduction to Programming

Overview of computing. Introduction to program design and implementation: problem definition, functional decomposition, and design of algorithm programming in PHP and C. variables, data types, control constructs, arrays, strings, and functions. Program development in the Linux environment: editing, compiling, testing, and debugging. Credit is not allowed for more than one introductory class such as COEN 10, CSCI 10, or OMIS 30. Co-requisite: COEN 10L. (4 units)

COEN 11L. Advanced Programming Laboratory

Co-requisite: COEN 11. (1 unit)

COEN 12. Abstract Data Types and Data Structures

Data abstraction: abstract data types, information hiding, interface specification. Basic data structures: stacks, queues, lists, binary trees, hashing, tables, graphs; implementation of abstract data types in the C language. Internal sorting: review of selection, insertion, and exchange sorts; quicksort, heapsort, recursion. Analysis of run-time behavior of algorithms; Big-O notation. Introduction to classes in C++. Credit not allowed for more than one introductory data structures class, such as COEN 12 or CSCI 61. Prerequisite: A grade of C- or better in either COEN 11 or COEN 44. Co-requisite: COEN 12L. Recommended co-requisite: COEN 19 or MATH 51. (4 units)

COEN 12L. Abstract Data Types and Data Structures Laboratory

Co-requisite: COEN 12. (1 unit)

COEN 19. Discrete Mathematics

Relations and operations on sets, orderings, elementary combinatorial analysis, recursion, algebraic structures, logic, and methods of proof. Also listed as MATH 51. (4 units)

COEN 20. Introduction to Embedded Systems

Introduction to computer organization: CPU, registers, buses, memory, I/O interfaces. Number systems: arithmetic and information representation. Assembly language programming: addressing techniques, arithmetic and logic operations, branching and looping, stack operations, procedure calls, parameter passing, and interrupts. C language programming: pointers, memory management, stack frames, interrupt processing. Prerequisite: A grade of C- or better in COEN 11 or CSCI 60. Co-requisite: COEN 20L. Recommended co-requisite or prerequisite: COEN 12 or CSCI 61. (4 units)

COEN 20L. Embedded Systems Laboratory

Co-requisite: COEN 20. (1 unit)

COEN 21. Introduction to Logic Design

COEN 21L. Logic Design Laboratory

Also listed as ELEN 21L. Co-requisite: COEN 21. (1 unit)

COEN 29. Current Topics in Computer Science and Engineering

Subjects of current interest. May be taken more than once if topics differ. (4 units)

COEN 44. Applied Programming in C

Computer programming in C, including input/output, selection structures, loops, iterative solutions, function definition and invocation, macros, pointers, memory allocation, and top-down design. Programming of elementary mathematical operations. Applications to engineering problems. Prerequisite: MATH 13. Co-requisite: COEN 44L. (4 units)

COEN 44L. Applied Programming in C Laboratory

Laboratory for COEN 44. Co-requisite: COEN 44. (1 unit)

COEN 45. Applied Programming in MATLAB

Computer programming in MATLAB, including input/output, selection structures, loops, iterative solutions, function definition and invocation, top-down design. Programming of elementary mathematical operations. Applications to engineering problems. Prerequisite: MATH 13. Co-requisite: COEN 45L. (4 units)

COEN 45L. Applied Programming in MATLAB Laboratory

Laboratory for COEN 45. Co-requisite: COEN 45. (1 unit)
COEN 60. Introduction to Web Technologies
Overview of the Internet and World Wide Web technologies and practices. Introduction to basic markup language, style sheet language, server-side scripting language, and website design. Emerging web applications. Co-requisite: COEN 60L (4 units)

COEN 60L. Introduction to Web Technologies Laboratory
Laboratory for COEN 60. Co-requisite: COEN 60. (1 unit)

COEN 70. Formal Specification and Advanced Data Structures
Specification, representation, implementation, and validation of data structures; object-oriented design and programming in a strongly typed language with emphasis on reliable reusable software; formal specification of data structures (e.g., graphs, sets, bags, tables, environments, trees, expressions, graphics); informal use of specifications to guide implementation and validation of programs; guidelines and practice in designing for and with reuse. Prerequisites: A grade of C- or better in either COEN 12 or CSCL 61 and in either COEN 19 or MATH 51. Co-requisite: COEN 70L (4 units)

COEN 70L. Formal Specification and Advanced Data Structures Laboratory
Laboratory for COEN 70. Co-requisite: COEN 70. (1 unit)

COEN 79. Object-Oriented Programming and Advanced Data Structures
Object-oriented programming concepts; specification, design, and implementation of data structures with emphasis on software reliability and reusability; Design and implementation of static and dynamic data structures, such as sequence, vector, list, stack, queue, deque, priority queue, set, multiset, map, multimap, and graph; Software development using inheritance, templates and iterators; Memory allocation and performance; Using data structures in real-world applications; Time analysis of data structures; Informal use of specifications to guide implementation and validation of programs. Prerequisites: A grade of C- or better in either COEN 12 or CSCL 61 and in either COEN 19 or MATH 51. Co-requisite: COEN 79L (4 units)

COEN 79L. Object-Oriented Programming and Advanced Data Structures Laboratory
Laboratory for COEN 79. Co-requisite: COEN 79. (1 unit)

Upper-Division Undergraduate Courses

COEN 100. Research Seminar
Introduction to research in computing, covering several research areas. (1 unit)

COEN 120. Real Time Systems
Overview of real-time systems: classification, design issues and description. Finite state machines and statecharts. Robot programming: odometry and the use of sensors. Real-time programming languages, real-time kernels and multi-threaded programming. Unified Modeling Language for the design of real-time applications. Performance analysis. Prerequisites: A grade of C- or better in either COEN 12 or CSCL 61. Co-requisite: COEN 120L (4 units)

COEN 120L. Real Time Systems Laboratory
Laboratory for COEN 120. Co-requisite: COEN 120. (1 unit)

COEN 122. Computer Architecture
Overview of computer systems. Performance measurement. Instruction set architecture. Computer arithmetic. CPU datapath design. CPU control design. Pipelining. Data/control hazards. Memory hierarchies and management. Introduction of multiprocessor systems. Hardware description languages. Laboratory project consists of a design of a CPU. Prerequisites: A grade of C- or better in either COEN 20 or ELEN 33 and in either COEN 21 or ELEN 21. Co-requisite: COEN 122L (4 units)

COEN 122L. Computer Architecture Laboratory
Laboratory for COEN 122. Co-requisite: COEN 122. (1 unit)

COEN 123. Mechatronics
Introduction to behavior, design, and integration of electromechanical components and systems. Review of appropriate electronic components/circuitry, mechanism configurations, and programming constructs. Use and integration of transducers, microcontrollers, and actuators. Also listed as ELEN 123 and MECH 143. Prerequisites: ELEN 50 with a grade of C- or better and COEN 11 or 44. Co-requisite: COEN 123L (4 units)

123L. Mechatronics Laboratory
Laboratory for COEN 123. Also listed as ELEN 123L and MECH 143L. Co-requisite: COEN 123. (1 unit)

COEN 127. Advanced Logic Design
Contemporary design of finite-state machines as system controllers using MSI, PLDS, or FPGA devices. Minimization techniques, performance analysis, and modular system design. HDL simulation and synthesis. Also listed as ELEN 127. Prerequisite: COEN 21. Co-requisites: COEN 127L and ELEN 115. (4 units)

COEN 127L. Advanced Logic Design Laboratory
Also listed as ELEN 127L. Co-requisite: COEN 127. (1 unit)

COEN 129. Current Topics in Computer Science and Engineering
Subjects of current interest. May be taken more than once if topics differ. (4 units)

COEN 140. Machine Learning and Data Mining
Machine learning as a field has become increasingly pervasive, with applications from the web (search, advertisements, and recommendation) to national security, from analyzing biochemical interactions to traffic and emissions to astrophysics. This course presents an introduction to machine learning and data mining, the study of computing systems that improve their performance through learning from data. This course is designed to cover the main principles, algorithms, and applications of machine learning and data mining. Prerequisites: A grade of C- or better in AMTH 108, MATH 53, and COEN 12. (4 units)

COEN 145. Introduction to Parallel Programming
Concept of parallelism, thread programming, thread/process synchronization, synchronization algorithms and language constructs, shared-memory versus message-passing, parallel programming concepts, performance metrics, overview of parallel architectures, evaluation of parallel algorithms, data parallel programming, shared-memory, and message-passing parallel programming. Case studies on application algorithms. Hands-on lab on multi-core CPUs and many-core GPUs. Prerequisites: A grade of C- or better in COEN 11 and 122. Co-requisite: COEN 145L. (4 units)

COEN 145L. Introduction to Parallel Programming Laboratory
Laboratory for COEN 145. Co-requisite: COEN 145. (1 unit)
COEN 146. Computer Networks
Data Communication: circuit and packet switching, latency and bandwidth, throughput/delay analysis. Application Layer: client/server model, socket programming, Web, e-mail, FTP. Transport Layer: TCP and UDP, flow control, congestion control, sliding window techniques. Network Layer: IP and routing. Data Link Layer: shared channels, media access control protocols, error detection and correction. Mobile computing and wireless networks. Network security. Laboratory consists of projects on software development of network protocols and applications. Prerequisite: A grade of C- or better in either COEN 12 or CSCI 61. Co-requisite: COEN 146L. Recommended co-requisite or prerequisite: AMTH 108 or MATH 122. (4 units)

COEN 146L. Computer Networks Laboratory
Laboratory for COEN 146. Co-requisite: COEN 146. (1 unit)

Interactive graphic systems. Graphics primitives, line and shape generation. Simple transforming and modeling. Efficiency analysis and modular design. Interactive input techniques. Three-dimensional transformations and viewing, hidden surface removal. Color graphics, animation, real-time display considerations. Parametric surface definition and introduction to shaded-surface algorithms. Offered in alternate years. Prerequisite: MATH 53, a grade of C- or better in either COEN 12 or CSCI 61. (4 units)

COEN 150. Introduction to Information Security
Overview of information assurance. Legal and ethical issues surrounding security and privacy. Malware and other threats. Authentication and authorization. Risk management and other related topics. Prerequisite: Junior standing. (4 units)

COEN 152. Introduction to Computer Forensics
Procedures for identification, preservation, and extraction of electronic evidence. Auditing and investigation of network and host system intrusions, analysis and documentation of information gathered, and preparation of expert testimonial evidence. Forensic tools and resources for system administrators and information system security officers. Ethics, law, policy, and standards concerning digital evidence. Prerequisite: A grade of C- or better in either COEN 12 or CSCI 61 and in COEN 20. Co-requisite: COEN 152L. (4 units)

COEN 152L. Introduction to Computer Forensics Laboratory
Laboratory for COEN 152. Co-requisite: COEN 152. (1 unit)

COEN 160. Object-Oriented Analysis, Design and Programming
Four important aspects of object-oriented application development are covered: fundamental concepts of the OO paradigm, building analysis and design models using UML, implementation using Java, and testing object-oriented systems. Prerequisite: A grade of C- or better in COEN 70 or CSCI 61. Co-requisite: COEN 160L. Co-listed with COEN 275. (4 units)

COEN 160L. Object-Oriented Analysis, Design and Programming Laboratory
Laboratory for COEN 160. Co-requisite: COEN 160. (1 unit)

COEN 161. Web Development
Fundamentals of world wide web (www) and the technologies that are required to develop web-based applications. Topics cover HTML5, CSS, JavaScript, PHP, MYSQL and XML. Prerequisite: A grade of C- or better in either COEN 12 or CSCI 61. Co-requisite: COEN 161L. (4 units)

COEN 161L. Web Development Laboratory
Laboratory for COEN 161. Co-requisite: COEN 161. (1 unit)

COEN 162. Web Infrastructure

COEN 163. Web Usability
Principles of user-centered design. Principles of human-computer interaction. Fundamental theories in cognition and human factors: information processing, perception and representation, constructivist and ecological theories, Gestalt laws of perceptual organization. Usability engineering: user research, user profiling, method for evaluating user interface, usability testing. Prototyping in user interface: process, methods of evaluating and testing. Inclusive design in user interface design: accessibility issues, compliance with section 508 of Rehabilitation Act. Prerequisite: A grade of C- or better in either COEN 12 or CSCI 61 and in either COEN 19 or MATH 51. (4 units)

COEN 163L. Web Usability Laboratory
Laboratory for COEN 163. Co-requisite: COEN 163. (1 unit)

COEN 164. Advanced Web Development
Advanced topics in Web Application Development; Development with Web Frameworks (Ruby with Rails), implementing Web services and management of Web security. Prerequisite: A grade of C- or better in COEN 161 or demonstrated knowledge of Web development technology covered in COEN 161. Co-requisite: COEN 164L. (4 units)

COEN 164L. Advanced Web Development Laboratory
Laboratory for COEN 164. Co-requisite: COEN 164. (1 unit)

COEN 165. Introduction to 3D Animation & Modeling Modeling & Control of Rigid Body Dynamics
Mathematical and physical principles of motion of rigid bodies, including movement, acceleration, inertia and collision. Modeling of rigid body dynamics for three-dimensional graphic simulation; controlling the motion of rigid bodies in robotic applications. Also listed as ARTS 173. Prerequisite: MATH 14, COEN 12 or CSCI 61. (4 units)

COEN 166. Artificial Intelligence
Philosophical foundations of Artificial Intelligence, problem solving, knowledge and reasoning, neural networks and other learning methods. Prerequisite: A grade of C- or better in either COEN 12 or CSCI 61 and in either COEN 19 or MATH 51. (4 units)

COEN 168. Mobile Application Development
Design and implementation of applications running on a mobile platform such as smart phones and tablets. Programming languages and development tools for mobile SDKs. Writing code for peripherals—GPS, accelerometer, touchscreen. Optimizing user interface for a small screen. Effective memory management on a constrained device. Embedded graphics. Persistent data storage. Prerequisite: COEN 20, COEN 70 or equivalent. Co-requisite: COEN 168L. (4 units)

COEN 168L. Mobile Application Development Laboratory
Laboratory for COEN 168. Co-requisite: COEN 168. (1 unit)
COEN 169. Web Information Management
Theory, design, and implementation of information systems that process, organize, and analyze large-scale information on the Web. Search engine technology, recommender systems, cloud computing, social network analysis. Prerequisite: AMTH 108, MATH 122, COEN 12, CSCI 61 or instructor approval. (4 units)

COEN 171. Principles of Design and Implementation of Programming Languages
High-level programming language concepts and constructs. Costs of use and implementation of the constructs. Issues and trade-offs in the design and implementation of programming languages. Critical look at several modern high-level programming languages. Prerequisite: A grade of C- or better in COEN 12 or CSCI 61. (4 units)

COEN 172. Structure and Interpretation of Computer Programs
Techniques used to control complexity in the design of large software systems: design of procedural and data abstractions; design of interfaces that enable composition of well-understood program pieces; invention of new, problem-specific languages for describing a design. Prerequisites: COEN 19 or MATH 51, COEN 70 or CSCI 61, or instructor approval. (4 units)

COEN 172L. Structure and Interpretation of Computer Programs Laboratory
Laboratory for COEN 172. Co-requisite: COEN 172. (1 unit)

COEN 173. Logic Programming
Application of logic to problem solving and programming; logic as a language for specifications, programs, databases, and queries; separation of logic and control aspects of programs; bottom-up reasoning (forward from assumptions to conclusions) versus top-down reasoning (backward from goals to subgoals) applied to problem solving and programming; nondeterminism, concurrency, and invertibility in logic programs. Programs written and run in Prolog. Prerequisites: COEN 70 or CSCI 61 and COEN 19 or MATH 51. (4 units)

COEN 173L. Logic Programming Laboratory
Laboratory for COEN 173. Co-requisite: COEN 173. (1 unit)

COEN 174. Software Engineering
Software development life cycle. Project teams, documentation, and group dynamics. Software cost estimation. Requirements of engineering and design. Data modeling, object modeling, and object-oriented analysis. Object-oriented programming and design. Software testing and quality assurance. Software maintenance. Prerequisite: A grade of C- or better in COEN 12 or CSCI 61. Co-requisite: COEN 174L. (4 units)

COEN 174L. Software Engineering Laboratory
Laboratory for COEN 174. Co-requisite: COEN 174. (1 unit)

COEN 175. Introduction to Formal Language Theory and Compiler Construction
Introduction to formal language concepts: regular expressions and context-free grammars. Compiler organization and construction. Lexical analysis and implementation of scanners. Top-down and bottom-up parsing and implementation of top-down parsers. An overview of symbol table arrangement, run-time memory allocation, intermediate forms, optimization, and code generation. Prerequisites: A grade of C- or better in COEN 20 and COEN 70. Co-requisite: COEN 175L. (4 units)

COEN 175L. Introduction to Formal Language Theory and Compiler Construction Laboratory
Laboratory for COEN 175. Co-requisite: COEN 175. (1 unit)

COEN 177. Operating Systems
Introduction to operating systems. Operating system concepts, computer organization models, storage hierarchy, operating system organization, processes management, interprocess communication and synchronization, memory management and virtual memory, I/O subsystems, and file systems. Design, implementation, and performance issues. Prerequisites: A grade of C- or better in either COEN 12 or CSCI 61 and in COEN 20. Co-requisite: COEN 177L. (4 units)

COEN 177L. Operating Systems Laboratory
Laboratory for COEN 177. Co-requisite: COEN 177. (1 unit)

COEN 178. Introduction to Database Systems
ER diagrams and the relational data model. Database design techniques based on integrity constraints and normalization. Database security and index structures. SQL and DDL. Transaction processing basics. Prerequisite: A grade of C- or better in COEN 12 or CSCI 61. Co-requisite: COEN 178L. (4 units)

COEN 178L. Introduction to Database Systems Laboratory
Laboratory for COEN 178. Co-requisite: COEN 178. (1 unit)

COEN 179. Theory of Algorithms
Introduction to techniques of design and analysis of algorithms: asymptotic notations and running times of recursive algorithms; design strategies: brute-force, divide and conquer, decrease and conquer, transform and conquer, dynamic programming, greedy technique. Intractability: P and NP, approximation algorithms. Also listed as CSCI 163A. Prerequisites: A grade of C- or better in either COEN 12 or CSCI 61 and in either COEN 19 or MATH 51. (5 units)

COEN 180. Introduction to Information Storage
Storage hierarchy. Caching. Design of memory and storage devices, with particular emphasis on magnetic disks and storage-class memories. Error detection, correction, and avoidance fundamentals. Disk arrays. Storage interfaces and buses. Network attached and distributed storage, interaction of economy and technological innovation. Also listed as ELEN 180. Prerequisites: A grade of C- or better in either COEN 12 or CSCI 61. Recommended prerequisite: COEN 20. (4 units)

COEN 188. Co-op Education
Integration of classroom study and practical experience in a planned program designed to give students practical work experience related to their academic field of study and career objectives. The course alternates (or parallels) periods of classroom study with periods of training in industry or government. Satisfactory completion of the work assignment includes preparation of a summary report on co-op activities. P/NP grading. May not be taken for graduate credit. (2 units)

COEN 189. Co-op Technical Report
Credit given for a technical report on a specific activity such as a design or research project, etc., after completing the co-op assignment. Approval of department advisor required. Letter grades based on content and quality of report. May be taken twice. May not be taken for graduate credit. Prerequisite: COEN 188. (2 units)

COEN 193. Undergraduate Research
Involves working on a year-long research project with one of the faculty members. Students should register three times in a row for a total of 6 units. Does not substitute for the senior project, which may be a continuation of the research done.
Graduate Courses

COEN 195. Design Project II
Continued design and construction of the project, system, or device. Initial draft of project report. Prerequisite: COEN 194. (2 units)

COEN 196. Design Project III
Continued design and construction of the project, system, or device. Formal public presentation of results. Final report. Prerequisite: COEN 195. (2 units)

COEN 199. Directed Research/Reading
Special problems. By arrangement. (1–5 units)

Some graduate courses may not apply toward certain degree programs. During the first quarter of study, students should investigate with their faculty advisors the program of study they wish to pursue.

COEN 200. Logic Analysis and Synthesis
Analysis and synthesis of combinational and sequential digital circuits with attention to static, dynamic, and essential hazards. Algorithmic techniques for logic minimization, state reductions, and state assignments. Decomposition of state machine, algorithmic state machine. Design for test concepts. Also listed as ELEN 500. Prerequisite: COEN 127C or equivalent. (2 units)

COEN 201. Digital Signal Processing I
Description of discrete signals and systems. Z-transform. Convolution and transfer functions. System response and stability. Fourier transform and discrete Fourier transform. Sampling theorem. Digital filtering. Also listed as ELEN 233. Prerequisite: ELEN 210 or its undergraduate equivalent of ELEN 110. (2 units)

COEN 202. Digital Signal Processing II
Continuation of COEN 201. Digital FIR and IIR filter design and realization techniques. Multirate signal processing. Fast Fourier transform. Quantization effects. Also listed as ELEN 234. Prerequisite: COEN 201. (2 units)

COEN 203. VLSI Design I
Introduction to VLSI design and methodology. Analysis of CMOS integrated circuits. Circuit modeling and performance evaluation supported by simulation (SPICE). Ratioed, switch, and dynamic logic families. Design of sequential elements. Fully-custom layout using CAD tools. Also listed as ELEN 387. Prerequisite: COEN/ELEN 127 or equivalent. (2 units)

COEN 204. VLSI Design II
Continuation of VLSI design and methodology. Design of arithmetic circuits and memory. Comparison of semi-custom versus fully custom design. General concept of floor planning, placement and routing. Introduction of signal integrity through the interconnect wires. Also listed as ELEN 388. Prerequisite: COEN/ELEN 387 or equivalent, or ELEN 153. (2 units)

COEN 207. SoC (System-on-Chip) Verification
A typical SoC costs tens of millions of dollars and involves tens of engineers in various geographical locations. It also incorporates a large number of heterogeneous IP (intellectual property) cores. A single error may dictate a Fab spin of over a million dollar, and typically costs much more by delaying TTM (time-to-market). Therefore, SoC verification is a major challenge that needs to be mastered by design engineers. This course presents various state-of-the-art verification techniques used to ensure thorough testing of the SoC design. Both logical and physical verification techniques will be covered. Also, the use of simulation, emulation, assertion-based verification, and hardware/software co-verification techniques will be discussed. Also listed as ELEN 613. Prerequisite: COEN 200 and COEN 303 or equivalent. (2 units)

COEN 208. SoC (System-on-Chip) Formal Verification Techniques
With continuous increase of size and complexity of SoC, informal simulation techniques are increasing design cost prohibitively and causing major delays in TTM (time-to-market). This course focuses on formal algorithmic techniques used for SoC verification and the tools that are widely used in the industry to perform these types of verifications. These include both programming languages such as System Verilog, Vera, and e-language. The course also covers the various formal verification techniques such as propositional logic; basics of temporal logic. Theorem proving, and equivalent checking. Industrial-level tools from leading EDA vendors will be used to demonstrate the capabilities of such techniques. Also listed as ELEN 614. Prerequisites: COEN 200 and COEN 303 or equivalent. (2 units)

COEN 210. Computer Architecture

COEN 218. Input-Output Structures
I/O architecture overview. I/O programming: dedicated versus memory-mapped I/O addresses. CPU role in managing I/O: Programmed I/O versus Interrupt-Based I/O versus DMA-based I/O. I/O support hardware: interrupt controllers (priority settings, and arbitration techniques), DMA controllers and chip-sets. I/O interfaces: point to point interconnects, busses, and switches. Serial versus parallel interfaces. Synchronous versus asynchronous data transfers. System architecture considerations: cache coherency issues, I/O traffic bandwidth versus latency (requirements and tradeoffs). Error detection and correction techniques. Examples: a high bandwidth I/O device, a parallel I/O protocol, and a serial I/O protocol. Prerequisite: COEN 210. (2 units)

COEN 225. Secure Coding in C and C++
Writing secure code in C, C++. Vulnerabilities based on strings, pointers, dynamic memory management, integer arithmetic, formatted output, file I/O. Attack modes such as stack and heap based) buffer overflow and format string exploits. Recommended practices. Prerequisites: COEN 210 and experience with coding in C or C++. (2 units)
COEN 226. Introduction to System Certification and Accreditation
Certification and accreditation of information systems' security provides an objective basis of confidence for approval to operate systems that protect the confidentiality and integrity of valuable information resources. This course provides an overview of the laws, regulations, standards, policies, and processes that govern and provide guidance for certification and accreditation of national security systems. The course introduces the National Information Assurance Certification and Accreditation Process (NIACAP), the DoD Information Technology Certification and Accreditation Process (DITSCAP), and Director of Central Intelligence Directive (DCID) 6/3 for intelligence systems. Also addressed are a variety of personnel, facility, and operational security management (SSM) considerations for such systems. Prerequisite: COEN 150 or COEN 250. Prerequisite may be waived with knowledge of the basics of computer security. (2 units)

COEN 233. Computer Networks

COEN 234. Network Management
Covers the fundamentals of network management. Management functions and reference models, management building blocks (information, communication patterns, protocols, and management organization), and management in practice (integration issues, service-level management). Prerequisite: COEN 233 or equivalent. (2 units)

COEN 235. Client/Server Programming
Client/server paradigm in the context of the Web and the Internet. Objects, components, frameworks, and architectures. Current platforms, such as J2EE, CORBA, and .NET. Prerequisites: Knowledge of Java programming and HTML. (4 units)

COEN 238. Multimedia Information Systems

COEN 239. Network Design Analysis
Focus on current modeling and analysis of computer networks. Graph theory for networks, queueing theory, simulation methodology, principles and tools for network design, protocol definition, implementation, validation and evaluation. Prerequisite: COEN 233 or equivalent. (4 units)

COEN 240. Machine Learning
This course presents an introduction to machine learning, the study of computing systems that improve their performance with experience, including discussions of each of the major approaches. The primary focus of the course will be on understanding the underlying theory and algorithms used in various learning systems. Prerequisite: AMTH 108 or AMTH 210, AMTH 53 or AMTH 246, COEN 179 or 279. (4 units)

COEN 241. Cloud Computing
Introduction to cloud computing, cloud infrastructure and service models, the economics of cloud computing, cloud computing, virtualization, big data, distributed file system, MapReduce paradigm, NoSQL, Hadoop, horizontal/vertical scaling, thin client, disaster recovery, free cloud services and open source software, example commercial cloud services, and federation/presence/identity/privacy in cloud computing. Prerequisites: COEN 12 and COEN 146 or 233. (4 units)

COEN 242. Big Data
Introduction to Big data. NoSQL data modeling. Large-scale data processing platforms. HDFS, MapReduce and Hadoop. Scalable algorithms used to extract knowledge from Big data. Advanced scalable data analytics platforms. Prerequisites: AMTH 108 or AMTH 210 and COEN 178 or 280. (4 units)

COEN 243. Internet of Things
Design principles of the Internet of Things (IoT) and their device and infrastructure-related architectures. Technologies and protocol frameworks aimed at enabling the formation of highly distributed networks with seamlessly connected heterogeneous smart devices. Machine-to-Machine (M2M) communication protocols for smart low power objects such as 6LoWPAN and Constrained Application Protocol (CoAP). Technologies and protocols at the service and application layers, which enable the integration of embedded devices in web-based, distributed applications. Prerequisites: COEN 12 and COEN 146 or 233. (4 units)

COEN 250. Information Security Management

COEN 252. Computer Forensics
Procedures for identification, preservation, and extraction of electronic evidence. Auditing and investigation of network and host system intrusions, analysis and documentation of information gathered, and preparation of expert testimonial evidence. Forensic tools and resources for system administrators and information system security officers. Ethics, law, policy, and standards concerning digital evidence. Prerequisite: COEN 20 or equivalent. Co-requisite: COEN 252L. (4 units)

COEN 252L. Laboratory for COEN 252
Co-requisite: COEN 252. (1 unit)

COEN 253. Secure Systems Development and Evaluation
Software engineering for secure systems. Security models and implementations. Formal methods for specifying and analyzing security policies and system requirements. Development of secure systems, including design, implementation, and other life-cycle activities. Verification of security properties. Resource access control, information flow control, and techniques for analyzing simple protocols. Evaluation criteria, including the Orange and Red books and the Common Criteria. Technical security evaluation steps, management, and the certification process. Prerequisite: COEN 250. (2 units)
COEN 254. Secure Systems Development and Evaluation II

Formal methods for specifying security policies and systems requirements and verification of security properties. A hands-on course in methods for high-assurance using systems such as PVS from SRI, and the NRL Protocol Analyzer. Prerequisite: COEN 253 (may be taken concurrently). (2 units)

COEN 256. Principles of Programming Languages

Some history and comparison of languages. Regular expressions; abstract and concrete syntax; formal grammars and post systems; Peano, structural, and well-founded induction. Algebraic semantics and term rewriting; program specification and verification. Unification and logic programming; lambda calculus, combinators, polymorphism; denotational semantics. Prerequisites: COEN 70 or 79 and AMTH 240. (4 units)

COEN 259. Compilers

Principles and practice of the design and implementation of a compiler, focusing on the application of theory and trade-offs in design. Lexical and syntactic analysis. Semantic analysis, symbol table, and type checking. Run-time organization. Code generation. Optimization and data-flow analysis. Prerequisite: COEN 256, 283 or 210. (4 units)

COEN 260. Truth, Deduction, and Computation

Introduction to mathematical logic and semantics of languages for the computer scientist. Investigation of the relationships among what is true, what can be proved, and what can be computed in formal languages for propositional logic, first order predicate logic, elementary number theory, and the type-free and typed lambda calculus. Prerequisites: COEN 19 or AMTH 240 and COEN 70 or 79. (4 units)

COEN 261. Structure and Interpretation of Computer Programs

Programming in a modern, high-level, functional programming language (i.e., one with functions, or procedures, as first-class objects and facilities for abstract data types). Techniques used to control complexity in the design of large software systems. Design of procedural and data abstractions; design of interfaces that enable composition of well-understood program pieces; invention of new, problem-specific languages for describing a design. Prerequisites: COEN 19 or AMTH 240 and COEN 70 or 79. (2 units)

COEN 266. Artificial Intelligence

Artificial intelligence viewed as knowledge engineering. Historical perspective. Problems of representation: AI as a problem in language definition and implementation. Introduces representations, techniques, and architectures used to build applied systems and to account for intelligence from a computational point of view. Applications of rule chaining, heuristic search, constraint propagation, constrained search, inheritance, and other problem-solving paradigms. Applications of identification trees, neural nets, genetic algorithms, and other learning paradigms. Speculations on the contributions of human vision and language systems to human intelligence. Prerequisite: AMTH 240. (4 units)

COEN 268. Mobile Application Development

Design and implementation of applications running on a mobile platform such as smart phones and tablets. Programming languages and development tools for mobile SDKs. Writing code for peripherals—GPS, accelerometer, touchscreen. Optimizing user interface for a small screen. Effective memory management on a constrained device. Embedded graphics. Persistent data storage. Prerequisite: COEN 12 or 912 or equivalent. (4 units)

COEN 271. Automata, Computability, and Complexity

Regular and context-free languages (deterministic, non-deterministic, and pushdown automata). Decidable and undecidable problems, reducibility, recursive function theory. Time and space measures on computation, completeness, hierarchy theorems, inherently complex problems, probabilistic and quantum computation. Prerequisites: AMTH 240 or equivalent and COEN 179. (4 units)

COEN 272. Web Search and Information Retrieval

Basic and advanced techniques for organizing large-scale information on the Web. Search engine technologies. Big data analytics. Recommendations systems. Text/Web clustering and classification. Text mining. Prerequisites: AMTH 108 or AMTH 210, MATH 53 or AMTH 246, and COEN 179 or 279. (4 units)

COEN 275. Object-Oriented Analysis, Design, and Programming

Four important aspects of object-oriented application development are covered: fundamental concepts of the OO paradigm, building analysis and design models using UML, implementation using Java, and testing object-oriented systems. Prerequisite: COEN 70 or 79. (4 units)

COEN 277. User Experience Research & Design

Core concepts, methods, and techniques of User Research, Human-Computer Interaction, Usability, and User Centered Design. User experience evaluation methods and associated metrics. User interface and interaction design guidelines, principles, theories, techniques, and applications. Prerequisite: COEN 12 or 912 or equivalent. (2 units)

COEN 278. Advanced Web Programming

Advanced topics in Web Application Development; Development with Web Frameworks (Ruby with Rails), implement Web services and management of Web security. Prerequisites: COEN 60 and 161 or demonstrated proficiency. (4 units)

COEN 279. Design and Analysis of Algorithms

Techniques of design and analysis of algorithms: proof of correctness; running times of recursive algorithms; design strategies: brute-force, divide and conquer, dynamic programming, branch-and-bound, backtracking, and greedy technique; max flow/matching. Intractability: lower bounds; P, NP, and NP-completeness. Also listed as AMTH 377. Prerequisite: COEN 912C or equivalent. (4 units)

COEN 280. Database Systems

Data models. Relational databases. Database design (normalization and decomposition). Data definition and manipulation languages (relational algebra and calculus). Architecture of database management systems. Transaction management. Concurrency control, security, distribution, and query optimization. Prerequisites: COEN 12 or Data Structures class and COEN 283 or equivalent. (4 units)

COEN 281. Pattern Recognition and Data Mining

How does an online retailer decide which product to recommend to you based on your previous purchases? How do bio-scientists decide how many different types of a disease are out there? How do computer scientists rank Web pages in response to a user query? In this course we introduce some of the computational methods currently used to answer these and other similar questions. Topics include association rules, clustering, data visualization, logistic regression, neural networks, decision trees, ensemble methods, and text mining. Prerequisites: AMTH 210 and 245 or equivalent, COEN 12 or equivalent. (4 units)
COEN 282. Energy Management Systems

Energy Management Systems (EMS) is a class of control systems that Electric Utility Companies utilize for three main purposes: Monitoring, Engagement and Reporting. Monitoring tools allow Electric Utility Companies to manage their assets to maintain the sustainability and reliability of power generation and delivery. Engagement tools help in reducing energy production costs, transmissions and distribution losses by optimizing utilization of resources and/or power network elements. The reporting tools help tracking operational costs and energy obligations. Also listed as ELEN 288. (2 units)

COEN 283. Operating Systems

COEN 284. Operating Systems Case Study

Case study of a large multiuser operating system: implementation of different operating system components. Operating system network for distributed processing systems: naming, resource allocation, synchronization, fault detection and recovery, deadlock. Prerequisite: COEN 283 or equivalent. (2 units)

COEN 285. Software Engineering

Systematic approaches to software design, project management, implementation, documentation, and maintenance. Software design methodologies: SA/SD, OOA/OOD. Software quality assurance; testing, Reverse engineering and re-engineering. CASE. Term project. (4 units)

COEN 286. Software Quality Assurance and Testing

COEN 287. Software Development Process Management

Management of the software development process at both the project and organization levels. Interrelationship of the individual steps of the development process. Management techniques for costing, scheduling, tracking, and adjustment. Prerequisite: COEN 285. (2 units)

COEN 288. Software Ethics

Broad coverage of ethical issues related to software development. Formal inquiry into normative reasoning in a professional context. Application of ethical theories to workplace issues, viz., cost-benefit analysis, externalities, individual and corporate responsibility, quality and authorship of product. Case studies and in-class topics of debate include computer privacy, encryption, intellectual property, software patents and copyrights, hackers and break-ins, freedom of speech and the Internet, error-free code, and liability. (2 units)

COEN 289. Computer Graphics

Raster and vector graphics image generation and representation. Graphics primitives, line and shape generation. Scan conversion anti-aliasing algorithms. Simple transformations, windowing and hierarchical modeling. Interactive input techniques. 3D transformations and viewing, hidden surface removal. Introduction to surface definition with B-spline and Bezier techniques. Surface display with color graphics. Prerequisites: AMTH 245 and COEN 12. (4 units)

COEN 290. Computer Graphics

Physical design is the phase that follows logic design, and it includes the following steps that precede the fabrication of the IC: logic partitioning; cell layout, floor planning, placement, routing. These steps are examined in the context of very deep submicron technology. Effect of parasitic devices and packaging are also considered. Power distribution and thermal effects are essential issues in this design phase. Also listed as ELEN 389. Prerequisites: COEN 204/ELEN 388 or equivalent. (2 units)

COEN 291. High-Level Synthesis

COEN 292. Computer Graphics

Various subjects of current interest. May be taken more than once if topics differ. (2-4 units)

COEN 297. Advanced Computer Architecture

Advanced system architectures. Overview of different computer architecture paradigms. Hardware-supported instruction level parallelism, VLIW architectures, multi-threaded processors. Performance and correctness issues (coherency, consistency, and synchronization) for different multi-processor configuration alternatives (UMA, NUMA). SIMD architecture alternatives. Warehouse massive-scale computing. Prerequisite: COEN 210. (4 units)
COEN 315. Web Architecture and Protocols

COEN 317. Distributed Systems
Fundamental algorithms for distributed system architectures, inter-process communications, data consistency and replication, distributed transactions and concurrency control, distributed file systems, network transparency, fault tolerant distributed systems synchronization, reliability. Prerequisites: COEN 233 and 283 or equivalent. (4 units)

COEN 318. Parallel Computation Systems

COEN 319. Parallel Programming
Concept of concurrency, thread programming, thread/process synchronization, synchronization algorithms and language constructs, shared-memory vs. message-passing. Parallel programming concept, performance metrics, overview of multiprocessor architectures, evaluation of parallel algorithms, data parallel programming, shared-memory and message-passing parallel programming. Case studies on application algorithms. Hands-on lab on multi-core CPUs and many-core GPUs. Case studies of typical problem solutions and algorithms of parallel systems. Prerequisites: COEN 11 and COEN 210. (4 units)

COEN 320. Computer Performance Evaluation
Measurement, simulation, and analytic determination of computer systems performance. Workload characterization. Bottleneck analysis tuning. Prerequisites: COEN 210 and AMTH 211. (4 units)

COEN 329. Network Technology
Advanced technologies and protocols for broadband LAN, MAN, WAN, L2 VPN, and L3 VPN, Pseudo Wire, VPLS (Virtual Private LAN Services). Current technologies: tunneling, QoS and security in content delivery, PON (Passive Optical Networks), support for multimedia communication, server farms, server redundancy, GMPLS (Generalized Multi Protocol Label Switching), Hot Standby Router Protocol. Emerging technologies, e.g., Carrier Ethernet. Prerequisite: COEN 233 or equivalent. (4 units)

COEN 331. Wireless and Mobile Networks
Coverage of the physical layer: transmission, modulation, and error correction techniques. Spread spectrum schemes including FHSS and DSSS. Satellite and cellular networks. Medium access control in wireless networks: FDMA, TDMA and CDMA; mobile IP; 802.11 wireless LANs; ad hoc networks. Emerging technologies. Prerequisite: COEN 233 or equivalent. (4 units)

COEN 332. Wireless/Mobile Multimedia Networks
This course will cover IMS (Internet Protocol Multimedia Subsystem), an architectural framework for providing IP-based real-time traffic, such as voice and video, in wireless networks. IMS aims at the convergence of data, speech, fixed, and mobile networks and provides real-time services on top of the UMTS (Universal Mobile Telecommunication System) packet-switched domain. Prerequisite: COEN 331. (4 units)

COEN 335. High-Performance Networking
High-speed networks requirements, i.e., quality of service (QoS). Technologies and protocols for high-speed LAN, MAN, WAN, Layer 2 and Layer 3 switching, gigabit Ethernet (1GE, 10GE), signaling protocols, fibre channel, Ethernet over SONET/SDH, PoS, fiber optics communications, DWDM, and CWDM. Tera-bit routers. Infiniband switching technology, End-to-End Layer 2 and Layer 3 management. Emerging technologies: 40GE, 100GE. Prerequisite: COEN 233 or equivalent. (2 units)

COEN 337. Internet Architecture and Protocols
In-depth and quantitative study of Internet protocols, algorithms, and services. Topics include: scheduling and buffer/queue management, flow/congestion control, routing, traffic management, support for multimedia real-time communication. Prerequisite: COEN 233 or equivalent. (4 units)

COEN 338. Image and Video Compression

COEN 339. Audio and Speech Compression

COEN 340. Digital Image Processing I
Digital image representation and acquisition, color representation; point and neighborhood processing; image enhancement; morphological filtering; Fourier, cosine, and wavelet transforms. Also listed as ELEN 640. Prerequisite: COEN 201 or equivalent. (2 units)

COEN 341. Information Theory
Introduction to the fundamental concepts of information theory. Source models. Source coding. Discrete channel without memory. Continuous channel. Alternate years. Also listed as ELEN 244. Prerequisites: ELEN 241 and AMTH 211. (2 units)

COEN 343. Digital Image Processing II
Image restoration using least squares methods in image and spatial frequency domain; matrix representations; blind deconvolution; reconstructions from incomplete data; image segmentation methods. Also listed as ELEN 643. Prerequisite: COEN 340. (2 units)

COEN 344. Computer Vision I
Introduction to image understanding, feature detection, description, and matching; feature based alignment; structure from motion; stereo correspondence. Also listed as ELEN 644. Prerequisites: COEN 340 and knowledge of linear algebra. (2 units)
COEN 345. Computer Vision II
Learning and inference in vision; recognition models; deep learning for vision; classification strategies; detection and recognition of objects in images. Also listed as ELEN 645. Prerequisite: COEN 340 and knowledge of probability. (2 units)

COEN 347. Advanced Techniques in Video Coding
Advanced topics in image and video coding, selected from: Wavelet transform and compression, Sparse coding, Compressive sensing, Standards such as JPEG 2000, JPEG XT, JPEG PLENO, JVET, and HEVC extensions such as SEVC, MY-HEVC, 3D-HEVC, and SCC. Scalable video coding, Multiview and 3D video coding, Screen content coding, High dynamic range HDR. Light-field, point-cloud, and holographic imaging. Distributed video coding. Video communications systems. Congestion control. Rate control. Error control. Transcoding. Other advanced topics. Prerequisite: COEN 338 or ELEN 641. (4 units)

COEN 348. Speech Coding I
Review of sampling and quantization. Introduction to digital speech processing. Elementary principles and applications of speech analysis, synthesis, and coding. Speech signal analysis and modeling. The LPC Model. LPC Parameter quantization using Line Spectrum Pairs (LSPs). Digital coding techniques: Quantization, Waveform coding, Predictive coding, Transform coding, Hybrid coding, and Sub-band coding. Applications of speech coding in various systems. Standards for speech and audio coding. Also listed as ELEN 421. Prerequisite: ELEN 334 or equivalent. (2 units)

COEN 349. Speech Coding II
Advanced aspects of speech analysis and coding. Analysis-by-Synthesis (AbS) coding of speech, Analysis-as-Synthesis (AaS) coding of speech. Code-excited linear speech coding. Error-control in speech transmission. Application of coders in various systems (such as wireless phones). International standards for speech (and audio) coding. Real-time DSP implementation of speech coders. Research project on speech coding. Introduction to speech recognition. Also listed as ELEN 422. Prerequisite: ELEN 421. (2 units)

COEN 350. Network Security
Protocols and standards for network security. Network-based attacks. Authentication, integrity, privacy, non-repudiation. Protocols: Kerberos, Public Key Infrastructure, IPSec, SSH, PGP, secure e-mail standards, etc. Wireless security. Programming required. Prerequisite: COEN 250 or instructor approval. (2 units)

COEN 351. Internet and E-Commerce Security

COEN 351L. Laboratory for COEN 351
Co-requisite: COEN 351. (1 unit)

COEN 352. Advanced Topics in Information Assurance
Topics may include advanced cryptology, advanced computer forensics, secure busi-
ness transaction models, or other advanced topics in information assurance. May be repeated for credit if topics differ. Prerequisites: AMTH 387 and COEN 250. (2 units)

COEN 353. Trust and Privacy in Online Social Network
This course will introduce fundamental concepts in trustworthy computing and privacy; discuss classic (1) trust models, such as direct/indirect model, belief theory based model, entropy based model, fuzzy model, and (2) privacy models, such as k-anonymity, l-diversity, t-closeness models; investigate evolution of trust/privacy attacks and defenses in online social networks; and discuss state-of-the-art trust/privacy researches in online social networks. Prerequisites: AMTH 108 or AMTH 210, and COEN 179 or 279. (4 units)

COEN 358. Introduction to Parallelizing Compilers

COEN 359. Design Patterns
Software design patterns and their application in developing reusable software components. Creational, structural, and behavioral patterns are studied in detail and are used in developing a software project. Prerequisite: COEN 275. (4 units)

COEN 362. Logic Programming
Application of logic to problem solving and programming; logic as a language for speci-ications, programs, databases, and queries; separation of the logic and control aspects of programs; bottom-up vs. top-down reasoning applied to problem solving and programming; nondeterminism, concurrency, and invertibility in logic programs. Programs written in Prolog. Prerequisite: COEN 260 or other courses covering predicate logic. (2 units)

COEN 376. Expert Systems
Overview of tools and applications of expert systems, as well as the theoretical issues: What is knowledge, can it be articulated, and can we represent it? Stages in the construction of expert systems: problem selection, knowledge acquisition, development of knowledge bases, choice of reasoning methods, life cycle of expert systems. Basic knowledge of representation techniques (rules, frames, objects) and reasoning methods (forward-chaining, backward-chaining, heuristic classification, constraint reasoning, and related search techniques). Requires completion of an expert systems project. Prerequisite: COEN 266. (4 units)

COEN 379. Advanced Design and Analysis of Algorithms
Amortized and probabilistic analysis of algorithms and data structures: disjoint sets, hashing, search trees, suffix arrays and trees. Randomized, parallel, and approximation algorithms. Also listed as AMTH 379. Prerequisite: AMTH 377/COEN 279. (4 units)

COEN 380. Advanced Database Systems
Database system design and implementation. Disk and file organization. Storage and indexes; query processing and query optimization. Concurrency control; transaction management; system failures and recovery. Parallel and distributed databases. MapReduce. Prerequisite: COEN 280 or equivalent. (4 units)

COEN 383. Advanced Operating Systems
Advanced topics beyond the fundamentals of operating systems, including a look at different systems software concepts within different components of a modern operating system, and applications beyond the scope of an individual operating system. Prerequisite: COEN 285 or equivalent. (4 units)

COEN 385. Formal Methods in Software Engineering
Specification, verification, validation. Notations and the models they support. Classes of specification models: algebraic, state machine, model theoretic. Appropriate use of formal methods: requirements, design, implementation, testing, maintenance. Data and program specification and design using Z or any other modern formal method. Case studies. Prerequisites: COEN 260 or other courses including predicate logic and lambda calculus. (2 units)
COEN 386. Software Architecture
Understanding and evaluating software systems from an architectural perspective. Classification, analysis, tools, and domain-specific architectures. Provides intellectual building blocks for designing new systems using well-understood architectural paradigms. Examples of actual system architectures that can serve as models for new designs. Prerequisite: COEN 385. (2 units)

COEN 389. Energy-Efficient Computing
This course covers energy-efficient software practices. Historically, software has always been written to run faster and faster, and energy has always been considered a plentiful resource. However, it has been shown that computers use a lot of energy, which may not always be so plentiful, leading to the redesign of traditional software solutions in different areas. The focus of the course will be on operating systems, networks, compilers, and programming. Prerequisites: COEN 233 or equivalent and networks, compilers, and programming. (2 units)

COEN 490. Computer Science and Engineering Graduate Seminars
Regularly scheduled seminars on topics of current interest in the field of computer science and engineering. May apply a maximum of 1 unit of credit from COEN 400 to any graduate degree in the Department of Computer Engineering. Consult department office for additional information. Prerequisite: Completion of 12 or more graduate units at SCU. PINP grading. (1 unit)

COEN 485. Software Engineering Capstone
A capstone course in which the student applies software engineering concepts and skills to a software engineering project. Team projects are strongly encouraged. Projects will cover all aspects of the software engineering life-cycle: specification of requirements and functionality; project planning and scoping; system and user interface definition; analysis of architectural solutions; detailed system design; implementation and integration; testing and quality assurance; reliability, usability, and performance testing, documentation, evolution, and change management. The course is typically restricted only to MSSE students. Students enrolled must complete three one-quarter (preferably consecutive) sections. Prerequisites: COEN 286 and COEN 386. (2 units)

COEN 499. Independent Study
(Seminar Style) Short introduction to the praxis of mathematical proofs. Students will write and present papers and papers on instructor-approved topics related to computer science and engineering. Stress is on mathematical exactness. Maximum enrollment of 10. Enrollment is by preference to Ph.D. students, but is open to other students as space allows. Prerequisite: Open to Ph.D. students or with instructor approval. (2 units)

COEN 493. Directed Research
Special research directed by a faculty member. By arrangement. Prerequisite: Registration requires the faculty member’s approval. (1–6 units per quarter)

COEN 497. Master’s Thesis Research
By arrangement. Limited to master’s students in computer science and engineering. (1–9 units per quarter, for a total of at least 8 units)

COEN 498. Ph.D. Thesis Research
By arrangement. Limited to Ph.D. students in computer science and engineering. (1–6 units per quarter, for a total of 36 units)

COEN 499. Independent Study
Special problems. By arrangement. Limited to computer science and engineering majors. (1–6 units per quarter)

COEN 912C. Abstract Data Types and Data Structures
Intense coverage of topics related to abstract data types and data structures. Data abstraction: abstract data types, information hiding, interface specification. Basic data structures: stacks, queues, lists, binary trees, hashing, tables, graphs; implementation of abstract data types in the C language. Internal sorting; review of selection, insertion, and exchange sorts; quicksort, heapsort; recursion. Analysis of run-time behavior of algorithms; Big-O notation. Introduction to classes in C++. Foundation course not for graduate credit. Prerequisite: A grade of B or higher in a programming language course. (2 units)

COEN 920C. Embedded Systems and Assembly Language
Intense coverage of topics related to embedded systems and assembly language. Introduction to computer organization: CPU, registers, buses, memory, I/O interfaces. Number systems: arithmetic and information representation. Assembly language programming: addressing techniques, arithmetic and logic operations, branching and looping, stack operations, procedure calls, parameter passing, and interrupts. C language programming: pointers, memory management, stack frames, interrupt processing. Foundation course not for graduate credit. Prerequisite: A grade of B or higher in a programming language course. (2 units)

COEN 921C. Logic Design
Intense coverage of topics related to logic design. Boolean functions and their minimization. Designing combinational circuits, adders, multipliers, decoders. Noise margin, propagation delay. Bussing. Memory elements: latches and flip-flops; timing; registers; counters. Programmable logic, PLD, and FPGA. Use of industry quality CAD tools for schematic capture and HDL in conjunction with FPGAs. Foundation course not for graduate credit. Also listed as ELEN 921C. (2 units)
Department of Electrical Engineering

Professors Emeritus: Dragoslav D. Siljak, Samiha Mourad
Thomas J. Bannan Professor: Sally L. Wood
Professors: Shoba Krishnan (Chair), Timothy J. Healy, Tokunbo Ogunfunmi,
 Cary Y. Yang, Aleksandar Zecevic, Sarah Kate Wilson
Associate Professor: M. Mahmudur Rahman
Assistant Professor: Maryam Khanbaghi
RT Lecturer: Ramesh Abhari

OVERVIEW

The field of electrical engineering covers the design, construction, testing, and operation of electrical components, circuits, and systems. Electrical engineers work with information representation and transmission; advancing integrated circuit design for digital, analog, and mixed signals systems; designing and characterizing antennas, RF, microwave and millimeter-wave systems; new devices and architectures, energy systems and renewable energy, nanotechnology, and all the areas of information circuits and systems that have traditionally supported these efforts. This includes all phases of the digital or analog transmission of information, such as in mobile communications and networks, radio, television, telephone systems, fiber optics, and satellite communications, as well as control and robotics, electric power, information processing, and storage.

The Electrical Engineering Program is supported by the facilities of the University’s Academic Computing Center, as well as by the Engineering Computing Center, which is described in the Facilities section of this bulletin. The department supports 10 major teaching and research laboratories, five additional laboratories used only for teaching, and a laboratory dedicated to the support of design projects. The five teaching laboratories cover the fields of digital systems, electric circuits, electronics, Systems, and RF & Communication.

MASTER’S DEGREE PROGRAM AND REQUIREMENTS

The master’s degree will be granted to degree candidates who complete a program of studies approved by a faculty advisor. The degree does not require a thesis, but students may include a thesis in their program with up to nine units for their thesis work. The program must include no less than 45 units. In addition, a 3.0 GPA (B average) must be earned in all coursework taken at Santa Clara University. Residence requirements are met by completing 36 units of the graduate program at Santa Clara University. A maximum of nine quarter units (six semester units) of graduate level coursework may be transferred from other accredited institutions at the discretion of the student’s advisor. All units applied toward the degree, including those transferred from other institutions, must be earned within a six-year period.
Students must develop a program of studies with an academic advisor and file the approved program during their first term of enrollment at Santa Clara University. The program of studies must contain a minimum of 45 or more units of graduate-level engineering courses which include at least 27 units of electrical engineering courses and no more than four units of engineering management courses. The program of studies must include the following:

General Core

1. Graduate Core (minimum 6 units) See descriptions in Chapter 4, Academic Information
2. Applied Mathematics (4 units)
3. Electrical Engineering Core – focus area (6 units). Students must select and meet the requirements of one of the three primary focus areas (Systems, Electronics, or Microwave and Communication)
 - Systems: ELEN 211, 236, and one course selected from ELEN 233, 233E, or BIOE 250.
 - Electronics: Choose one course from each of these three groups: ELEN 252 or 387, ELEN 261 or 264, ELEN 500 or 603.
 - Communications and Microwave: ELEN 201, 241, 701
4. Electrical Engineering Core – breadth: (4 units) One course must be taken from each of the two areas not selected as the primary focus area. These courses may be selected from the focus area core lists above or, with the approval of the graduate program advisor, from an extended list included in the program of studies form.

Additional graduate courses recommended and approved by the graduate program advisor. Up to 15 units of electives may be selected from the following upper-division undergraduate courses: 112, 118, 127, 130, 133, 160 (Systems); 116, 117, 151, 152, 153, 156, 164 (Electronics); 105, 141, 144 (Communication and Microwave).

These M.S. degree requirements may be adjusted by the advisor based on the student’s previous graduate work. Alterations in the approved program, consistent with the above departmental requirements, may be requested at any time by a petition initiated by the student and approved by the advisor.

Students with relevant technical backgrounds may be admitted to the MSEE program without a BSEE from an accredited program. In order to guarantee prerequisites for graduate courses, those students must take sufficient additional courses beyond the 45-unit minimum to ensure coverage of all areas of the undergraduate EE core requirements listed below. A student who has earned a Fundamentals of Electrical Engineering Certificate will have satisfied these background requirements.

Undergraduate Core Courses

- ELEN 21 Introduction to Logic Design
- ELEN 33 Introduction to Digital Systems Architectures
- ELEN 50 Electric Circuits I
- ELEN 100 Electric Circuits II
- ELEN 104 Electromagnetics I
- ELEN 110 Linear Systems
- ELEN 115 Electronic Circuits I

The advisor will determine which courses must be taken to meet these requirements. Undergraduate core courses will not be included in the 45 units required for the MSEE.

Please Note: In general, no credit will be allowed for courses that duplicate prior coursework, including courses listed above as degree requirements. (However, a graduate-level treatment of a topic is more advanced than an undergraduate course with a similar title.) Students should discuss any adjustments of these requirements with their academic advisor before they file their program of studies. In all cases, prerequisite requirements should be interpreted to mean the course specified or an equivalent course taken elsewhere.

ENGINEER’S DEGREE PROGRAM AND REQUIREMENTS

The program leading to the Engineer’s Degree is particularly designed for the education of the practicing engineer. The degree is granted on completion of an approved academic program and a record of acceptable technical achievement in the candidate’s field of engineering. The academic program consists of a minimum of 45 quarter units beyond the master’s degree. Courses are selected to advance competence in specific areas relating to the engineering professional’s work. Evidence of technical achievement must include a paper principally written by the candidate and accepted for publication by a recognized engineering journal prior to the granting of the degree. A letter from the journal accepting the paper must be submitted to the Office of the Dean, School of Engineering. In certain cases, the department may accept publication in the peer-reviewed proceedings of an appropriate national or international conference.

Electrical Engineering courses at the introductory Master of Science level (e.g., ELEN 210, 211, 212, 230, 231, 250, 256; and AMTH 210, 211, 220, 221, 230, 231, 235, 236, 240, 245, 246) are not generally acceptable in an Engineer’s Degree program of studies. However, with the approval of the advisor, the student may include up to three of these courses in the Engineer’s Degree program. The department also requires that at least 15 units of the program of studies be in topics other than the student’s major field of concentration. Candidates admitted to the Electrical Engineering Program who have M.S. degrees in fields other than electrical engineering must include in their graduate programs (M.S. and Engineer’s Degree combined) a total of at least 45 units of graduate-level electrical engineering coursework.

PH.D. PROGRAM AND REQUIREMENTS

The Doctor of Philosophy (Ph.D.) degree is conferred by the School of Engineering primarily in recognition of competence in the subject field and the ability to investigate engineering problems independently, resulting in a new contribution to knowledge in the field. The work for the degree consists of engineering research, the preparation of a thesis based on that research, and a program of advanced studies in engineering, mathematics, and related physical sciences.

Preliminary Examination

The preliminary examination shall be written and shall include subject matter deemed by the major department to represent sufficient preparation in depth and breadth for advanced study in the major. Only those who pass the written examination may take the oral qualifying examination.

Students currently studying at Santa Clara University for a master’s degree who are accepted for the Ph.D. program and who are at an advanced stage of the M.S. program may, with the approval of their academic advisor, take the preliminary examination before
completing the M.S. degree requirements. Students who have completed the M.S. degree requirements and have been accepted for the Ph.D. program should take the preliminary examination as soon as possible but not more than two years after beginning the program.

Only those students who pass the preliminary examination shall be allowed to continue in the doctoral program. The preliminary examination may be repeated only once, and then only at the discretion of the thesis advisor.

General Requirements

Thesis Advisor

It is the student’s responsibility to obtain consent from a full-time faculty member in the student’s major department to serve as his/her prospective thesis advisor.

It is strongly recommended that Ph.D. students find a thesis advisor before taking the preliminary examination. After passing the preliminary examination, Ph.D. students should have a thesis advisor before the beginning of the next quarter following the preliminary examination. Students currently pursuing a master’s degree at the time of their preliminary examination should have a thesis advisor as soon as possible after being accepted as a Ph.D. student.

The student and the thesis advisor jointly develop a complete program of studies for research in a particular area. The complete program of studies (and any subsequent changes) must be filed with the Graduate Services Office and approved by the student’s doctoral committee. Until this approval is obtained, there is no guarantee that courses taken will be acceptable toward the Ph.D. course requirements.

Doctoral Committee

After passing the Ph.D. preliminary exam, a student requests his or her thesis advisor to form a doctoral committee. The committee consists of at least five members, each of which must have earned a doctoral degree in a field of engineering or a related discipline. This includes the student’s thesis advisor, at least two other current faculty members of the student’s major department at Santa Clara University, and at least one current faculty member from another appropriate academic department at Santa Clara University. The committee reviews the student’s program of study, conducts an oral comprehensive exam, conducts the dissertation defense, and reviews the thesis. Successful completion of the doctoral program requires that the student’s program of study, performance on the oral comprehensive examination, dissertation defense, and thesis itself meet with the approval of all committee members.

Residence

The doctoral degree is granted on the basis of achievement, rather than on the accumulation of units of credit. However, the candidate is expected to complete a minimum of 72 quarter units of graduate credit beyond the master’s degree. Of these, 36 quarter units may be earned through coursework and independent study, and 36 through the thesis. All Ph.D. thesis units are graded on a Pass/No Pass basis. A maximum of 18 quarter units (12 semester units) may be transferred from other accredited institutions at the discretion of the student’s advisor.

Ph.D. students must undertake a minimum of four consecutive quarters of full-time study at the University; spring and fall quarters are considered consecutive. The residency time shall normally be any period between passing the preliminary examination and completion of the thesis. For this requirement, full-time study is interpreted as a minimum registration of eight units per quarter during the academic year and four units during summer session. Any variation from this requirement must be approved by the doctoral committee.

Comprehensive Examinations and Admission to Candidacy

After completion of the formal coursework approved by the doctoral committee, the student shall present his/her research proposal for comprehensive oral examinations on the coursework and the subject of his/her research work. The student should make arrangements for the comprehensive examinations through the doctoral committee. A student who passes the comprehensive examinations is considered a degree candidate. The comprehensive examinations normally must be completed within four years from the time the student is admitted to the doctoral program. Comprehensive examinations may be repeated once, in whole or in part, at the discretion of the doctoral committee.

Thesis Research and Defense

The period following the comprehensive examinations is devoted to research for the thesis, although such research may begin before the examinations are complete. After successfully completing the comprehensive examinations, the student must pass an oral examination on his/her research and thesis, conducted by the doctoral committee and whomever they appoint as examiners. The thesis must be made available to all examiners one month prior to the examination. The oral examination shall consist of a presentation of the results of the thesis and the defense. This examination is open to all faculty members of Santa Clara University, but only members of the doctoral committee have a vote.

Thesis and Publication

At least one month before the degree is to be conferred, the candidate must submit to the Office of the Dean of Engineering two copies of the final version of the thesis describing the research in its entirety. The thesis will not be considered as accepted until approved by the doctoral committee. A student must present his/her research proposal for comprehensive oral examinations on the coursework and the subject of his/her research work. The student should make arrangements for the comprehensive examinations through the doctoral committee. A student who passes the comprehensive examinations is considered a degree candidate. The comprehensive examinations normally must be completed within four years from the time the student is admitted to the doctoral program. Comprehensive examinations may be repeated once, in whole or in part, at the discretion of the doctoral committee.

Time Limit for Completing Degree

All requirements for the doctoral degree must be completed within eight years following initial enrollment in the Ph.D. program. Extensions will be allowed only in unusual circumstances and must be recommended in writing by the student’s doctoral committee, and approved by the dean of engineering in consultation with the Graduate Program Leadership Council.

Additional Graduation Requirements

The requirements for the doctoral degree in the School of Engineering have been made to establish the structure in which the degree may be earned. Upon written approval of the provost, the dean of the School of Engineering, the doctoral committee, and the chair of the major department, other degree requirements may be established. The University reserves the right to evaluate the undertakings and the accomplishments of the degree candidate in total, and award or withhold the degree as a result of its deliberations.

The departments of Electrical Engineering and Bioengineering are collaborating to offer a Ph.D. in interdisciplinary topics related to Bioengineering. Faculty from both departments will co-advice the Ph.D. students and the degree will be awarded by the Department of Electrical Engineering.
CERTIFICATE PROGRAMS

General Information

Certificate programs are designed to provide intensive background in a narrow area at the graduate level. At roughly one-third of the units of a master’s degree program, the certificate is designed to be completed in a much shorter period of time. These certificate programs are appropriate for students working in industry who wish to update their skills or those interested in changing their career path. More detail about certificates may be found on the department website.

Admission

To be accepted into a certificate program, the applicant must have a bachelor’s degree and meet any additional requirements for the specific certificate. Exceptions based on work experience may be granted for the Certificate in Fundamentals of Electrical Engineering.

Grade Requirements

Students must receive a minimum grade of C in each course and have an overall GPA of 3.0 or better to earn a certificate.

Continuation for a Master’s Degree

All Santa Clara University graduate courses applied to the completion of a certificate program earn graduate credit that may also be applied toward a graduate degree. Students who wish to continue for such a degree must submit a separate application and satisfy all normal admission requirements. The general GRE test requirement for graduate admission to the master’s degree will be waived for students who complete a certificate program with a GPA of 3.5 or better.

Academic Requirements

ASIC Design and Test

Advisor: Dr. Shoba Krishnan

This certificate program has a dual purpose: (a) to strengthen fundamental knowledge of the design process that helps the designer adapt to future innovations in technology; and (b) to introduce the designer to state-of-the-art tools and techniques. The program consists of the eight courses listed below. Any change in the requirements must be approved by the academic advisor.

Required Courses (16 units)

• ELEN 387 VLSI Design I (2 units)
• ELEN 500 Logic Analysis and Synthesis (2 units)
• ELEN 603 Logic Design Using HDL (2 units)
• ELEN 605 High-Level Synthesis (2 units)
• ELEN 608 Design for Testability (2 units)
• ELEN 624 Signal Integrity in IC and PCB Systems (2 units)
• Two electives from ELEN 388, 389, 601, 604, 609, 613, 614 or 620 (2 units)

Analog Circuit Design

Advisor: Dr. Shoba Krishnan

This certificate provides a background in the basic devices and circuits that are fundamental to analog circuit design. The program will also introduce the student to state-of-the-art analog IC design tools. The program consists of the courses listed below totaling 16 units.

Required Courses (14 units)

• ELEN 252 Analog Integrated Circuits I (2 units)
• ELEN 253 Analog Integrated Circuits II (2 units)
• ELEN 264 Semiconductor Device Theory I (2 units)
• ELEN 387 VLSI Design I (2 units)

Elective Courses (2 units)

• ELEN 251 Transistor Models for IC Design (2 units)
• ELEN 265 Semiconductor Device Theory II (2 units)
• ELEN 351 RF Integrated Circuit Design (2 units)
• ELEN 352 Mixed Signal IC Design for Data Communications (2 units)
• ELEN 353 DC to DC Power Conversion (2 units)
• ELEN 388 VLSI Design II (2 units)

Digital Signal Processing Applications

Advisors: Dr. Tokunbo Ogunfunmi, Dr. Sally Wood

This certificate program provides a basic understanding of digital signal processing theory and modern implementation methods as well as advanced knowledge of at least one specific application area. Digital signal processing has become an important part of many areas of engineering, and this certificate prepares students for traditional or novel applications.

Required Courses (10 to 12 units)

• ELEN 233E or ELEN 233 and 234 Digital Signal Processing I, II (4 units)
• ELEN 223 Digital Signal Processing System Development (4 units) or ELEN 226 DSP Design in FPGA (2 units)
• ELEN 421 Speech Coding I or ELEN 640 Digital Image Processing I (2 units)
• AMTH 210 or AMTH 245 (2 units)

Elective Courses (4 to 6 units to make a total of 16 units) may be selected from the list below. Any courses from the required list above that were not selected to meet the requirements may be included in the elective options.
Digital Signal Processing Theory

Advisors: Dr. Tokunbo Ogunfunmi, Dr. Sally Wood

This certificate program provides a firm grounding in fundamentals of digital signal processing (DSP) technology and its applications. It is appropriate for engineers involved with any application of DSP who want a better working knowledge of DSP theory and its applications. A novel feature of the program is a hands-on DSP hardware/software development laboratory course in which students design and build systems for various applications using contemporary DSP hardware and development software.

Required Courses (8 units)
- AMTH 308 Theory of Wavelets (2 units) or AMTH 358 Fourier Transforms (2 units)
- ELEN 241 Introduction to Communications (2 units)
- ELEN 243 Digital Communications Systems (2 units)
- ELEN 244 Information Theory (2 units)
- ELEN 247 Communication Systems Modeling Using Simulink I (2 units)
- ELEN 334 Introduction to Statistical Signal Processing (2 units)
- ELEN 422 Speech Coding II (2 units)
- ELEN 431 Adaptive Signal Processing I (2 units)
- ELEN 643 Digital Image Processing II (2 units)
- ELEN 644 Computer Vision I (2 units)
- ELEN 645 Computer Vision II (2 units)

Elective Courses (8 units)
- ELEN 223 Digital Signal Processing System Development (4 units)
- ELEN 226 DSP Design in FPGA (2 units)
- ELEN 235 Estimation I (2 units)
- ELEN 241 Introduction to Communications (2 units)
- ELEN 244 Information Theory (2 units)
- ELEN 336 Detection (2 units)
- ELEN 431 Adaptive Signal Processing I (2 units)
- ELEN 640 Digital Image Processing I (2 units)
- ELEN 641 Image and Video Compression (2 units)
- ELEN 643 Digital Image Processing II (2 units)
ELECTRICAL ENGINEERING LABORATORIES

The Electrical Engineering program is supported by a set of well-equipped laboratories. Some are dedicated solely for lower division courses such as circuits and electronics. In addition the department has a diversity of research and teaching laboratories listed next.

The RF and Communications Laboratory provides a full range of modern measurement capability up to 22 GHz, including a number of antenna measurement systems, vector network analyzers and modern spectrum analyzers. It also has extensive computer-aided design and simulation capability, based largely on modern commercial software tools. Interconnection of hardware measurements and computer simulation is stressed.

The Digital Systems Laboratory (operated jointly with the Department of Computer Engineering) provides complete facilities for experiments and projects ranging in complexity from a few digital integrated circuits to FPGA-based designs. The laboratory also includes a variety of development systems to support embedded systems and digital signal processing.

The Electronic Devices Laboratory is dedicated to teaching and research topics on electronic devices, materials, and their manufacturing technologies. Current research topics include modeling complex electronic devices using variational methodologies, experimental studies of photovoltaic devices, aging of organic semiconductor films, porous silicon, etc.

The Intelligent Control Laboratory provides an experimental environment for students in the area of control and system engineering. The lab includes computer-controlled DC motors. These motors provide students with a range of qualitative and quantitative experiments such as inverted pendulum for learning the utility and versatility of feedback in computer-controlled systems.

The Latimer Energy Laboratory (LEL) supports a very wide range of activities relating to solar energy, more specifically photovoltaics (PV) and management of renewable energy sources, from K-12 outreach through graduate engineering. The laboratory focuses on two major directions: 1-, measurement and characterization of different renewable energy sources; 2- integration of renewable energy into the electric grid. The laboratory includes instrumentation such as: pyranometers, VIS-IR spectrometers, metallurgical microscopes, source meters, grid simulator software and related computers.

The TENT Laboratory provides teaching and research facilities for modeling, simulation, and characterization of devices and circuits in the nanoscale. Ongoing research topics include silicon heterostructures, thin dielectrics, high-frequency device and circuit parameter extraction, carbon nanostructures used as electrical interconnect and thermal interface materials, and compact modeling of transistors and interconnects for large-scale circuit simulation. This laboratory, located in NASA Ames Research Center in Moffett Field, California, is part of the campus-wide Center for Nanostructures, established to conduct, promote, and nurture nanoscale science and technology interdisciplinary research and education activities at the University, and to position the University as a national center of innovation in nanoscience education and nanoscale research.

The Image and Video Processing Laboratory supports graduate student research on algorithms and implementations for image analysis, image reconstruction and super-resolution, and stereo imaging. Laboratory equipment includes cameras for image acquisition, computational resources, and FPGAs for real-time testing.

The Robotics Systems Laboratory is an interdisciplinary laboratory specializing in the design, control, and teleoperation of highly capable robotics systems for scientific discovery, technology validation, and engineering education. Laboratory students develop and operate systems that include spacecraft, underwater robots, aircraft, and land rovers. These projects serve as ideal test beds for learning and conducting research in mechatronic system design, guidance and navigation, command and control systems, and human-machine interfaces.

The Signal Processing Research Laboratory (SPRL) conducts research into theoretical algorithm development in adaptive/nonlinear signal processing, speech/audio/video signal processing, and their applications in communications, biotech, Voice-over-IP networking, and related areas. The lab supports student research in algorithms and real-time implementations on Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). Laboratory equipment includes UNIX workstations, PCs, digital oscilloscopes, video cameras, wireless LAN networking equipment, DSP boards, and FPGA boards.

COURSE DESCRIPTIONS

Lower-Division Undergraduate Courses

ELEN 20. Emerging Areas in Electrical Engineering
Introduction to new frontiers in electrical engineering. Hands-on activities and visits to research and production facilities in Silicon Valley companies to learn how the fundamentals of electrical engineering are enabling new emerging technologies. (2 units)

ELEN 21. Introduction to Logic Design

ELEN 21L. Logic Design Laboratory
Laboratory for ELEN 21. Also listed as COEN 21L. Co-requisite: ELEN 21. (4 units)

ELEN 33. Digital Systems Architecture
Overview of processor architectures for general purpose processors, special purpose signal processing microprocessors, and FPGA soft core processors; data representation in fixed point, floating point; instruction set architectures; assembly and machine language programming; real-time I/O; introduction to sample data systems. Analog to digital converters and digital to analog converters. Prerequisites: ELEN 21 with a grade of C− or better and COEN 11 or 44. Co-requisite: ELEN 33L, COEN 12. (4 units)

ELEN 33L. Digital Systems Architecture Laboratory
Laboratory for ELEN 33. Co-requisite: ELEN 33. (1 unit)

ELEN 49. Fundamentals of Electricity for Civil Engineers
Transducers, Motors, generators and efficiency. DC and AC circuits. One and three-phase power systems. Sources of electricity. Hydroelectric power, generation, and pumps. Electrical diagrams and schematics. (4 units)

ELEN 50. Electric Circuits I
Physical basis and mathematical models of circuit components and energy sources. Circuit theorems and methods of analysis are applied to DC and AC circuits. Co-requisite: ELEN 50L, PHYS 33. (4 units)

ELEN 50L. Electric Circuits I Laboratory
Laboratory for ELEN 50. Co-requisite: ELEN 50. (1 unit)
Upper-Division Undergraduate Courses

ELEN 100. Electric Circuits II
Continuation of ELEN 50. Sinusoidal steady state and phasors, transformers, resonance, Laplace analysis, transfer functions. Frequency response analysis. Bode diagrams. Switching circuits. Prerequisite: ELEN 50 with a grade of C− or better, or PHYS 70. Co-requisite: ELEN 100L, AMTH 106. (4 units)

ELEN 100L. Electric Circuits II Laboratory
Laboratory for ELEN 100. Co-requisite: ELEN 100. (1 unit)

ELEN 104. Electromagnetics I

ELEN 104L. Electromagnetics I Laboratory
Laboratory for ELEN 104. Co-requisite: ELEN 104. (1 unit)

ELEN 105. Electromagnetics II
In-depth study of several areas of applied electromagnetics such as transmission lines, antennas, and microwave arrays. Prerequisite: ELEN 104. Co-requisite: ELEN 105L. (4 units)

ELEN 105L. Electromagnetics II Laboratory
Laboratory for ELEN 105. Co-requisite: ELEN 105. (1 unit)

ELEN 110. Linear Systems

ELEN 110L. Linear Systems Laboratory
Laboratory for ELEN 110. MATLAB laboratory/problem sessions. Co-requisite: ELEN 110. (1 unit)

ELEN 112. Modern Network Synthesis and Design

ELEN 112L. Modern Network Synthesis and Design Laboratory
Laboratory for ELEN 112. Co-requisite: ELEN 112. (1 unit)

ELEN 114. Computer-Aided Circuit Design
Study of basic principles of operation, terminal characteristics, and equivalent circuit models for diodes and transistors. Analysis and design of diode circuits, transistor amplifiers, and inverter circuits. Prerequisite: ELEN 50 with a grade of C− or better. Co-requisite: ELEN 115L. (4 units)

ELEN 115. Electronic Circuits I
Study of basic principles of operation, terminal characteristics, and equivalent circuit models for diodes and transistors. Analysis and design of diode circuits, transistor amplifiers, and inverter circuits. Prerequisite: ELEN 50 with a grade of C− or better. Co-requisite: ELEN 115L. (4 units)

ELEN 115L. Electronic Circuits I Laboratory
Laboratory for ELEN 115. Co-requisite: ELEN 115. (1 unit)

ELEN 116. Analog Integrated Circuit Design

ELEN 116L. Analog Integrated Circuit Design Laboratory
Laboratory for ELEN 116. Co-requisite: ELEN 116. (1 unit)

ELEN 117. Advanced Analog Integrated Circuits
Design and analysis of BJTs and MOSFET analog ICs. Study of analog circuits such as comparators, sample/hold amplifiers, and switched capacitor circuits. Architecture and design of analog to digital and digital to analog converters. Reference and biasing circuits. Study of noise and distortion in analog ICs. Prerequisite: ELEN 116. Co-requisite: ELEN 117L. (4 units)

ELEN 117L. Advanced Analog Integrated Circuits Laboratory
Laboratory for ELEN 117. Co-requisite: ELEN 117L. (1 unit)

ELEN 118. Fundamentals of Computer-Aided Circuit Simulation
Introduction to algorithms and principles used in circuit simulation packages (such as SPICE). Formulation of equations for linear and nonlinear circuits. Detailed study of the three different types of circuit analysis (AC, DC, and transient). Discussion of computational aspects, including sparse matrices, Newton’s method, numerical integration, and parallel computing. Applications to electronic circuits, active filters, and CMOS digital circuits. Course includes a number of design projects in which simulation software is written in MATLAB and verified using SPICE. Prerequisites: ELEN 21, with a grade of C− or better; ELEN 100 and 115. Co-requisite: ELEN 118L. (4 units)

ELEN 118L. Fundamentals of Computer-Aided Circuit Simulation Laboratory
Laboratory for ELEN 118. Co-requisite: ELEN 118. (1 unit)

ELEN 119. Current Topics in Electrical Engineering
Subjects of current interest. May be taken more than once if topics differ. (4 units)

ELEN 123. Mechatronics
Introduction to behavior, design, and integration of electromechanical components and systems. Review of appropriate electronic components/circuitry, mechanical configurations, and programming constructs. Use and integration of transducers, microcontrollers, and actuators. Also listed as COEN 123 and MECH 143. Prerequisite: ELEN 50 with a grade of C− or better and COEN 11 or 44. Co-requisite: ELEN 123L. (4 units)

ELEN 123L. Mechatronics Laboratory
Laboratory for ELEN 123. Also listed as COEN 123L and MECH 143L. Co-requisite: ELEN 123L. (1 unit)

ELEN 127. Advanced Logic Design
Contemporary design of finite-state machines as system controllers using FPGA devices. Minimization techniques, performance analysis, and modular system design. HDL simulation and synthesis. Also listed as COEN 127. Prerequisite: ELEN 21 with a grade of C− or better. Co-requisite: ELEN 127L. (4 units)
ELEN 127L. Advanced Logic Design Laboratory
Laboratory for ELEN 127. Design, construction, and testing of controllers from verbal specs. Use of CAD design tools. Also listed as COEN 127L. Co-requisite: ELEN 127. (1 unit)

ELEN 130. Control Systems

ELEN 130L. Control Systems Laboratory
Laboratory for ELEN 130. Co-requisite: ELEN 130. (1 unit)

ELEN 131. Introduction to Robotics

ELEN 131L. Introduction to Robotics Laboratory
Laboratory for ELEN 131. Co-requisite: ELEN 131L. (1 unit)

ELEN 133. Digital Signal Processing
Discrete signals and systems. Difference equations. Convolution summation. Z-transform, transfer function, system response, stability. Digital filter design and implementation. Frequency domain analysis. Discrete Fourier transform and FFT. Audio, video, and communication applications. Prerequisites: ELEN 110 or both ELEN 50 with a grade of C– or better, and COEN 19. Co-requisite: ELEN 133L. (4 units)

133L. Digital Signal Processing Laboratory
Laboratory for ELEN 133. Laboratory for real-time processing. Co-requisite: ELEN 133. (1 unit)

ELEN 134. Applications of Signal Processing
Current applications of signal processing. Topics may vary. Example topics include Speech Coding, Speech Recognition, and Biometrics. Prerequisite: ELEN 133, MAT-LAB. Co-requisite: ELEN 134L. (4 units)

ELEN 134L. Applications of Signal Processing Laboratory
Laboratory for ELEN 134. Co-requisite: ELEN 134. (1 unit)

ELEN 139. Special Topics in Signals and Systems
Subjects of current interest. May be taken more than once if topics differ. (4 units)

ELEN 141. Communication Systems

ELEN 141L. Communication Systems Laboratory
Laboratory for ELEN 141. Co-requisite: ELEN 141L. (1 unit)

ELEN 144. RF and Microwave Components

ELEN 144L. RF and Microwave Components Laboratory
Laboratory for ELEN 144. Co-requisite: ELEN 144. (1 unit)

ELEN 151. Semiconductor Devices
Properties of materials, crystal structure, and band structure of solids. Carrier statistics and transport; p-n junction electrostatics, I-V characteristics, equivalent circuits, and switching response. Metal-semiconductor contacts, Schottky diodes. MOS field-effect transistors, bipolar junction transistors. Prerequisite: ELEN 104. Co-requisite: ELEN 151L. (4 units)

ELEN 151L. Semiconductor Devices Laboratory
Laboratory for ELEN 151L. Co-requisite: ELEN 151L. (1 unit)

ELEN 152. Semiconductor Devices and Technology
MOS field-effect transistors, bipolar junction transistors, heterojunctions. Principles of silicon IC fabrication processes. Bulk and epitaxial crystal growth, thermal oxidation, diffusion, ion implantation. Process simulation for basic devices. (4 units)

ELEN 152L. Semiconductor Devices and Technology Laboratory
Laboratory for ELEN 152. Co-requisite: ELEN 152L. (1 unit)

ELEN 153. Digital Integrated Circuit Design
Introduction to VLSI design and methodology. Study of basic principles, material properties, fabrication, operation, terminal characteristics, and equivalent circuit models for CMOS transistors. Study of CMOS digital integrated circuits and technology scaling. Physical design and layout principles. Interconnect modelling, Semiconductor memories. Use of state-of-the-art CAD tools. Prerequisites: ELEN/COEN 21 and ELEN 50 with a grade of C– or better. Co-requisite: ELEN 153L. (4 units)

ELEN 153L. Digital Integrated Circuit Design Laboratory
Laboratory for ELEN 153. Co-requisite: ELEN 153L. (1 unit)

ELEN 156. Introduction to Nanotechnology
Introduction to the field of nanoscience and nanotechnology. Properties of nanomaterials and devices. Nanoelectronics: from silicon and beyond. Measurements of nanosystems. Applications and implications. Laboratory experience is an integral part of the course. Also listed as MECH 156. Prerequisites: PHYS 33 and either PHYS 34 or MECH 15. Co-requisite: ELEN 156L. (4 units)

ELEN 156L. Introduction to Nanotechnology Laboratory
Laboratory for ELEN 156L. Also listed as MECH 156L. Co-requisite: ELEN 156L. (1 unit)

ELEN 160. Chaos Theory, Metamathematics, and the Limits of Knowledge: A Scientific Perspective on Religion
Limitations of science are examined in the framework of nonlinear system theory and metamathematics. Strange attractors, bifurcations, and chaos are studied in some detail. Additional topics include an introduction to formal systems and an overview of Godel’s theorems. The mathematical background developed in the course is used as a basis for exploring the relationship between science, aesthetics, and religion. Particular emphasis is placed on the rationality of faith. Also listed at ELEN 217. Prerequisites: AMTH 106 (or an equivalent course in differential equations), and a basic familiarity with MATLAB. Co-requisite: ELEN 160L. (4 units)
ELEN 160L. Chaos Theory, Metamathematics, and the Limits of Knowledge: A Scientific Perspective on Religion Laboratory
Laboratory for ELEN 160. Co-requisite: ELEN 160. (1 unit)

ELEN 161. The Beauty of Nature and the Nature of Beauty
Beauty is examined from an interdisciplinary perspective, taking into account insights from mathematics, physics, engineering, neuroscience, and psychology, as well as philosophy, art history, and theology. Technical topics include information theory, quantum computing, fractal geometry, complex systems, cellular automata, Boolean networks, and set theory. Prerequisite: AMTH 106 (or equivalent). Familiarity with basic concepts in probability theory is expected, as is some experience with MATLAB. Co-requisite: ELEN 161L. (4 units)

ELEN 161L. The Beauty of Nature and the Nature of Beauty Laboratory
Laboratory for ELEN 161. Co-requisite: ELEN 161. (1 unit)

ELEN 164. Introduction to Power Electronics
Power and efficiency computations, rectifiers, power devices, DC-to-DC converters, AC-to-DC converters, and DC-to-AC inverters. Prerequisite: ELEN 115. Co-requisite: ELEN 164L. (4 units)

ELEN 164L. Introduction to Power Electronics Laboratory
Laboratory for ELEN 164. Co-requisite: ELEN 164. (1 unit)

ELEN 167. Medical Imaging Systems
Overview of medical imaging systems including sensors and electrical interfaces for data acquisition, mathematical models of the relationship of structural and physiological information to sensor measurements, resolution, and accuracy limits, and conversion process from electronic signals to image synthesis. Analysis of the specification and interaction of the functional units of imaging systems and the expected performance. Focus on MRI, CT, and ultrasound, PET, and impedance imaging. Also listed as BIOL 167, BIOL 267. Prerequisite: BIOL 162 or ELEN 110 or MECH 142L. (4 units)

ELEN 180. Introduction to Information Storage
Storage hierarchy. Design of memory and storage devices, with a particular emphasis on magnetic disks and storage-class memories. Error detection, correction, and avoidance fundamentals. Disk arrays. Storage interfaces and buses. Network attached and distributed storage, interaction of economy, and technological innovation. Also listed as COEN 180. Prerequisites: ELEN 21 or COEN 21, and COEN 20; COEN 122 is recommended. (4 units)

ELEN 182. Energy Systems Design
Introduction to alternative energy systems with emphasis on those utilizing solar technologies; system analysis including resources, extraction, conversion, efficiency, and end-use; project will design power system for a house off or on grid making best use of renewable energy; system design will include power needs, generation options, storage, back-up power. Prerequisite: ELEN 50. (4 units)

ELEN 183. Power Systems Analysis
Analysis, design, and optimization of power systems for traditional and renewable power generation. Balanced three phase circuits. Transformers and transmission lines. Prerequisite: ELEN 100 or PHYS 12. Co-requisite: ELEN 183L. (4 units)

ELEN 183L. Power Systems Analysis Laboratory
Laboratory for ELEN 183. Co-requisite: ELEN 183. (1 unit)

ELEN 184. Power System Stability and Control
Examine power system stability and power system control, including load frequency control, economic dispatch, and optimal power flow. Also listed as ELEN 231. Prerequisite: ELEN 183 or equivalent. (4 units)

ELEN 188. Co-op Education
Integration of classroom study and practical experience in a planned program designed to give students practical work experience related to their academic field of study and career objectives. The course alternates (or parallels) periods of classroom study with periods of training in industry or government. Satisfactory completion of the assignment includes preparation of a summary report on co-op activities. P/NP grading. May be taken twice. May not be taken for graduate credit. (2 units)

ELEN 189. Co-op Technical Report
Credit given for a technical report on a specific activity such as a design or research project, etc., after completing the co-op assignment. Letter grades based on content and presentation quality of report. May be taken twice. May not be taken for graduate credit. Prerequisite: ELEN 188. Approval of department co-op advisor required. (2 units)

ELEN 192. Introduction to Senior Design Project
Junior preparation for senior project. An introduction to project requirements and participation in the coordination of the senior conference. Tentative project selection. (2 units)

ELEN 194. Design Project I
Specification of an engineering project, selected with the mutual agreement of the student and the project advisor. Complete initial design with sufficient detail of target specification. Incorporation of relevant engineering standards and appropriate realistic constraints. Initial draft of the project report. Co-requisite: ENGL 181. (2 units)

ELEN 195. Design Project II
Implementation, construction, and testing of the project, system, or device. Satisfactory completion of the assignment includes preparation of a summary report on co-op activities. P/NP grading. May be taken twice. May not be taken for graduate credit. (2 units)

ELEN 196. Design Project III
Continued design, implementation, and testing of the project, system, or device. Specifications for data acquisition, mathematical models of the relationship of structural and physiological information to sensor measurements, resolution, and accuracy limits, and conversion process from electronic signals to image synthesis. Analysis of the specification and interaction of the functional units of imaging systems and the expected performance. Focus on MRI, CT, and ultrasound, PET, and impedance imaging. Also listed as BIOL 167, BIOL 267. Prerequisite: BIOL 162 or ELEN 110 or MECH 142L. (4 units)

ELENB 199. Directed Research/Reading
Investigation of an approved engineering problem and preparation of a suitable project report. Open to electrical engineering majors only. (1-6 units)

* Eligible for graduate credit in electrical engineering.
Graduate Courses

Some graduate courses may not apply toward certain degree programs. As early as possible, preferably during the first quarter of study, students are urged to discuss in detail with their faculty advisor the program of study they wish to pursue.

ELEN 200. Electrical Engineering Graduate Seminars
Regularly scheduled seminars on topics of current interest in the fields of electrical engineering and computer engineering. Consult department office for detailed information. P/NP grading. (1 or 2 units)

ELEN 201. Electromagnetic Field Theory I
Time-varying electromagnetic field concepts starting with Maxwell’s equations. Development of field theorems. Development of circuit theory from Maxwell’s equations. Transmission lines, including transient effects, losses, and coupling. Plane waves, reflection and refraction at interfaces. Prerequisite: An undergraduate electromagnetic field course. (2 units)

ELEN 202. Electromagnetic Field Theory II
Solution of boundary value problems in rectangular, cylindrical, and spherical coordinates employing Green’s functions. Applications include circular waveguides and resonators, dielectric waveguides and resonators, and antennas. Prerequisite: ELEN 201. (2 units)

ELEN 203. Bio-Electromagnetics
Fundamentals of bioelectromagnetics. Tissue characterization, dielectrophoresis electrodes, RF/Microwave Interaction mechanisms in biological materials. Electromagnetic field absorption and SAR, Power transfer in biological environment, On-body and implant antennas, microwave hyperthermia. Also listed as BIOE 203. Prerequisite: ELEN 201 (or equivalent) or BIOE 168/268. (2 units)

ELEN 210. Signals, Circuits, and Systems

ELEN 211. Modern Network Analysis I

ELEN 216. Modern Network Synthesis and Design
Approximation and synthesis of active networks. Filter design using positive and negative feedback biquads. Sensitivity analysis. Fundamentals of passive network synthesis. Credit not allowed for both 211 and 216. Prerequisite: ELEN 210 or its undergraduate equivalent of ELEN 110. (4 units)

ELEN 217. Chaos Theory, Metamathematics and the Limits of Knowledge: A Scientific Perspective on Religion
Limitations of science are examined in the framework of nonlinear system theory and metamathematics. Strange attractors, bifurcations and chaos are studied in some detail. Additional topics include an introduction to formal systems and an overview of Godel’s theorems. The mathematical background developed in the course is used as a basis for exploring the relationship between science, aesthetics, and religion. Particular emphasis is placed on the rationality of faith. Also listed as ELEN 160. Prerequisites: AMTH 106 or an equivalent course in differential equations, and a basic familiarity with MATLAB. (4 units)

ELEN 219. Fundamentals of Computer-Aided Circuit Simulation
Introduction to the algorithms and principles used in circuit simulation packages (such as SPICE). Formation of equations for linear and nonlinear circuits. Detailed study of three different types of circuit analysis (AC, DC, and transient). Discussion of computational aspects, including sparse matrices, Newton’s method, numerical integration, and parallel computing. Applications to electronic circuits, active filter, and CMOS digital circuits. Course includes a number of design projects in which simulation software is written in MATLAB and verified using SPICE. Credit not allowed for both 118 and 219. Prerequisites: ELEN 21, ELEN 183, and ELEN 127 or the equivalent. (4 units)

ELEN 220. Introduction to Control Systems

ELEN 223. Digital Signal Processing System Development
Hands-on experience with hardware and software development for real-time DSP applications. Students design, program, and build a DSP application from start to finish. Such applications include image processing, speech/audio/video compression, multimedia, etc. The development environment includes Texas Instruments TMS320C6X development systems. Prerequisites: ELEN 234 or ELEN 233E and knowledge of “C” programming language. (4 units)

ELEN 226. DSP Design in FPGA
Introduction to current state-of-the-art design and implementation of FPGA signal processing systems with emphasis on digital communications applications. Overview of current generation FGPA’s; FPGA architecture and data path design for digital filters, multirate filters, canonic signed digit arithmetic, and spectrum channelization using digital down converters (DDC). Implementation of FPGA DSP design using VHDL and visual dataflow methodologies. Prerequisites: ELEN 133, ELEN 233E or ELEN 234, and ELEN 127 or the equivalent. (2 units)

ELEN 229. Topics in Network Theory
(2 units)

ELEN 230. Introduction to Control Systems
Design of control systems for linear and nonlinear circuits. Detailed study of three different types of circuit analysis (AC, DC, and transient). Discussion of computational aspects, including sparse matrices, Newton’s method, numerical integration, and parallel computing. Applications to electronic circuits, active filters, and CMOS digital circuits. Course includes a number of design projects in which simulation software is written in MATLAB and verified using SPICE. Credit not allowed for both 218 and 219. Prerequisites: ELEN 21, ELEN 183, and ELEN 127 or the equivalent. (4 units)

ELEN 231. Power System Stability and Control
Examine power system stability and power system control, including load frequency control, economic dispatch and optimal power flow. Also listed as ELEN 184. Prerequisite: ELEN 183 or equivalent. (4 units)
ELEN 232. Introduction to Nonlinear Systems
Basic nonlinear phenomena in dynamic systems. State space and phase plane concepts. Equilibria, linearization, stability, Liapunov’s method. Prerequisite: ELEN 230E or 236. (2 units)

ELEN 233. Digital Signal Processing I
Description of discrete signals and systems. Z-transform. Convolution and transfer functions. System response and stability. Fourier transform and discrete Fourier transform. Sampling theorem. Digital filtering. Also listed as COEN 201. Prerequisite: ELEN 210 or its undergraduate equivalent of ELEN 110. (2 units)

ELEN 233E. Digital Signal Processing I and II
Same description as ELEN 233 and ELEN 234. Credit not allowed for both ELEN 133 and 233E. (4 units)

ELEN 234. Digital Signal Processing II
Continuation of ELEN 233. Digital FIR and IIR filter design and realization techniques. Multirate signal processing. Fast Fourier transform. Quantization effects. Also listed as COEN 202. Prerequisite: ELEN 233. (2 units)

ELEN 235. Estimation I
Introduction to classical estimation. Minimum Variance Unbiased Estimator (MVUE) from Cramer-Rao theorem, sufficient statistics, and linear estimator constraints. Maximum Likelihood Estimation (MLE) method. Least Square (LS) methods. Prerequisites: AMTH 211 or AMTH 212, AMTH 246 or AMTH 247, familiarity with MATLAB. (2 units)

ELEN 236. Linear Control Systems
Concept of state-space descriptions of dynamic systems. Relations to frequency domain descriptions. State-space realizations and canonical forms. Stability, controllability, and observability. State feedback and observer design. Prerequisite: ELEN 210 or its undergraduate equivalent of ELEN 110. (2 units)

ELEN 237. Optimal Control
Linear regulator problem. Hamilton-Jacobi equation, Ricatti equation. Stability, estimators. Prerequisite: ELEN 236. (2 units)

ELEN 238. Model Predictive Control
Review of state-space model in discrete time, stability, optimal control, prediction, Kalman filter. Measurable and un-measurable disturbance, finite and receding horizon control, MPC formulation and design. Also listed as MECH 420. Prerequisite: ELEN 237 or MECH 324 or equivalent. (2 units)

ELEN 239. Topics in Systems Theory
(2 units)

ELEN 241. Introduction to Communication
Power spectral density and correlation; bandwidth; random processes; carrier frequency, modulation and baseband versus passband modulation. Prerequisite: ELEN 210 or its undergraduate equivalent of ELEN 110. (2 units)

ELEN 243. Digital Communication Systems
Digital modulation techniques including: QAM, PSK, FSK; matched-filter receivers; maximum-likelihood and maximum a priori detection. Signal-to-Noise ratio evaluation and its impact on error rate. Prerequisite: ELEN 241 or equivalent. (2 units)

ELEN 244. Information Theory
Introduction to the fundamental concepts of information theory. Source models. Source coding, discrete channel without memory, Continuous channel. Alternate years. Also listed as COEN 341. Prerequisite: AMTH 211. (2 units)

ELEN 247. Communication Systems Modeling Using Simulink I
The objective of this course is for students to acquire and consolidate their practical skills of digital communication systems design through building simulation of some carefully selected prototype systems using MATLAB® and Simulink.® The components and the principle of operation of each system will be presented in a lecture, together with key simulation techniques required. Topics include digital modulation and synchronization. Prerequisites: ELEN 233 and 243. (2 units)

ELEN 248. Communication Systems Modeling Using Simulink II
Students learn how to build digital communication systems by using simulation of some carefully selected prototype systems using MATLAB and Simulink. Topics include equalization, single carrier systems, OFDM systems, Viterbi decoding and forward error correction. Prerequisite: ELEN 247. (2 units)

ELEN 249. Topics in Communication
(2 units)

ELEN 250. Electronic Circuits
Introductory presentation of semiconductor circuit theory. The p-n junction, bipolar junction transistors (BJT), field-effect transistors and circuit models for these devices. DC biasing required of small-signal amplifier circuits. Analysis and design of small-signal amplifiers. The ideal operational amplifier and circuit applications. May not be taken for credit by a student with an undergraduate degree in electrical engineering. Not for graduate credit. Prerequisite: ELEN 50 or equivalent. (2 units)

ELEN 251. Transistor Models for IC Design
Semiconductor device modeling methods based upon device physics, process technology, and parameter extraction. Model derivation for bipolar junction transistors and metal-oxide-semiconductor field-effect transistors for use in circuit simulators. Model parameter extraction methodology utilizing linear regression, data fitting, and optimization techniques. Prerequisite: ELEN 265 or ELEN 266. (2 units)

ELEN 252. Analog Integrated Circuits I
Design and analysis of multi-stage BJT and MOSFET analog amplifiers. Study of differential amplifiers, current mirrors, and gain stages. Frequency response of cascaded amplifiers and gain-bandwidth considerations. Concepts of feedback, stability, and frequency compensation. Prerequisite: ELEN 115 or equivalent. (2 units)

ELEN 253. Analog Integrated Circuits II
Design of operational amplifiers and wideband amplifiers. Design of output stages and power amplifiers. Reference and biasing circuits. Study of noise and distortion in analog ICs and concepts of low noise design. Selected applications of analog circuits such as comparators. Prerequisite: ELEN 252. (2 units)

ELEN 254. Advanced Analog Integrated Circuit
Design and analysis of BJT and MOSFET analog ICs. Study of analog circuits such as comparators, sample/hold amplifiers, and continuous time switch capacitor filters. Architecture and design of analog to digital and digital to analog converters. Reference and biasing circuits. Study of noise and distortion in analog ICs. Prerequisite: ELEN 116. Co-requisite: ELEN 117L. (4 units)

ELEN 259. Topics in Circuit Design
(2 units)

ELEN 261. Fundamentals of Semiconductor Physics
Wave mechanics. Crystal structure and energy band structure of semiconductors. Carrier characteristics and transport. Electrical and optical properties. (2 units)

ELEN 264. Semiconductor Device Theory I
Physics of semiconductor materials, junctions, and contacts as a basis for understanding all types of semiconductor devices. Prerequisite: ELEN 261 or ELEN 151 or equivalent. (2 units)
ELEN 265. Semiconductor Device Theory II
Continuation of ELEN 264. MOSFET basics, short-channel and high-field effects. CMOS, bipolar junction transistors. Prerequisite: ELEN 264. (2 units)

ELEN 266. Semiconductor Device Theory I and II
Same description as ELEN 264 and 265. Prerequisite: ELEN 261 or ELEN 151 or equivalent. (4 units)

ELEN 267. Device Electronics for IC Design
Electrical properties of semiconductor materials, including energy band structure, carrier statistics and transport, continuity equations. Basic operations of pn and Schottky diodes, BJT, MOSFET, and their equivalent circuits. CMOS and overview of 3D transistors. This course covers the essential device concepts necessary for analog, digital, and/or mixed-signal circuit design. (2 units)

ELEN 270. Introduction to IC Materials
Materials issues in IC, classification of IC materials, Historical perspective, IC materials electrical conductivity, high-k, low-k materials. IC processing materials; solid liquid, gaseous dopants, chemicals and gases for etching and cleaning; IC lithography materials; photo-, e-beam-, x-ray resists, resist developers; IC packaging materials; IC thin film materials; adhesion, thermal conductivity and stress, electrical conductivity and sheet resistance. (2 units)

ELEN 271. Microsensors: Components and Systems
Microfabrication technologies, bulk and surface micromachining, sensor fundamentals, electronic, chemical, and mechanical components as sensors, system level issues, technology integration; application and examples of sensors. (2 units)

ELEN 274. Integrated Circuit Fabrication Processes I
Fundamental principles of silicon-integrated circuit fabrication processes. Practical and theoretical aspects of microelectronic fabrication. Basic materials properties, including crystal structure and crystallographic defects; physical and chemical models of crystal growth; and doping, thermal oxidation, diffusion, and ion implantation. Prerequisite: ELEN 270. (2 units)

ELEN 275. Integrated Circuit Fabrication Processes II
Physical and chemical models of etching and cleaning, epitaxy, deposited films, photolithography, and metallization. Process simulation and integration. Principles and practical aspects of fabrication of devices for MOS and bipolar integrated circuits. Prerequisite: ELEN 270. (2 units)

ELEN 276. Semiconductor Devices and Technology
Continuation of MOS field-effect transistors, bipolar junction transistors, heterojunctions. Principles of silicon IC fabrication processes. Bulk and epitaxial crystal growth, thermal oxidation, diffusion, ion implantation. Process simulation for basic devices. Also listed as ELEN 152. Prerequisite: ELEN 151 or ELEN 270. (4 units)

ELEN 276L. Semiconductor Devices and Technology Lab
Laboratory for ELEN 276. Also listed as ELEN 152L. (1 unit)

ELEN 277. IC Assembly and Packaging Technology
IC assembly techniques, assembly flow, die bond pad design rules, eutectic bonding and other assembly techniques, package types and materials, package thermal and electrical design and fabrication, special package considerations, future trends, and package reliability. Prerequisite: ELEN 201. (2 units)

ELEN 278A. Electrical Modeling and Design of High Speed IC Packages
Basic definitions and electrical models of package structures. Basic electromagnetic theory, DC and AC resistance including skin effect, loop and partial inductance, Maxwell and SPICE capacitance, impedance. Transmission line theory and coplanar striplines. Packaging structures electrical characteristics. Noise in packages. Electrical design methodology of a high-speed multilayer package; students will be required to design and present an evaluation of the design of a high speed multilayer package using commercial design tools. Prerequisite: ELEN 201. (2 units)

ELEN 278B. 3D Packaging
VLSI chip designers need to prepare to engineer the next generation of chips using through silicon vias (TSVs) in order to build 3D silicon chip stacks. This package configuration offers improvements in performance, power reduction and form factor that are crucial to meet the future demands for the growing mobile market. 3D IC electrical design and packaging principles will be presented to make you a valuable 3D IC chip designer. (2 units)

ELEN 279. Topics in Semiconductor Devices and Processing
(2 units)

ELEN 280. Introduction to Alternative Energy Systems
An introduction to such alternative energy systems with an emphasis on those utilizing solar technologies. Learn how the technologies work to provide electrical power today and the capabilities foreseen for the future. The material is designed to be suitable for both undergraduate and graduate students in engineering and related applied sciences. Also listed as MECH 287. (2 units)

ELEN 281A. Power Systems: Generation
Electricity is the most versatile and widely used form of energy and as such it is the backbone of today’s and tomorrow’s global society. The course deals with the power system structure and components, electric power generation, transmission and distribution. It also examines how these components interact and are controlled to meet the requirement of: capacity, energy demand; reliability, availability, and quality of power delivery; efficiency, minimization of power loss; sustainability, and integration of low carbon energy sources. Prerequisite: ELEN 280/MECH 287. (2 units)

ELEN 281B. Power Systems: Transmission and Distribution
The objective of this course is to cover the fundamental as well as wider aspects of Electric Power Transmission and Distribution networks including monitoring and control application tools typically provided by Energy Management Systems that enable Electric Utility Companies manage these assets to achieve their goals. Prerequisite: ELEN 281A. (2 units)

ELEN 282. Photovoltaic Devices and Systems
This course begins with a discussion of the sun as a source of energy, emphasizing the characteristics of insolation. This leads to a study of solar cells, their performance, their models, and the effects on their performance of factors such as atmospheric attenuation, incidence angle, shading, and others. Cells are connected together to become modules, which in turn are connected in arrays. This leads to a discussion of power electronic devices used to control and condition the DC solar voltage, including charge controllers, inverters, and other devices. Energy storage is studied. These components are then collected together in a solar PV system. The course concludes with a discussion of system sizing. (2 units)
ELEN 283. Characterization of Photovoltaic Devices
This course consists of five pre-lab lectures and five experiments exploring different aspects of photovoltaic cells and modules, including: cell characterization under controlled conditions using a solar simulator; determining the spectral response and quantum efficiency of cells; measurement of solar irradiance and insulation; characterization of photovoltaic modules under real sun conditions; study of solar-related power electronics. Prerequisite: ELEN 282 or equivalent. (2 units)

ELEN 284. Solar Cell Technologies & Simulation Tools
Review of concepts needed to understand function, design, and manufacturing of PV cells and modules. PV cell physics leading to derivation of the I-V curve and equivalent circuit, along with contact and optical design, and use of computer-aided design tools. Manufacturing processes for silicon and thin film cells and modules. Cell measurements, including simulators, quantum efficiency, and parameter extraction. Cell types include silicon, thin film, organics, and concentrators. Markets, drivers, and concentrators. Markets, drivers, and concentrators. Also listed as ENGR 286. (2 units)

ELEN 284L. Laboratory for ELEN 284
Co-requisite: ELEN 284. (1 unit)

ELEN 285. Introduction to the Smart Grid
The smart grid initiative calls for the construction of a 21st-century electric system that connects everyone to abundant, affordable, clean, efficient, and reliable electric power anytime, anywhere. It is envisioned that it will seamlessly integrate many types of generation and storage systems with a simplified interconnection process analogous to “plug and play.” This course describes the components of the grid and the tools needed to realize its main goals: communication systems, intelligent meters, and appropriate computer systems to manage the grid. (2 units)

ELEN 286. Introduction to Wind Energy Engineering
Introduction to renewable energy, history of wind energy, types and applications of various wind turbines, wind characteristics and resources, introduction to different parts of a wind turbine including the aerodynamics of propellers, mechanical systems, electrical and electronic systems, wind energy system economics, environmental aspects and impacts of wind turbines, and the future of wind energy. Also listed as MECH 286. (2 units)

ELEN 287. Energy Storage Systems
Energy storage systems play an essential role in the utilization of renewable energy. They are used to provide reserve power under different circumstances and needs such as peak shaving, load leveling, and ancillary services. Power electronics equipment converts the battery power into usable grid power. The course will survey batteries, pumped storage, flywheels, ultracapacitors, etc., with an analysis of the advantages and disadvantages, and uses of each. Also listed as ENGR 339. (2 units)

ELEN 288. Energy Management Systems
Energy Management Systems (EMS) is a class of control systems that Electric Utility Companies utilize for three main purposes: Monitoring, Engagement and Reporting. Monitoring tools allow Electric Utility companies to manage their assets to maintain the sustainability and reliability of power generation and delivery. Engagement tools help in reducing energy production costs, transmission and distribution losses by optimizing utilization of resources and/or power network elements. The Reporting tools help tracking operational costs and energy obligations. Also listed as COEN 282. (2 units)

ELEN 289. Topics in Energy Systems
(2 units)

ELEN 297. Master’s Thesis Research
Limited to candidates for MSEE. By arrangement. (1–9 units)

ELEN 298. Ph.D. Thesis Research
By arrangement. A nominal number of 36 units is expected toward the Ph.D. degree. Limited to electrical engineering Ph.D. candidates. (1–15 units)

ELEN 299. Directed Research
Special problems and/or research. Limited to department majors only. By arrangement. (1–6 units)

ELEN 329. Introduction to Intelligent Control
Intelligent control, AI, and system science. Adaptive control and learning systems. Artificial neural networks and Hopfield model. Supervised and unsupervised learning in neural networks. Fuzzy sets and fuzzy control. Also listed as MECH 329. Prerequisite: ELEN 236. (2 units)

ELEN 330. Introduction to Stochastic Control for Supply and Demand Network
Managing inventories play an important role in supply and demand network optimization. This course covers basic inventory models. The foundations needed to characterize optimal policies using deterministic and stochastic control strategies. Markov chain. Optimal control, Stochastic control. Prerequisites: Statistics, Probability, ELEN 238 or equivalent. (2 units)

ELEN 333. Digital Control Systems

ELEN 334. Introduction to Statistical Signal Processing
Introduction to statistical signal processing concepts. Random variables, random vectors, and random processes. Second-moment analysis, estimation of first and second moments of a random process. Linear transformations; the matched filter. Spectral factorization, innovation representations of random processes. The orthogonality principle. Linear predictive filtering; linear prediction and AR models. Levinson algorithm, Burg algorithm. Prerequisites: AMTH 211 and ELEN 233 or ELEN 233E. (2 units)

ELEN 335. Estimation II
Introduction to Bayesian estimation. Minimum mean square error estimator (MMSE), Maximum a posteriori estimator (MAP), Wiener filter and Kalman filter. Prerequisite: ELEN 235. (2 units)

ELEN 336. Detection
Hypothesis testing, Neyman-Pearson lemma, Generalized matched filter. Detection of deterministic and random signals in Gaussian and non-Gaussian noise environments. Prerequisites: AMTH 362, ELEN 243, or ELEN 335. (2 units)

ELEN 337. Robotics I

ELEN 338. Robotics II
Joint-based control. Linear control of manipulators. PID control and set-point tracking. Method of computer-torque in trajectory following control. Also listed as MECH 338. Prerequisites: ELEN 236 and 337. (2 units)
ELEN 339. Robotics III
Intelligent control of robots. Neural networks and fuzzy logic in robotic control. Selected topics of current research in robotics. Also listed as MECH 339. Prerequisite: ELEN 338. (2 units)

ELEN 345. Phase-Locked Loops

ELEN 347. Advanced Digital Communication Systems
Receiver design, equalizers and maximum likelihood sequence detection. Modulation and receiver design for wireline and wireless communications. Particular emphasis on intersymbol interference and equalizers. Offered every other year. Prerequisite: ELEN 243. (2 units)

ELEN 348. FPGA for Communications Applications
This course is a project-based course to introduce students to architectures and implementations of Field-Programmable Gate Arrays (FPGAs) for communications applications. Examples of a final project include implementing a significant application in communications such as Software-Defined Radio (SDR) or Wi-Fi. Prerequisites: ELEN 226 and 247. (2 units)

ELEN 351. RF Integrated Circuit Design
Introduction to RF terminology, technology tradeoffs in RFIC design. Architecture and design of radio receivers and transmitters. Low noise amplifiers, power amplifiers, mixers, oscillators, and frequency synthesizers. Prerequisite: ELEN 252 and 387. (2 units)

ELEN 352. Mixed Signal IC Design for Data Communications
Design and analysis of mixed signal circuits for data communications. Introduction to data communications terminology and signaling conventions. Data transmission media, noise sources. Data transceiver design: Signal coding/decoding, transmit signal waveshaping, receive equalization. Timing Circuits: Clock generation and recovery techniques. Prerequisites: ELEN 252 and 387. (2 units)

ELEN 353. DC to DC Power Conversion
Basic buck, boost, and buck-boost DC to DC converter topologies in both continuous and discontinuous conduction modes (CCM and DCM). Analog and digital controlled pulse width modulation techniques. Efficiency and control loop stability analysis. Critical MOSFET parameters and non-ideal circuit behavior will be studied using time and frequency domain computer modeling. Prerequisites: ELEN 236, or 130 and ELEN 252 or 116. (2 units)

ELEN 354. Advanced RFIC Design
Design and analysis of passive circuits (filters, splitters, and couplers), Gilbert cell mixers, low phase noise VCOs, frequency translators, and amplifiers. Advanced simulation methods, such as envelope and time domain simulations. Class project designed to meet specifications, design rules, and device models of RFIC foundry. Prerequisite: ELEN 351. (2 units)

ELEN 359. Advanced Topics in Circuit Design
(2 units)

ELEN 360. Nanomaterials
Physics, chemistry, and materials science of materials in the nanoscale. Thin films, inorganic nanowires, carbon nanotubes, and quantum dots are examples covered in detail as well as state-of-the-art synthesis processes and characterization techniques for these materials as used in various stages of technology development. Also listed as EGR 262. Prerequisites: EGR 260 and ELEN 261 or ELEN 151. (2 units)

ELEN 361. Nanoelectronics
Silicon-based technology in the sub-90nm regime. General scaling trend and ITRS Roadmap. Novel device architectures, logic and memory nanodevices, critical enabling device design and process technologies, interconnects, molecular electronics, and their potential usage in future technology nodes. Prerequisite: ELEN 265 or ELEN 267. (2 units)

ELEN 375. Semiconductor Surfaces and Interfaces
Structural and electronic properties of semiconductor surfaces, semiconductor/oxide interfaces, and metal/semiconductor interfaces. Relationship between interface morphology/composition and electrical properties. Modern techniques for characterizing surfaces and interfaces. Derivation of interface properties from electrical characterization of devices. Prerequisite: ELEN 265 or ELEN 267. (2 units)

ELEN 379. Topics in Micro/Nanoelectronics
(2 units)

ELEN 387. VLSI Design I
Introduction to VLSI design and methodology. Analysis of CMOS integrated circuits. Circuit modeling and performance evaluation supported by simulation (SPICE). Ratioed, switch, and dynamic logic families. Design of sequential elements. Full-custom layout using CAD tools. Also listed as COEN 203. Prerequisite: COEN/ ELEN 127 or equivalent. (2 units)

ELEN 388. VLSI Design II
Continuation of VLSI design and methodology. Design of arithmetic circuits and memory. Comparison of semi-custom versus fully custom design. General concept of floor planning, placement, and routing. Introduction of signal integrity through the interconnect wires. Also listed as COEN 204. Prerequisite: COEN 203/ELEN 387 or equivalent, or ELEN 153. (2 units)

ELEN 389. VLSI Physical Design
Physical design is the phase that follows logic design, and it includes the following steps that precede the fabrication of the IC: logic partitioning; cell layout, floor planning, placement, routing. These steps are examined in the context of very deep submicron technology. Effect of parasitic devices and packaging are also considered. Power distribution and thermal effects are essential issues in this design phase. Also listed as COEN 305. Prerequisite: COEN 204/ELEN 388 or equivalent. (2 units)

ELEN 390. Semiconductor Device Technology Reliability
Reliability challenges in device design, fabrication technology, and test methodology. Device design issues such as design tolerances for latch-up, hot carrier injection, and electromigration. Fabrication technology challenges for sub-micron processes. Test methodology in terms of design feasibility and high-level test/fault coverage. IC yield models and yield enhancement techniques. (2 units)

ELEN 391. Process and Device Simulation with Technology Computer Aided Design (TCAD)
Review of semiconductor technology fundamentals. TCAD tools and methods as a design aid for visualizing physical device quantities at different stages of design and influencing device process parameters and circuit performance. Introduction to numerical simulation and TCAD, 2D process and device simulation, CMOS process flow and device design, device characterization and parameter extraction, circuit simulation. Introduction to virtual IC factory concept, integration of process, device and circuit simulation tools. The concept of process variation, statistical analysis and modeling methods, such as Monte Carlo sampling, correlation analysis, response surface modeling. Prerequisite: ELEN 274. (2 units)
ELEN 421. Speech Coding I
Review of sampling and quantization. Introduction to Digital Speech Processing. Elementary principals and applications of speech analysis, synthesis, and coding. Speech signal analysis and modeling. The LPC Model. LPC Parameter quantization using Line Spectrum Pairs (LSPs). Digital coding techniques: Quantization, Waveform coding, Predictive coding, Transform coding, Hybrid coding, and Sub-band coding. Applications of speech coding in various systems. Standards for speech and audio coding. Also listed as COEN 348. Prerequisite: ELEN 334 or equivalent. (2 units)

ELEN 422. Speech Coding II

ELEN 423. Introduction to Voice-over-IP
Overview of voice encoding standards relevant to VoIP: G.711, G.726, G.723.1, G.729, G.729AB. VoIP packetization and signaling protocols: RTP/RTCP, H.323, MGCP/MEGACO, SIP. VoIP impairments and signal processing algorithms to improve QoS. Echo cancellation, packet loss concealment, adaptive jitter buffer, Decoder clock synchronization. Network convergence: Soft-switch architecture, VoIP/PSTN, interworking (Media and Signaling Gateways), signaling translation (SS7, DTMF/MF etc.), fax over IP. Prerequisite: ELEN 233 or knowledge of basic digital signal processing concepts. (2 units)

ELEN 431. Adaptive Signal Processing I
Theory of adaptive filters, Wiener filters, the performance surface, gradient estimation. The least-mean-square (LMS) algorithm, other gradient algorithms, transform-domain LMS adaptive filtering, block LMS algorithm. IIR adaptive filters. The method of least squares. Recursive least squares (RLS) adaptive transversal filters; application of adaptive filters in communications, control, radar, etc. Projects. Prerequisites: ELEN 233 and ELEN 334 or AMTH 362 or knowledge of random processes. (2 units)

ELEN 431E. Adaptive Signal Processing I and II
Same description as ELEN 431 and ELEN 432. Prerequisite: ELEN 334 or AMTH 362 or knowledge of random processes. (4 units)

ELEN 432. Adaptive Signal Processing II

ELEN 433. Array Signal Processing
Statistical analysis of array signal processing of a spectral analysis and direction-finding. Classical spectral analysis, maximum entropy, minimum variance, maximum likelihood, and super-resolution techniques. Alternate years. Prerequisites: ELEN 234 and either ELEN 235 or AMTH 362. (2 units)

ELEN 439. Topics in Adaptive Signal Processing
(2 units)

ELEN 441. Communications Satellite Systems Engineering
Satellite systems engineering considerations. Spacecraft. Satellite link design. Communications systems techniques for satellite links. Propagation on satellite-earth paths. Earth station technology. Prerequisite: ELEN 243 or equivalent. (2 units)

ELEN 444. Error-Correcting Codes
Theory and implementation of error-correcting codes. Linear block codes, cyclic codes. Encoding and decoding techniques and implementations analysis of code properties and error probabilities. Offered in alternate years. Prerequisite: Knowledge of probability. (2 units)

ELEN 446. Introduction to Wireless Communication Systems
Overview of digital communications. Topics include bit rate and error performance. Long-term and short-term propagation effects. Link budgets. Diversity techniques. Prerequisite: Knowledge of random processes, AMTH 210, ELEN 241 or its equivalent. (2 units)

ELEN 447. Wireless Network Architecture
Issues in wireless management. Topics include: Multiple access techniques, cellular and local area network standards, scheduling of users, handoff and channel assignment. Prerequisite: ELEN 446 or equivalent. (2 units)

ELEN 460. Advanced Mechatronics I
Theory of operation, analysis, and implementation of fundamental physical and electrical device components: basic circuit elements, transistors, op-amps, sensors, electro-mechanical actuators. Application to the development of simple devices. Also listed as MECH 207. Prerequisite: MECH 141 or ELEN 100. (3 units)

ELEN 461. Advanced Mechatronics II
Theory of operation, analysis, and implementation of fundamental controller implementations: analog computers, digital state machines, microcontrollers. Application to the development of closed-loop control systems. Also listed as MECH 208. Prerequisites: ELEN 460 or MECH 207, and MECH 217. (3 units)

ELEN 462. Advanced Mechatronics III
Electro-mechanical modeling and system development. Introduction to mechatronic support subsystems: power, communications. Fabrication techniques. Functional implementation of hybrid systems involving dynamic control and command logic. Also listed as MECH 209. Prerequisite: MECH 208 or ELEN 461. (2 units)

ELEN 500. Logic Analysis and Synthesis
Analysis and synthesis of combinational and sequential digital circuits with attention to static, dynamic, and essential hazards. Algorithmic techniques for logic minimization, state reductions, and state assignments. Decomposition of state machine, algorithmic state machine. Design for test concepts. Also listed as COEN 200. Prerequisite: ELEN 127C or equivalent. (2 units)

ELEN 510. Computer Architecture
Overview of major subsystems of small- to medium-scale digital computers. Machine instruction set characteristics. Typical arithmetic and logic unit functions, register dataflow organization, busing schemes, and their implementations. Computer memory systems; addressing techniques. Methods of system timing and control; hardware sequencers, microprogramming. Register transfer language and micro-operation. I/O subsystem structure; interrupts; direct memory access and I/O bus interfacing techniques. Detailed computer design project. Credit not allowed for both ELEN 510 and COEN 210. Prerequisites: ELEN 33 or equivalent, ELEN 127C and COEN 44. (2 units)

ELEN 601. Low Power Designs of VLSI Circuits and Systems
Design of digital circuits for reduced power consumption. Sources of power consumption in ICs and analysis algorithms for their estimation at different stages of design. Various power reduction techniques and their trade-offs with performance, manufacturability, and cost are analyzed. Project to design a digital circuit with power reduction as the primary objective. Prerequisite: ELEN 387. (2 units)
ELEN 602. Modern Time Analysis
Analysis in logic design review of background materials and introduction of concepts of false path, combinational delay, and maximum cycle time of finite state machines. Study of efficient computational algorithms. Examination of retiming for sequential circuits, speed/area trade-offs. Prerequisite: ELEN 500. (2 units)

ELEN 603. Logic Design Using HDL
Algorithmic approach to design of digital systems. Use of hardware description languages for design specification. Structural, register transfer, and behavioral views of HDL. Simulation and synthesis of systems. Also listed as COEN 303. Prerequisite: ELEN 127 or equivalent. (2 units)

ELEN 604. Semicustom Design with Programmable Devices
Digital circuit design methodologies. Semicustom implementations. Programmable logic device classification, technology, and utilization. Software tools synthesis, placement, and routing. Design verification and testing. Also listed as COEN 304. Prerequisite: ELEN 500 or equivalent. (2 units)

ELEN 605. High-Level Synthesis

ELEN 606. Design for Testability
Principles and techniques of designing circuits for testability. Concept of fault models. The need for test development. Testability measures. Ad hoc rules to facilitate testing. Easily testable structures, PLAs. Scan-path techniques, full and partial scan. Built-in self-testing (BIST) techniques. Self-checking circuits. Use of computer-aided design (CAD) tools. Also listed as COEN 308. Prerequisite: ELEN 500 or equivalent. (2 units)

ELEN 609. Mixed-Signal DA and Test
Mixed-Signal test techniques using PLL and behavioral testing as major examples. Overview of the IEEE 1149.4 Mixed-Signal standard. Mixed-Signal DFT and BIST techniques with emphasis on test economics. Most recent industry mixed-signal design and test EDA tools and examples of leading state-of-the-art SoCs. Prerequisites: ELEN 500 or COEN 200 and ELEN 387 or COEN 203. (2 units)

ELEN 613. SoC (System-on-Chip) Verification
This course presents various state-of-the-art verification techniques used to ensure the correctness of the SoC (System-on-Chip) design before committing it to manufacturing. Both Logical and Physical verification techniques will be covered, including Functional Verification, Static Timing, Power, and Layout Verification. Also, the use of Emulation, Assertion-based Verification, and Hardware/Software Co-Verification techniques will be presented. Also listed as COEN 207. Prerequisites: ELEN 500 or COEN 200 and ELEN 603 or equivalent. (2 units)

ELEN 614. SoC (System-on-Chip) Formal Verification Techniques
With continuous increase of size and complexity of SoC, informal verification techniques are increasing design cost prohibitively and causing major delays in TTM (Time-To-Market). This course focuses on formal algorithmic techniques used for SoC Verification and the tools that are widely used in the industry to perform these types of verifications. These include programming languages such as System Verilog, Vera, and e-language. The course also covers the various formal verification techniques such as propositional logic, temporal logic, theorem proving, and equivalent checking. Industrial-level tools from leading EDA vendors will be used to demonstrate the capabilities of such techniques. Also listed as COEN 308. Prerequisites: ELEN 500 or COEN 200 and ELEN 603 or equivalent. (2 units)

ELEN 617. Storage Systems – Technology and Architecture
The course will address the developments in storage systems. Increase in data storage has led to an increase in storage needs. This arises from the increase of mobile devices as well as increase in Internet data storage. This course will provide the students good knowledge of different storage systems as well as challenges in data integrity. A discussion of the next generation of storage devices and architectures will also be done. (2 units)

ELEN 620. Design of System-on-Chip
A project-oriented course that draws on the student’s knowledge of logic design, circuit design, synthesis, and digital testing. Implementation of designs in FPGAs. Advanced topics including design verification, floor planning, power and delay budgeting, backannotation, selection of the appropriate DFT constructs, etc. Prerequisite: ELEN 388, 500, 603, or 608. (2 units)

ELEN 624. Signal Integrity in IC and PCB Systems
Analysis, modeling and characterization of interconnects in electronic circuits; Transmission line theory; losses and frequency dependent parameters. Signal Integrity issues in high-speed/high-frequency circuits; means of identifying signal integrity problems. Reflection and crosstalk; analysis of coupled-line systems. Power distribution networks in VLSI and PCB environments and power integrity. Signal/Power integrity testing. Prerequisite: ELEN 201. (2 units)

ELEN 638. Audio and Speech Compression
Audio and speech compression. Digital audio signal processing fundamentals. Non-perceptual coding, Perceptual coding, Psychoacoustic model, High-quality audio coding, Parametric and structured audio coding. Audio coding standards. Scalable audio coding, Speech coding, Speech coding standards. Also listed as COEN 339. Prerequisite: AMTH 245 and COEN 279 or equivalent. (2 units)

ELEN 664. Image and Video Compression
Image and video compression. Entropy coding, Prediction, Quantization, Transform coding and 2-D discrete cosine transform. Color compression, Motion estimation and compensation. Digital video. Image coding standards such as JPEG, Video coding standards such as the MPEG series and the H.26x series. H.264/MPEG-4 AVC coding. HEVC/H 265/MPEG-H Part 2 coding. Future JVET standard Rate-distortion theory and optimization, Visual quality and coding efficiency, Brief introduction to 3D video coding and 3D-HEVC. Applications. Also listed as COEN 338. Prerequisites: AMTH 108, AMTH 245, basic knowledge of algorithms. (4 units)

ELEN 666. Medical Imaging
Image formation from noninvasive measurement, e.g., magnetic resonance imaging, and other modalities used clinically and in research. Analysis of accuracy and resolution of image formation based on measurement geometry and statistics. Also listed as PHY 666. Prerequisite: ELEN 624. (2 units)

ELEN 667. Image Processing II
Image restoration using least squares methods in image and spatial frequency domains; matrix representations, blind deconvolution, super-resolution methods, reconstructions from incomplete data; image segmentation techniques.
methods, three-dimensional models from multiple views. Also listed as COEN 343. Prerequisite: COEN 340. (2 units)

ELEN 644. Computer Vision I
Introduction to image understanding, feature detection, description, and matching; feature-based alignment; structure from motion stereo correspondence. Also listed as COEN 345. Prerequisites: ELEN 640 and knowledge of linear algebra. (2 units)

ELEN 645. Computer Vision II
Learning and inference in vision; regression models; deep learning for vision; classification strategies; detection and recognition of objects in images. Also listed as COEN 345. Prerequisites: ELEN 640 and knowledge of probability. (2 units)

ELEN 649. Topics in Image Processing and Analysis
(2 units)

ELEN 701. RF and Microwave Systems
The purpose of this class is to introduce students to the general hardware components, system parameters, and architectures of RF and microwave wireless systems. Practical examples of components and system configurations are emphasized. Communication systems are used to illustrate the applications. Other systems, such as, radar, the global positioning system (GPS), RF identification (RFID), and direct broadcast systems (DBS) are introduced. (2 units)

ELEN 706. Microwave Circuit Analysis and Design
Microwave circuit theory and techniques. Emphasis on passive microwave circuits. Planar transmission lines. Field problems formulated into network problems for TEM and other structures, scattering and transmission parameters, Smith chart, impedance matching, and transformation techniques. Design of power dividers, couplers, hybrids and microwave filters. Microwave CAD. Prerequisite: ELEN 201. (2 units)

ELEN 711. Active Microwave Devices I
Scattering and noise parameters of microwave transistors, physics of silicon bipolar and gallium arsenide MOSFET transistors, device physics, models, and high-frequency limitations. Applications to microwave amplifier and oscillator designs. Prerequisite: ELEN 706. (2 units)

ELEN 712. Active Microwave Devices II
Continuation of ELEN 711. Nonlinear active circuits and computer-aided design techniques. Nonlinear models of diodes, bipolar transistors and FET’s applied to the design of frequency converters, amplifiers, and oscillators. Techniques. Prerequisite: ELEN 711. (2 units)

ELEN 715. Antennas I

ELEN 716. Antennas II
Continuation of ELEN 715. Aperture antennas. Traveling-wave antennas. Antenna Arrays. Linear arrays with uniform and non-uniform excitations. Beam scanning and phased arrays; Planar arrays; Array Synthesis. Prerequisite: ELEN 715. (2 units)

ELEN 717. Antennas III

ELEN 725. Optics Fundamentals
Fundamental concepts of optics: geometrical and wave optics. Optical components—free space, lenses, mirrors, prisms. Optical field and beams. Coherent (lasers) and incoherent (LED, thermal) light sources. Elements of laser engineering. Optical materials. Fiber optics. Polarization phenomena and devices. Also listed as PHYS 113. Prerequisite: ELEN 201 or equivalent. (4 units)

ELEN 726. Microwave Measurements, Theory, and Techniques
Theory comprises six classroom meetings covering signal flow graphs, error models and corrections, S-parameter measurements, Vector analyzers, microwave resonator measurements, noise figure measurements, signal generation and characterization, spectrum analyzers, and phase noise measurements. Four laboratory meetings. Offered in alternate years. Prerequisite: ELEN 706. (4 units)

ELEN 921C. Introduction to Logic Design
Boolean functions and their minimization. Designing combinational circuits, adders, multipliers, decoders, etc. Bussing. Memory elements: latches and flip-flops; timing; registers. Introduction to FPGAs and the need for the use of HDL. Taught in the graduate time format. Foundation course not for graduate credit. Also listed as COEN 921C. (2 units)
In addition to the courses offered by the individual departments, the School of Engineering also offers courses which are interdisciplinary in nature as follows:

COURSE DESCRIPTIONS

ENGR 256: Introduction to NanoBioengineering
This course is designed to present a broad overview of diverse topics in nanobioengineering, with emphasis on areas that directly impact applications in biotechnology and medicine. Specific examples that highlight interactions between nanomaterials and various biomolecules will be discussed, as well as the current status and future possibilities in the development of functional nanohybrids that can sense, assemble, clean, and heal. Also listed as BIOE 256. (2 units)

ENGR 257. Introduction to Biofuels Engineering
This course will cover the basic principles used to classify and evaluate biofuels in terms of thermodynamic and economic efficiencies as well environmental impact for resource recovery. Special emphases will be placed on emerging applications namely Microbial Fuel Cell Technology and Photo-bioreactors. Also listed as BIOE 157/257. Prerequisite: BIOE 21 or BIOL 1B, CHEM 13, PHYS 33. (2 units)

ENGR 260. Nanoscale Science and Technology*
Overview of key elements of physics, chemistry, biology, and engineering underlying this interdisciplinary field. Bulk vs. surface properties of materials. Surface phenomena and quantum phenomena. Self-assembly and soft lithography. Nanoscale materials characterization. Carbon nanotubes, inorganic nanowires, organic molecules for electronics, biological and bio-inspired materials. Emerging applications of nanoscale materials. Prerequisite: Graduate standing. (2 units)

ENGR 261. Nanotechnology and Society
Addresses the fundamental scientific and technological underpinnings of the important new field of nanotechnology. Examines how our understanding and our technological capabilities have evolved over the past century, and how nanotechnology proposes new applications that can address social and economic goals. An appreciation of the interaction between these goals and the evolution of the technology is central to the course. Students will develop critical thinking about the prospects for nanotechnology in order to be able to assess the relevant ethical and social issues, and also the possibility and/or likelihood of the development of specific applications. (4 units)

ENGR 262. Nanomaterials*
Physics, chemistry, and materials science of materials in the nanoscale. Thin films, inorganic nanowires, carbon nanotubes, and quantum dots are examples covered in detail as well as state-of-the-art synthesis processes and characterization techniques for these materials as used in various stages of technology development. Also listed as ELEN 360. Prerequisites: ENGR 260 and ELEN 261. (2 units)
ENGR 271. Energy Conservation
It is by no means clear that the shortage of carbon-free energy can be resolved by identifying alternative resources. As a result, conservation must play a key role in the development of new energy policies, both locally and globally. This course explores how conservation and sustainability relate to each other, with special emphasis on the value of cost-effective, innovative water recycling, and strategies for reducing the use of electrical energy. (2 units)

ENGR 272. Energy Public Policy
The class will survey the types of energy used historically from traditional biomass, to coal, to natural gas, to nuclear and renewables, as well as the increasingly diverse possibilities for future use discussed in current policy debates. Coverage will also include a historical review of regulation and policy in the energy industry. The geographic scope will be international. The field of energy analysis and policy is inherently interdisciplinary. Prerequisite: ELEN 280/MECH 287. (2 units)

ENGR 273. Sustainable Energy and Ethics
This course explores the ethical implications of energy production, distribution and consumption, with the aim of understanding those normative considerations that motivate public, institutional and private bodies to develop sustainable energy policies and practices. Through examination of texts and case studies, students will learn to critically analyze, develop and defend ethical judgments and practices with respect to energy. Topics include considerations of environmental justice; tension between global and local spheres of ethical concern; the rights and interests of potential stakeholders, both human and non-human; our duties with respect to prevention or mitigation of harms and management of risk; our ethical obligations to future generations; and the role of personal, civic and professional virtues in guiding sustainable energy practices. (2 units)

ENGR 288. Co-op Education
The primary purpose of Co-op education is to give students an opportunity to gain practical knowledge in their field of study. This course is designed to prepare them for such an experience. It consists of a series of lectures on topics that will familiarize them with the Silicon Valley working environment, and will enable them to relate their experience in the industry to their academic program. This course is required for all international students who wish to do Curricular Practical Training (CPT). ENGR 288 is not offered in the summer quarter. Attendance is mandatory. P/NP grading. (1 unit)

ENGR 289. Extended Co-op Education
Students who extend their co-op experience beyond one quarter must be enrolled in this class. The course may be taken for credit up to four times, and students are required to submit a final report in each quarter in which they are enrolled. The final report should focus on skills, experiences and insights that they acquired in the current term. In order to get a passing grade, students must also submit a new supervisor report, which evaluates their performance during the most recent 10 week period. P/NP grading. Prerequisite: ENGR 288. (1 unit)

Note: ENGR 288 can be taken during the first quarter of CPT, or before the training begins. ENGR 288 is not offered in the summer quarter. The units associated with ENGR 288 and ENGR 289 are additional to the 45 units that are required by the department.

ENGR 293. Directed Research
Special research directed by a faculty member. By arrangement. Prerequisite: Registration requires the faculty member’s approval. (1–6 units per quarter)

ENGR 302. Managing in the Multicultural Environment
Provides practical, theoretical, and experiential tools to manage a multicultural workforce. Cases from Silicon Valley engineering environments will be studied. Topics will include: (1) insights to various cultures’ approaches to time, information, planning, decision making, relationships, power and change; (2) developing leadership, motivation, and participation in multicultural teams; (3) creating an environment that maximizes the benefits of diversity and retains workers from a variety of cultural backgrounds; (4) resolving conflict when there are different cultural approaches; and (5) the role of corporate culture for multicultural and global companies. (2 units)

ENGR 303. Gender and Engineering
This course, based on brain science, culture and communication, provides a foundation for managing the different worlds—the different cultural lenses, paradigms and different competencies—many women and men bring to an engineering workplace. Gender Competence, effective management of differences increases “fire prevention,” customer focus, and innovation in research, development and marketing of products; and advancement of both women and men. (2 units)

ENGR 304. Building Global Teams
Challenges of working virtually and globally. Building global teams. Working across cultures and distance; achieving goals while managing differences. Diverse approaches to managing task, time, and hierarchy. Social interactions and decision-making. Culture’s impact on teamwork. Global leader dimensions. Trust building. Empowering self and others. Business practices in China, India, Russia, and other countries. (2 units)

ENGR 306. Engineering and the Law
Exploration of legal issues affecting project engineers, contractors, and owners. Topics include structure of project teams, contracts, standard of care, insurance, and dispute resolution. Evolving legal issues with Integrated Project Delivery (IPD) and Building Information Modeling (BIM). (2 units)

ENGR 310. Engineering Ethics
This course is designed to help students develop a set of effective tools for handling everyday ethical dilemmas and for developing their own vision of what it means to be a morally good engineer. Fundamental concepts from classical ethics theory will be used as the framework for discussing a range of topics that are of interest to the engineering profession. The class will include case studies that are related to recent technological advances, as well as issues that practicing engineers commonly encounter in their work. (2 units)

ENGR 330. Law, Technology, and Intellectual Property
Study of available legal provisions for establishing, receiving, preserving, and enforcing intellectual property rights in research, development, engineering, and marketing of products. Includes a study of patents, trade secrets, copyrights, mask works, trademarks, and employer-employee contracts regarding intellectual property. (2 units)

ENGR 334. Energy, Climate Change, and Social Justice
The field of climate ethics has emerged recently to negotiate the serious and complex ethical choices facing human society as we balance energy, environmental, and economic development needs. Social science and ethical lenses are used to examine energy use and climate disruption in light of the moral principle of social justice. This course gives graduate engineering students
the background and skills to communicate these issues in several different modes. It consists of three main thematic parts: energy choices; social vulnerabilities; and difficult policy dilemmas. (2 units)

ENGR 336. Engineering for the Developing World

How does one innovate products and services for developing countries? How can complex problems be tackled with simple technologies and low-cost business models? This course presents a framework of engineering design and management techniques that are appropriate for developing markets. Topics such as “ruggedization,” cost control, and local resource use will be explored through a variety of examples and case studies, which range from alternate energy and low-cost diagnostics to mobile applications and micro entrepreneurship. This course examines the potential social benefits that design, manufacturing, and business innovation can provide to address various challenges in the developing world. (2 units)

ENGR 337. Sustainability and Green Information Technology

The course is designed to give a thorough understanding of how IT infrastructure can be managed and optimized for maximum energy efficiency and minimum environmental impact. It also describes in some detail how IT leaders, data center operators, and other related sustainability advocates can benefit (and profit) from implementing energy efficient corporate IT infrastructure both inside and outside the data centers. Topics that will be covered include technologies and strategies for implementing green data centers, re-configuring existing infrastructure to ensure reduced energy consumption, managing air flow, and implementing sustainable IT asset disposal policies. (2 units)

ENGR 338. Mobile Applications for Emerging Markets

The mobile revolution is changing the lives of people across the globe, from Wall Street to Main Street to rural villages. This course will provide an overview of the technological innovation, including applications and instrumentation, which the mobile revolution is spawning, particularly in underserved communities globally. It will feature guest speakers from technology companies involved in Mobile R&D, look at market and beneficiary needs, and discuss how to innovate products and services for these customers and how to tackle complex “life” problems with simple technologies, applications, and business models, using real-life case studies. (2 units)

Energy storage systems play an essential role in the utilization of renewable energy. They are used to provide reserve power under different circumstances and needs such as peak shaving, load leveling, and ancillary services. Power electronics equipment converts the battery power into usable grid power. The course will survey batteries, pumped storage, flywheels, ultracapacitors, etc., with an analysis of the advantages and disadvantages, and uses of each. Also listed as ELEN 287. (2 units)

ENGR 340. Distributed & Renewable Energy

This course surveys energy engineering and entrepreneurship in emerging market countries, with an emphasis on strategies for coping with the absence of a grid. It analyzes strategies for energy generation, transmission and storage at household, community and regional scales drawing from sector and case studies in the developing world. (2 units)

ENGR 341. Innovation, Design and Spirituality

This course integrates the social, human, ethical, and creative dimensions of frugal innovation for graduate engineering students. Frugal innovation is a creative engineering design process, whose primary purpose is to address the basic human needs of people in underserved communities worldwide. This course presents the what and the how of frugal innovation, but emphasizes the why and the who. Why should engineers and technology creation address the needs of economically marginalized communities? And, who are the kinds of engineers that are able to create frugal innovation strategies? By framing innovation and design in terms of moral purpose and spiritual meaning, students will deepen their self-knowledge and enhance their leadership skills. (2 units)

ENGR 342. 3D Print Technology and Society

This class is designed to introduce students to 3D print technology, which offers a range of exciting possibilities for product design, delivery and democratization of entrepreneurship. Along with hands-on experience of the technology, students will be exposed to the eco-system engaged by the technology. Implications for life sciences, career opportunities, entrepreneurship and restructuring of global markets and society will be examined. (2 units)

ENGR 371. Space Systems Design and Engineering I

A review of the engineering principles, technical subsystems, and design processes that serve as the foundation of developing and operating spacecraft systems. This course focuses on subsystems and analyses relating to orbital mechanics, power, command and data handling, and attitude determination and control. Note: ENGR 371 and 372 may be taken in any order. Also listed as MECH 371. (4 units)

ENGR 372. Space Systems Design and Engineering II

A review of the engineering principles, technical subsystems, and design processes that serve as the foundation of developing and operating spacecraft systems. This course focuses on subsystems and analyses relating to mechanical, thermal, software, and sensing elements. Note: ENGR 371 and 372 may be taken in any order. Also listed as MECH 372. (4 units)

*Eligible for Technical Stem in Engineering Management
DEPARTMENT OF ENGINEERING MANAGEMENT AND LEADERSHIP

Dean's Executive Professor: Frank Barone (Chair)

OVERVIEW

The engineering management and leadership degree focuses on how we work—the management of technical activities through which the manager integrates physical and human resources. Technical managers ensure that personal and organizational objectives are realized by coupling task and process in the achievement of objectives primarily in the areas of research, development, design, operations, testing, marketing, and field service. Engineering management and leadership coursework encompasses these activities and the ways in which they interface with other activities within organizations.

DEGREE PROGRAM

Surveys of technical professionals around the world reveal that there are two major motivators in play: personal career growth and expanded responsibility in the firm. Santa Clara’s Engineering Management and Leadership Program addresses both concerns.

The goal of this program is to support the development of technical managers. To this end, the program requires that approximately half of the degree units be devoted to a technical stem, drawn from one or more of the other engineering departments. The remaining units are in management-leadership related studies.

Master of Science in Engineering Management and Leadership

Admission to the Engineering Management and Leadership Program is open to those students who hold an undergraduate degree or graduate degree in engineering, mathematics, biology, computer science and engineering physics. The undergraduate degree must be from a four-year engineering program substantially equivalent to Santa Clara University’s. Students holding undergraduate degrees other than bioengineering, civil engineering, computer engineering, electrical engineering or mechanical engineering must be prepared to select technical stem courses from these disciplines as listed in the Graduate Engineering Bulletin. In addition, the GRE is required for all students who do not have at least two years of working experience in the United States.
Requirements

Students are required to complete a minimum of 45 quarter units to complete the master’s degree, following these guidelines:

- Engineering Management 20 units
- The Technical Stem 19 units
- The Graduate Core 6 units

Courses for the technical stem are selected from the Graduate Engineering Bulletin. All of the requirements for the engineering management and leadership degree must be completed within a six-year timeframe.

A completed program of studies for Engineering Management and Leadership degree candidates must be submitted to the chair of the Department of Engineering Management and Leadership during the first term of enrollment to ensure that all courses undertaken are applicable to the degree. Students who take courses that have not been approved for their program of studies by both the department chair and the Graduate Services Office do so at their own risk, as they may not be counted toward completion of the degree.

A maximum of nine quarter units (six semester units) of graduate-level coursework may be transferred from other accredited institutions at the discretion of the student’s advisor provided they have not been applied to a previous degree. However, in no case will the minimum units taken in the Department of Engineering Management and Leadership be fewer than 16. Extension classes, continuing education classes, professional development courses, or classes from international universities are not accepted for transfer credits.

Technical Stem Courses

Courses for the technical stem of Engineering Management and Leadership are selected from the graduate course listings in the Graduate Bulletin. However, not all graduate classes listed in the bulletin are considered technical in terms of fulfilling the technical stem requirements. This is especially the case of ENGR courses. In addition, there are other limitations some of which are listed below. Therefore, it is important that students complete a program of studies in their first term, as recommended above, to make sure all of the courses they select will fulfill the degree requirements.

- All courses applied to the Engineering Management and Leadership degree must be graded courses—no P/NP courses are allowed.
- Undergraduate courses cross-listed with graduate course numbers do not apply unless the student registers with the graduate course number.
- Graduate seminars in other departments such as ELEN 200, COEN 400, MECH 261, MECH 297 are not applicable.
- COEN 485 Software Engineering Capstone is not applicable to the technical stem unless students complete three one-quarter consecutive sessions beginning in the fall quarter.
- In order to accommodate the 19 unit technical stem requirement, students are allowed to enroll in one unit of Independent Study or Directed Research under the direction of a full time faculty member in the respective engineering department. Any additional units will not be counted toward graduation.
- New courses are often developed and offered during the academic year that are not listed in this bulletin. It is important that students check with their advisor prior to enrolling in those courses to make sure they will count toward their degree.

Notes:

1. B.S. degrees (for those who are graduating seniors) must be posted by September 1 to allow the student progression in their graduate career.
2. Undergraduate students must submit “Permission to Take Graduate Course” form to be correctly registered for graduate courses.
3. All coursework applied to the M.S. degree must be at the 200 level or above and not applied to any other degree.
4. Course numbers below 200 indicate undergraduate courses, numbers of 200 and above indicate graduate courses. Students may take courses assigned both undergraduate and graduate numbers (same title used for both numbers) only once as an undergraduate or graduate student.
5. Students must register with the graduate course number in cross-listed courses to apply the course to an M.S. degree.
6. Students who are entering this program should meet with their Engineering Management advisor at the end of their junior year to develop a program of studies to ensure that all graduate courses they plan to take are applicable to the Engineering Management and Leadership M.S. degree.
EMGT 251. Production and Operations Management
Planning and controlling operations, operations strategy, inventory and capacity planning, forecasting, purchasing, scheduling, facilities, layout, quality assurance. (2 units)

EMGT 253. Operations and Production Systems
Provides the knowledge and techniques required to properly manage operations and production systems. Topics include operations strategies, decision making, technology management, computer-integrated manufacturing, TQM, statistical process control, Just-in-Time, capacity and resource planning, simulation, and project management. (2 units)

EMGT 255. Managerial Accounting for Operating Managers
This course provides an introductory survey to the underlying principles and applications of managerial accounting and financial analysis. Taken from the perspective of the recipient of accounting data, rather than the generator of reports, this course will equip operating managers with the skills to interpret the story behind the numbers to gain a more accurate understanding of the status of their business and to make more informed decisions. (2 units)

EMGT 256. Finance and Budgeting for Engineering Managers
Profit planning, return on investment, accounting conventions, evaluation of economic alternatives, break-even analysis, tax environment, capital budgeting, cash flow, inventory policy, capital structure, security markets, financial controls, finance in general management. Prerequisite: EMGT 255 or accounting knowledge. (2 units)

EMGT 257. The Business Environment
The economy; the price system; business cycles, money and banking, securities markets, business organizations, the corporation, business functions; marketing technology, finance, and operations. (2 units)

EMGT 258. Global Marketing of Technical Systems
The problems of meeting different needs in different countries without overwhelming costs. (2 units)

EMGT 261. Technical Products and Profits
Organizing a technical firm. Creating a business plan. Integrating marketing, finance, design, manufacturing, and service systems. (2 units)

EMGT 264. Managing Research and Development
Role of R&D in corporate growth; unique characteristics of R&D management; financing applied research; measuring return on investment; planning for diversification; structure of R&D organizations; choice of an R&D portfolio; idea generation process; selecting projects and establishing objectives; developing technical personnel; motivation of personnel; technical assistance to R&D staff; planning, scheduling, and control; project budgets and controls; performance appraisal; leadership in research organizations. (2 units)

EMGT 269. Human Resource Development and the Engineering Manager
Concepts of human resource management, the meaning of work, the individual and the organization, growth and learning, the manager’s role in career/life management, human resource strategies. (2 units)

EMGT 270. Effective Oral Technical Presentations
Role of communications, persuasive communications, speaking as a meeting leader, substitutes for reading speeches, purposes and effects, selling ideas to one or more persons, how to make meetings work. (2 units)

EMGT 271. Effective Written Technical Communication I
Cluster writing; pyramid technique; audience analysis; opening, body, and end of text; technical correspondence; abstracts and summaries; presentation patterns for reports and proposals; proposal presentation. (2 units)

EMGT 272. Effective Written Technical Communication II
Intensive writing practicum, overview of writing, mechanics of style, editing techniques, strategies for editing the work of others. (2 units)

EMGT 275. Operations Management for Operating Managers
Operations management, the engineering environment, capital budgeting, manufacturing, marketing, engineering, finance, and probability. (2 units)

EMGT 276. Effective Oral Technical Presentations
Role of communications, persuasive communications, speaking as a meeting leader, substitutes for reading speeches, purposes and effects, selling ideas to one or more persons, how to make meetings work. (2 units)

EMGT 277. Effective Written Technical Communication I
Cluster writing; pyramid technique; audience analysis; opening, body, and end of text; technical correspondence; abstracts and summaries; presentation patterns for reports and proposals; proposal presentation. (2 units)

EMGT 278. Effective Written Technical Communication II
Intensive writing practicum, overview of writing, mechanics of style, editing techniques, strategies for editing the work of others. (2 units)

EMGT 280. Integral Systems/Micro/Nano Product Development
The management of a process: architecture, design process, development, technology strategy, manufacturing, marketing, education, finance, and probability. (2 units)

EMGT 283. Engineering Venture Management
All facets of developing and starting an engineering project venture. Class works as a team to develop one new engineering business venture considering behavioral, marketing, financial, manufacturing engineering, and administrative aspects. (2 units)

EMGT 285. Relationship Management
The management of relationships in a supply chain. Integrating product requirements from concept through service and support. Skills taught for characterizing, developing, and leveraging, various key relationships in one’s organization. Articulating and developing interaction models, dependency analyses, and team structures. Developing tools to manage outsourcing models, partnerships, co-development strategies and organizational synergy in line with overall business objectives. (2 units)

EMGT 286. Fundamentals of Quality Management
A broad view of quality management through systems thinking, people and organization, measurement and processes, and continuous learning and improvement. Each of the four areas represents a critical aspect of quality management. (2 units)

EMGT 288. Managing, Controlling, and Improving Quality
Management structure and statistical and analytical tools for quality success: total quality management, six-sigma and beyond, statistical inference (made simple), control charts (SPC), sampling procedures, designed experiments (DOE), and reliability. (2 units)

EMGT 292. Managing Equipment Utilization
Improving equipment utilization, availability, reliability, and sustainability. Computerized equipment management systems. Preventive maintenance, reliability-centered maintenance, and platform ownership. (2 units)

EMGT 295. Project Planning Under Conditions of Uncertainty
Managerial decision making in project management under conditions of varying knowledge about the future. Decisions relying on certainty and decisions based on probabilities and made under risk. Situations in which there is no basis for probabilities; decisions made under conditions of uncertainty. Use of applications of decision theory to help develop strategies for project selection and evaluation. (2 units)
EMGT 296. Project Risk Management
There are three fundamental steps: risk analysis, risk evaluation, and risk migration and management. The acceptable risk threshold is defined by the customer and management, and identifies the level above which risk reduction strategies will be implemented. (2 units)

EMGT 299. Directed Research
By arrangement. Limited to a single enrollment. (1 unit)

EMGT 300. Coaction: Learning Leadership
Reg Revan developed Action Learning as a manager development tool. If groups of managers discuss their daily problems, it is a learning opportunity. It is also an opportunity for Tacit Knowledge exchange. Prerequisite: Two years of industrial experience. (2 units)

EMGT 301. Coaction Circles I
Team problem solving. (2 units)

EMGT 302. Coaction Circles II
Team problem solving. Additional leadership experience. (2 units)

EMGT 304. Sustaining High Achievement Careers
Discusses problems and issues involved with a lifetime career in a single firm. Adaptability and morale issues. (2 units)

EMGT 305. Technology Policy Issues
The issues that impact technology leadership roles. The environment to which Adaptive Systems must adjust. Current issues include sustainability, renewable energies, and global outsourcing. (2 units)

EMGT 307. Medical Device Product Development
The purpose of this course is to provide background information and knowledge to start or enhance a career in medical device product development. Discusses medical device examples, product development processes, regulation, industry information, and intellectual property. Also listed as Bioe 307. Prerequisite: BIOE 10. (2 units)

EMGT 318. Strategies For Career and Academic Success (for Foreign-born Technical Professionals)
Designed to help foreign-born engineers and technical professionals develop the knowledge and skills needed to be more effective in the American academic and corporate environments and to achieve career success. Focuses on key skills in career development, effective communication, interpersonal effectiveness, and building relationships with co-workers. Uses participatory, experiential training methods including role plays, simulations, and small group exercises. (2 units)

EMGT 319. Human Interaction I
Individuals interacting in groups to solve problems. Discusses mix of electronic and personal elements to achieve goals. (2 units)

EMGT 320. Human Interaction II
A close look at communications. Personal limits. Electronic interfacing. The role of communication skills, attitudes, knowledge level, and culture in the communication process. (2 units)

EMGT 322. Engineering Management Skills
This course will cover the skills required in transitioning from a technical contributor to a technical manager or team leader. This transition requires a new set of skills and knowledge in which engineers and scientists are typically not trained. These new skills will include “soft skills” from the areas of psychology, ethics, and interpersonal relationships as well as the management processes essential to becoming an effective manager. Students will think introspectively about their new managerial roles and responsibilities through lectures and discussions with classroom participation exercises and topical essay homework. (2 units)

EMGT 323. Management of Technological Innovation: Opportunities and Challenges
This course examines the technical and managerial challenges presented by emerging and dynamic technologies. Emphasis will be placed on understanding the forces affecting the nature and rate of technological innovation and the managerial options available to both established and entrepreneurial organizations in managing internal and external sources of innovation, as well as the appropriate strategies and processes for capitalizing on them. (2 units)

EMGT 327. New Product Definition
The use of quality function deployment as a design system to effectively link a company with its customers. How to interview customers and generate design concepts that meet their needs. (2 units)

EMGT 329. Parallel Thinking
This workshop-style program will provide the tools and coaching engineering leaders need to be effective in harnessing the brainpower of groups. Draws heavily on the application of the research done at Stanford University on precision questioning, the work of Edward DeBono, and group processing work on high-performance systems. (2 units)

EMGT 330. Project Management Basics
Designed to provide the basic knowledge and techniques required to properly manage projects. Covers the fundamental concepts and approaches in project management such as the triple constraints, project life cycle and processes, project organizations, project scheduling, budgeting, resource loading, project monitoring and controls, and project information systems. (2 units)

EMGT 331. Strategic Technology Management
Translating strategic plans into action plans and ensuring their implementation. Integration of a process that crosses all organizational boundaries. Performance objectives and priorities, change and discontinuities, managed growth, accelerated technology transfer. Analyzing competitive technical position, collecting and utilizing user/customer information, and change leadership. (2 units)

EMGT 333. Computer-Aided Project Management Scheduling and Control
This course is designed to teach students real world project management using modern project management software. We consider customers, competition, technology, and financial realities in order to develop project requirements. We then go on to project planning, resource allocation, and strategies for dealing with multiple projects. Finally, we focus on project tracking, including earned value analysis and taking corrective action. (2 units)

EMGT 335. Advanced Project Management and Leadership
Covers the approaches and practices in project management over the lifespan of the project cycle. Highly interactive advanced course with in-class practice and analysis of real-world project examples. While providing the knowledge in project planning and control techniques, it focuses on the development of project leadership, teamwork, and problem solving skills. Prerequisite: EMGT 330. (2 units)

EMGT 336. Global Software Management (Introduction)
Discuss and understand the software development techniques and issues in view of offshore outsourcing. Discuss best practices, do’s and don’ts in project management, and other techniques due to off-shoring and outsourcing. Case studies. (2 units)

EMGT 337. Global Software Management (Advanced)
Analyze the impact and changes in software development and management techniques because of offshore outsourcing. Discuss the people and technology issues. Analyze
the business models and ROI. Understand the impact of culture on project dynamics. Special attention to outsourcing to India, China, and Europe. (2 units)

EMGT 338. Technical Product Management and Marketing

Introduction to product management, market/business planning and analysis, competitor and customer analysis and value propositions, product planning and strategy. Pricing, channel, promotion, and financial considerations. (2 units)

EMGT 340. Time-Effective Software Management

The management of software projects recognizing that this is a continuous change activity. Continuous enhancement of a product is necessary to remain competitive. Focuses on the differences between products and projects. (2 units)

EMGT 341. Software Project Metrics

Application of measurement techniques to software development management. The GQM paradigm. Product, project, and process metrics. The role of statistical quality control. Reading in the current literature. (2 units)

EMGT 345. Program Management

Fundamentals of program and portfolio management and how they are applied to improve business results on programs of varying size, within all types of businesses, from small companies to large enterprises. Prerequisite: EMGT 330 (Project Management Basics) or equivalent experience. (2 units)

EMGT 346. Engineering Economics

Valuating and selecting engineering projects based on their characteristics of risk, available information, time horizon, and goals. Utilization of classical capital budgeting techniques, qualitative criteria, and financial option theory. Exploration of the value of individual projects on the company’s total portfolio of projects. Introduction to decision theory as it applies to project evaluation. Prerequisite: Finance or familiarity with time value of money concepts such as net present value. (2 units)

EMGT 347. Engineering Economics Advanced Concepts

A continuation of the concepts from EMGT 346. Rate of return analysis, uncertainty in future events, depreciation, replacement analysis, income taxes, inflation, selection of MARR, real options. Prerequisite: EMGT 346. (2 units)

EMGT 349. Advanced Leadership

Designed to create a holistic understanding of leadership. Through readings, discussions, and case studies, students will learn to integrate key leadership concepts from psychology, ethics, political science, philosophy, and sociology. Students will be able to characterize their individual approaches to leadership and learn to adapt to changes resulting from globalization and advancing technology. (2 units)

EMGT 350. Success in Global Emerging Markets

Strategies and tactics for moving new products and technologies into global emerging markets, comprehending cultural impact, and creating new markets. Understanding your company’s objective, determining what is possible, and developing practical go-to-market strategies. Topics include new ventures, sustainability, social responsibility, risk assessment and mitigation. (2 units)

EMGT 351. Strategic Marketing and New Product Development

New products in the strategic planning process. Developing new product criteria to meet enterprise goals. Market segmentation. Leveraging investments in new technology. (2 units)

EMGT 352. Marketing of High-Tech Products and Innovations

This course is designed to give engineers and managers a working understanding of the strategic role marketing plays in the development and promotion of high-technology products and systems. This course provides insights into the particular challenges of marketing high-tech products. Students will learn marketing frameworks and apply them to case studies as well as by creating a marketing plan for an emerging technology or business. (2 units)

EMGT 353. Introduction to Total Quality Management

The basic tenets of TQM: customer focus, continuous improvement, and total participation. Particular emphasis on using TQM to enhance new product development. (2 units)

EMGT 354. Innovation, Creativity, and Engineering Design

Research, development, the process of discovery, recognizing a need, encouraging change, assuming risks, technological feasibility, marketability, and the environment for innovation. (2 units)

EMGT 355. Accelerated Time to Market

The competitive edge, as well as market share, goes to the firm that is first to market with new products, placing pressure on the product development cycle. Addresses the steps taken to compress the product development cycle and to achieve first-to-market status. (2 units)

EMGT 356. Advanced Management of Technology

A continuation of EMGT 331. Enactment of a technology strategy including developing the firm’s innovative capabilities, and creating and implementing a development strategy. Prerequisite: EMGT 331 or instructor approval. (2 units)

EMGT 357. Root Cause Analysis (RCA) Effective Problem Solving

Solving problems is one of the main functions of engineering and one of the main concerns of engineering managers. This course will focus on a step by step problem solving approach, used by the best engineering practitioners in the world, designed to improve the efficiency and effectiveness of the problem-solving process. Topics will include proper methods of problem description, identification, correction, and containment. (2 units)

EMGT 358. Global Technology Development

Global markets present growth opportunities for both business and professionals. Approaches the development of global technology from the perspective of the engineering manager engaged as either part of a large corporate team or as an entrepreneur in small business. Topics ranging from formal methodologies to practical lessons learned from industry. (2 units)

EMGT 359. Ownership, Management, and Engineering Design

Topics of current interest in engineering and one of the main concerns of engineering managers. This course will focus on a step by step problem solving approach, used by the best engineering practitioners in the world, designed to improve the efficiency and effectiveness of the problem-solving process. Topics will include proper methods of problem description, identification, correction, and containment. (2 units)

Individual topics to be selected in concurrence with the instructor. (2 units)

EMGT 362. Topics in Engineering Management

Topics of current interest in engineering management and leadership. May be taken more than once as the topics change. (2 units)

EMGT 363. Seminar: Coaction Leadership

(2 units)

EMGT 364. Seminar: Leading for Collaborative Action

(2 units)

EMGT 365. Seminar: Self-Leadership

(2 units)
EMGT 367. Seminar: Leading Technical Professionals
(2 units)

EMGT 369. E-Commerce Technology and Strategy
Introduces e-commerce technology strategy fundamentals and then methodically classifies and examines several e-commerce models that incorporate value created for the customer, mechanisms for generating revenue and profits, economics and cost factors, growth and diversification strategies, risk factors and key strategic decisions, and tracking and sustainment. Course concepts are applied to specific case studies. (2 units)

EMGT 370. International (Global) Technology Operations
Examines methods and important issues in managing operations when customers, facilities, and suppliers are located across the globe. Topics include the global technology environment, international operations strategy and process formulation, and issues on the location and coordination of overseas facilities. These and other course topics are examined through a combination of lectures, text material, and integrated case studies. (2 units)

EMGT 373. Technology Entrepreneurship
Designed for students who are interested in starting their own venture as well as those working for a start-up company. Students will discover the process of moving from an idea to making a profit. Topics will include idea development, intellectual property, forming a team, obtaining funding, start-up logistics, executing your plan, and finding customers. Understanding the steps, risks, and pitfalls to avoid in starting a high-tech business can help in being better prepared for launching a successful technology venture. (2 units)

EMGT 376. Systems Thinking
Peter Senge’s best seller The Fifth Discipline describes “A Learning Organization.” He suggests that an organization’s ability to learn faster than the competition is the only way to sustain a competitive advantage. Systems Thinking is among the capabilities to be developed. What kind of leadership is required to make this a reality? (2 units)

EMGT 378. New Product Planning and Development
This course blends the perspectives of marketing, design, and manufacture into a single approach to product development. Students are provided with an appreciation for the realities of industrial practice and for the complex and essential roles played by members of the product development teams. For industrial practitioners, in particular, the product development methods described can be put into immediate practice on development projects. (2 units)

EMGT 380. Introduction to Systems Engineering Management
Introduces the fundamental principles and methods of systems engineering and their application to complex systems. For the engineer and project manager it provides a basic framework for planning and assessing system development. For the non-engineer it provides an overview of how a system is developed. (2 units)

EMGT 381. Managing System Conceptual Design
A continuation of EMGT 380 addressing in detail the system engineer’s responsibilities and activities in the concept development stage of the system lifecycle. Topics include needs and requirements analysis, system concept exploration and definition, and risk assessment. It concludes with a discussion of advanced development and the system engineer’s role in planning and preparing for full scale engineering development. Prerequisite: EMGT 380. (2 units)

EMGT 382. Managing System Design, Integration, Test and Evaluation
A continuation of EMGT 381 with a focus on the system engineer’s responsibilities and activities in the engineering development and post development stages of the system lifecycle. Topics include engineering design, system integration and evaluation, and the systems engineer’s role in preparing for full scale manufacturing and subsequent deployment and support. Prerequisite: EMGT 380. (2 units)

EMGT 388. System Supportability and Logistics
The supportability of a system can be defined as the ability of a system to be supported in a cost effective and timely manner, with a minimum of logistics support resources. The required resources might include test and support equipment, trained maintenance personnel, spare and repair parts, technical documentation, and special facilities. For large complex systems, supportability considerations may be significant and often have a major impact upon life-cycle cost. It is therefore particularly important that these considerations be included early during the system design trade studies and design decision-making. (2 units)

EMGT 390. System Architecture and Design
Fundamentals of system architecting and the architecting process, along with practical heuristics. The course has a strong “how-to” orientation, and numerous case studies are used to convey and discuss good architectural concepts as well as lessons learned. Adaptation of the architectural process to ensure effective application of COTS will be discussed. (2 units)

EMGT 395. Intrapreneurship – Innovation from Within
This course speaks directly to the needs of an organization seeking to create an innovative business opportunity within the existing structure of the organization. The methods from this class are widely used by the most successful innovators in start-ups as well as established companies. This class will present the differences between entrepreneurship and intrapreneurship. Innovation and creativity are key components of intrapreneurship. (2 units)
Department of Mechanical Engineering

Professor Emeriti: Michel A. Saad
Professors: M. Godfrey Mungal, Terry E. Shoup
Associate Professors: Mohammad Ayoubi, Drazen Fabris (Chair), Timothy K. Hight, Christopher Kitts, Hohyun Lee, Panthea Sepehrband
Assistant Professors: On Shun Pak, Michael Taylor
Lecturers: Robert Marks, Tony Restivo, Calvin Tszeng, Walter Yuen

OVERVIEW

The Department of Mechanical Engineering is dedicated to delivering up-to-date, high-quality courses across a broad range of the discipline to meet the needs of both part- and full-time graduate students. These courses are concentrated in five technical areas: (1) design and analysis of thermofluid systems; (2) analysis and control of dynamic systems; (3) robotics and mechatronic systems; (4) mechanical design; and (5) materials engineering. In addition students interested in space systems are referred to the Lockheed Martin-Santa Clara University program in Chapter 17. Educational efforts are channeled to expand the skills of prospective and practicing engineers not only in understanding fundamentals, but also in developing competence in analyzing engineering systems. The department offers graduate degrees at the master, engineer, and doctorate levels, as well as certificates.

MASTER OF SCIENCE PROGRAMS

An M.S. degree requires 45 units of study with an overall GPA of 3.0 or higher. The student must select one of the five concentration areas, and develop a program of studies with an advisor. Courses taken to satisfy any particular requirement may be used to simultaneously satisfy additional requirements for which they are appropriate. Master of Science degrees must include the following:

- Engineering Core requirement as described in Chapter 4 (6 units)
- Math requirement: 8 units composed of MECH 200 and 201, or MECH 202 and an approved two-course sequence or equivalent four unit course in applied math
- Topic Requirement: 12 or more units depending on concentration area
- Concentration Electives depending on the area (0–10 units)
- Culminating experience: 4–9 units towards a thesis, capstone project, or project course sequence
Culminating experience options depend on the concentration area. A thesis requires a faculty advisor and must be approved by an additional reader and the department chair. Thesis topics are to be determined by the student and faculty advisor, who need not be the concentration advisor. The additional reader need not be a Mechanical faculty member, but must be a full-time faculty member in the School of Engineering.

The student may take any additional graduate courses offered by the School of Engineering to meet the 45-unit requirement but no more than six units of Engineering Management courses may be taken.

Dynamics and Controls

Advisors: Dr. Mohammad Ayoubi, Dr. Christopher Kitts

Math requirement (8 units): MECH 200 and 201, or MECH 202 and approved two-course sequence or equivalent four unit course in Applied Math. Optimization techniques, numerical methods, probability, or linear algebra are recommended.

Required Courses
- MECH 214, 215 Advanced Dynamics I, II (4 units)
- MECH 305, 306 Advanced Vibrations I, II (4 units)
- MECH 323, 324 Modern Control Systems I, II (4 units)

Elective Courses (8 units required)
- MECH 205, 206 Aircraft Flight Dynamics I, II (4 units)
- MECH 221, 222 Orbital Mechanics I, II (4 units)
- MECH 232, 233 Multi-body Dynamics I, II (4 units)
- MECH 329 Introduction to Intelligent Control (2 units)
- MECH 337, 338 Robotics I, II (4 units)
- MECH 355, 356 Adaptive Control I, II (4 units)
- MECH 423 and 424 Nonlinear Systems and Control I, II (4 units)
- MECH 429 and 430 Optimal Control I and II (4 units)
- MECH 431 and 432 Spacecraft Dynamics I, II (4 units)

Culminating experience: Thesis optional, counts towards concentration electives (4–9 units).

Materials Engineering

Advisor: Dr. Panthea Sepehrband

Math requirement (8 units): MECH 200 and 201, or MECH 202 and approved two-course sequence or equivalent four unit course in Applied Math.

Required Courses
- MECH 256 Introduction to Biomaterials (2 units)
- MECH 281 Fracture Mechanics and Fatigue (2 units)
- MECH 330 Atomic Arrangement, Defects, and Mechanical Behavior (2 units)
- MECH 331 Phase Equilibria and Transformations (2 units)
- MECH 332 Electronic Structure and Properties (2 units)
- MECH 333 Experiments in Materials Science (2 units)
- MECH 334 Elasticity (2 units)
- MECH 345 Modern Instrumentation and Experimentation (2 units)

Recommended Courses
- AMTH 210 Introduction to Probability I and
- AMTH 211 Continuous Probability (2 units)
- AMTH 217 Design of Scientific Experiments (2 units) and
- AMTH 219 Analysis of Scientific Experiments (2 units)
- AMTH 218 Process Troubleshooting and Control (2 units)
- CENG 205, 206, and 207 Finite Element Methods I, II, and III (2 units each)
- CENG 211 Advanced Strength of Materials (4 units)
- ELEN 271 Microsensors: Components and Systems (2 units)
- ELEN 274 and 275 Integrated Circuit Fabrication Processes I and II (2 units each)
- ELEN 276 Integrated Circuits Devices and Technology (2 units)
- ELEN 277 IC Assembly and Packaging Technology (2 units)
- ELEN 390 Semiconductor Device Technology Reliability (2 units)
- MECH 273 Designing with Plastic Materials (2 units)
- MECH 274 Processing Plastic Materials (2 units)
- MECH 277 Injection Mold Tool Design (2 units)
- MECH 350 and 351 Composite Materials I and II (2 units each)

Culminating experience: Thesis (4–9 units), or MECH 333B, or MECH 346.

Mechanical Design

Advisors: Dr. Tim Hight, Dr. Terry Shoup, Dr. Tony Restivo

Math requirement (8 units): MECH 200 and 201, or MECH 202 and approved two-course sequence or equivalent four unit course in Applied Math.

Required Courses
- CENG 205, 206, and 207 Finite Element Methods I, II, and III (2 units each)
- MECH 275 Design for Competitiveness (2 units)
- MECH 285 Computer-Aided Design of Mechanisms (2 units)
- MECH 325 Computational Geometry for Computer-Aided Design and Manufacture (2 units)
- MECH 334 Elasticity (2 units)
- MECH 415 Optimization in Mechanical Design (2 units)
Recommended Courses
• MECH 207, 208, and 209 Advanced Mechatronics I, II, and III (3 units each)
• MECH 273 and 274 Designing with Plastic Materials and Processing Plastic Materials (2 units each)
• MECH 281 Fracture Mechanics and Fatigue I (2 units)
• MECH 330 Atomic Arrangement, Defects, and Mechanical Behavior (2 units)
• MECH 331 Phase Equilibria and Transformations (2 units)
• MECH 332 Electronic Structure and Properties (2 units)
• MECH 371 and 372 Space Systems Design and Engineering I and II (4 units each)
Culminating experience: Thesis (4–9 units) or MECH 275B.

Robotics and Mechatronic Systems
Advisor: Dr. Chris Kitts

Math requirement (8 units): MECH 200 and 201, or MECH 202 and approved two-course sequence or equivalent four unit course in Applied Math.

Required Courses
• MECH 207 and 208 Advanced Mechatronics I, II (3 units each)
• MECH 337 and 338 Robotics I, II (2 units each)
The student must also choose one of the following two-course sequences:
• MECH 218 and 219 Guidance and Control I, II (2 units each)
• MECH 323 and 324 Modern Control System I, II (2 units each)
Elective Courses (8 units required)
• MECH 209 Advanced Mechatronics III (2 units)
• MECH 218 Guidance and Control I (2 units)
• MECH 219 Guidance and Control II (2 units)
• MECH 275 Design for Competitiveness (2 units)
• MECH 311 Modeling and Control of Telerobotic Systems (4 units)
• MECH 315 Advanced Digital Control Systems I (2 units)
• MECH 316 Advanced Digital Control Systems II (2 units)
• MECH 323 Modern Control System Design I (2 units)
• MECH 324 Modern Control System Design II (2 units)
• MECH 329 Introduction to Intelligent Control (2 units)
• MECH 339 Robotics III (2 units)
• MECH 345 Modern Instrumentation and Experimentation (2 units)
Culminating experience: Thesis (4–9 units) or Capstone (4–6 units).

Thermofluids
Advisor: Dr. Drazen Fabris, Dr. Hohyun Lee, Dr. On Shun Pak

Math requirement (8 units): MECH 200 and 201, or MECH 202 and approved two-course sequence or equivalent four unit course in Applied Math.

Required Courses
• MECH 228 Equilibrium Thermodynamics (2 units)
• MECH 236 Conduction Heat Transfer (2 units)
• MECH 238 Convective Heat and Mass Transfer I (2 units)
• MECH 240 Radiation Heat Transfer I (2 units)
• MECH 266 Fundamentals of Fluid Mechanics (2 units)
• MECH 270 Viscous Flow I (2 units)
Elective Courses (8 units required)
• MECH 225 Gas Dynamics I (2 units)
• MECH 226 Gas Dynamics II (2 units)
• MECH 230 Statistical Thermodynamics (2 units)
• MECH 239 Convective Heat and Mass Transfer II (2 units)
• MECH 241 Radiation Heat Transfer II (2 units)
• MECH 242 Nanoscale Heat Transfer (2 units)
• MECH 268 Computational Fluid Dynamics I (2 units)
• MECH 269 Computational Fluid Dynamics II (2 units)
• MECH 271 Viscous Flow II (2 units)
• MECH 288 Energy Conversion I (2 units)
• MECH 345 Modern Instrumentation and Control (2 units)
Culminating experience: Thesis (4–9 units), or MECH 345 and MECH 346.

DOCTOR OF PHILOSOPHY PROGRAM

The doctor of philosophy degree is conferred by the School of Engineering in recognition of competence in the subject field and the ability to investigate engineering problems independently, resulting in a new contribution to knowledge in the field.

See the section on Academic Regulations for details on admission and general degree requirements. The following departmental information augments the general School requirements.

Academic Advisor

A temporary academic advisor will be provided to the student upon admission. The student and advisor must meet prior to registration for the second quarter to complete a preliminary program of studies, which will be determined largely by the coursework needed for the preliminary exam.
Preliminary Exam

A preliminary written exam is offered at least once per year by the School of Engineering as needed. The purpose is to ascertain the depth and breadth of the student’s preparation and suitability for Ph.D. work. Each student in mechanical engineering must take and pass an exam in mathematics as well as in four areas from the following list: Fluid Mechanics, Heat Transfer, Strength of Materials, Dynamics, Design, Controls, Vibrations, Finite Element Analysis, Material Science, and Thermodynamics. The advisor must approve the student’s petition to take the exam. This exam should be taken within one year of starting the program.

Doctoral Committee

After passing the Ph.D. preliminary exam, a student requests his or her thesis advisor to form a doctoral committee. The committee consists of at least five members, each of which must have earned a doctoral degree in a field of engineering or a related discipline. This includes the student’s thesis advisor, at least two other current faculty members of the student’s major department at Santa Clara University, and at least one current faculty member from another appropriate academic department at Santa Clara University. The committee reviews the student’s program of study, conducts an oral comprehensive exam, conducts the dissertation defense, and reviews the thesis. Successful completion of the doctoral program requires that the student’s program of study, performance on the oral comprehensive examination, dissertation defense, and thesis itself meet with the approval of all committee members.

Time Limit for Completing Degree

All requirements for the doctoral degree must be completed within eight years following initial enrollment in the Ph.D. program. Extensions will be allowed in usual circumstances and must be recommended in writing by the student’s doctoral committee and approved by the dean of engineering in consultation with the Graduate Program Leadership Council.

ENGINEER’S DEGREE PROGRAM

The Department of Mechanical Engineering offers an engineer’s degree program. Details on admissions and requirements are shown in the Academic Regulations section. Students interested in this program should seek individual advice from the department chair prior to applying.

CERTIFICATE PROGRAMS

Controls

Objective

The Controls Certificate is intended for working engineers in mechanical and closely related fields of engineering. The certificate will provide a foundation in contemporary control theory and methods. The Controls Certificate covers classical and modern control systems and analysis. Specialization in digital control, mechatronics, robotics, or aerospace applications is possible with a suitable choice of electives. Completion of the certificate will allow the student to design and analyze modern control systems. Admission

Applicants must have completed an accredited bachelor’s degree program in mechanical or a closely related field of engineering. They are expected to have prior coursework in undergraduate mathematics. No prior control courses are required.

Program Requirements

Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (8 units)

- MECH 217 Introduction to Control (2 units)
- MECH 218 Guidance and Control I (2 units)
- MECH 323 Modern Control Systems I (2 units)
- MECH 324 Modern Control Systems II (2 units)

Elective Courses (8 units)

- MECH 429, 430 Optimal Control I, II (2 units each)
- MECH 355, 356 Adaptive Control I, II (2 units each)

Dynamics

Objective

The Dynamics Certificate is intended for working engineers in mechanical and related fields of engineering. The certificate will provide a fundamental and broad background in engineering dynamics. The Dynamics Certificate includes a strong foundational base in dynamics and applications in optimization, robotics, mechatronics, or dynamics of aircraft or spacecraft (depending on the chosen elective courses). Completion of the certificate will allow the student to formulate and solve the complex dynamics problems that arise in such fields as robotics and space flight.

Admission

Applicants must have completed an accredited bachelor’s degree program in mechanical or a closely related field of engineering. They are expected to have prior coursework in undergraduate dynamics and mathematics.

Program Requirements

Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (8 units)

- MECH 214, 215 Advanced Dynamics I, II (2 units each)
- MECH 305, 306 Advanced Vibrations I, II (2 units each)

Elective Courses

- MECH 420, 430 Optimal Control I, II (2 units each)
- MECH 355, 356 Adaptive Control I, II (2 units each)
Materials Engineering

Objective
The Materials Engineering Certificate is intended for working engineers in mechanical, materials, or manufacturing engineering. The certificate will provide either an upgrade in materials understanding, or advanced study in a particular aspect of the subject. Completion of the certificate will allow the student to develop a deeper understanding of materials and their applications in design and manufacturing.

Admission
Applicants must have completed an accredited bachelor’s degree program in mechanical or a related engineering discipline. They are expected to have prior coursework in basic materials science and strength of materials.

Program Requirements
Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (12 units)
- MECH 281 Fracture Mechanics and Fatigue (2 units)
- MECH 330 Atomic Arrangements, Defects, and Mechanical Behavior (2 units)
- MECH 331 Phase Equilibria and Transformations (2 units)
- MECH 332 Electronic Structure and Properties (2 units)
- MECH 333 Experiments in Materials Science (2 units)
- MECH 345 Modern Instrumentation and Control (2 units)

Elective Courses (4 units)
- AMTH 210 Introduction to Probability I and AMTH 211 Continuous probability (2 units each)
- AMTH 217 Design of Scientific Experiments and AMTH 219 Analysis of Scientific Experiments (2 units each)
- CENG 211 Advanced Strength of Materials (4 units)
- ENGR 260 Nanoscale Science and Technology (2 units)
- ENGR 262 Nanomaterials (2 units)
- MECH 273 Designing with Plastic Materials (2 units)
- MECH 274 Processing Plastic Materials (2 units)
- MECH 277 Injection Mold Tool Design (2 units)
- MECH 334 Elasticity (2 units)
- MECH 350 and 351 Composite Materials I and II (2 units each)

Mechanical Design Analysis

Objective
The Mechanical Design Analysis Certificate is intended for working engineers in mechanical or structural engineering. The certificate will provide a succinct upgrade in knowledge and skills that will allow the student to gain a deeper understanding of CAD and FEA principles and practices. Completion of the certificate will allow the student to pursue more advanced design and analysis tasks.

Admission
Applicants must have completed an accredited bachelor’s degree program in mechanical, civil, aerospace, or related field. They are expected to have prior coursework in strength of materials, thermodynamics, fluid mechanics, and mathematics through differential equations.

Program Requirements
Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (12 units)
- CENG 205 Finite Element Methods I (2 units)
- CENG 206 Finite Element Methods II (2 units)
- CENG 207 Finite Element Methods III (2 units)
- MECH 325 Computational Geometry for Computer-Aided Design and Manufacture (2 units)
- MECH 334 Elasticity (2 units)
- MECH 415 Optimization in Mechanical Design (2 units)

Elective Courses (4 units)
- AMTH 220 Numerical Analysis I (2 units)
- AMTH 221 Numerical Analysis II (2 units)
- AMTH 308 Mathematical Modeling I (2 units)
- AMTH 309 Mathematical Modeling II (2 units)
- AMTH 370 Optimization Techniques I (2 units)
- AMTH 371 Optimization Techniques II (2 units)
- CENG 211 Advanced Strength of Materials (4 units)
- CENG 214 Theory of Elasticity (4 units)
- CENG 222 Advanced Structural Analysis (4 units)
- MECH 268 Computational Fluid Mechanics I (2 units)
- MECH 269 Computational Fluid Mechanics II (2 units)

Mechatronics Systems Engineering

Objective
The Mechatronics Systems Engineering Certificate is intended for working engineers in mechanical engineering and related fields. The certificate program introduces students to the primary technologies, analysis techniques, and implementation methodologies relevant to the detailed design of electro-mechanical devices. Completion of the certificate will allow the student to develop systems that involve the sensing, actuation and control of the physical world. Knowledge such as this is vital to engineers in the modern aerospace, robotics and motion control industries.

Admission
Applicants must have completed an accredited bachelor’s degree program in mechanical, aerospace, electrical, engineering physics, or a related field. They are expected to have prior coursework in mathematics through differential equations, introductory linear control theory, and introductory electronics and programming.
Program Requirements

Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (8 units)
- MECH 207 Advanced Mechatronics I (3 units)
- MECH 208 Advanced Mechatronics II (3 units)
- MECH 209 Advanced Mechatronics III (3 units)
- MECH 217 Introduction to Control (2 units)

Elective Courses (8 units)
- MECH 218 Guidance and Control I (2 units)
- MECH 219 Guidance and Control II (2 units)
- MECH 275 Design for Competitiveness (2 units)
- MECH 310 Advanced Mechatronics IV (2 units)
- MECH 311 Modeling and Control of Telerobotic Systems (4 units)
- MECH 316 Digital Control Systems II (2 units)
- MECH 323 Modern Control Systems I (2 units)
- MECH 324 Modern Control Systems II (2 units)
- MECH 329 Intelligent Control (2 units)
- MECH 337 Robotics I (2 units)
- MECH 338 Robotics II (2 units)
- MECH 339 Robotics III (2 units)
- MECH 345 Modern Instrumentation (2 units)

An independent study or Capstone project would be suitable as one of the electives. In addition, other courses may serve as electives at the discretion of the program advisor.

Thermofluids

Objective

The Thermofluids Certificate is intended for working engineers in mechanical, chemical, or a closely related field of engineering. The certificate will provide fundamental theoretical and analytic background, as well as exposure to modern topics and applications. Specialization in fluid mechanics, thermodynamics, or heat transfer is possible with suitable choice of electives. Completion of the certificate will allow the student to design heat transfer and fluid solutions for a range of modern applications.

Admission

Applicants must have completed an accredited bachelor’s degree program in mechanical or a closely related field of engineering. They are expected to have prior undergraduate coursework in fluid mechanics, thermodynamics, and heat transfer.

Program Requirements

Students must complete a total of 16 units as described below, with a minimum GPA of 3.0 and a grade of C or better in each course.

Required Courses (12 units)
- MECH 228 Equilibrium Thermodynamics (2 units)
- MECH 236 Conduction Heat Transfer (2 units)
- MECH 238 Convective Heat Transfer I (2 units)
- MECH 240 Radiation Heat Transfer I (2 units)
- MECH 266 Fundamentals of Fluid Mechanics (2 units)
- MECH 270 Viscous Flow I (2 units)

Elective Courses (4 units)
- MECH 202 Mathematical Methods in Mechanical Engineering (4 units)
- MECH 225 Gas Dynamics I (2 units)
- MECH 226 Gas Dynamics II (2 units)
- MECH 230 Statistical Thermodynamics (2 units)
- MECH 239 Convective Heat Transfer II (2 units)
- MECH 241 Radiation Heat Transfer II (2 units)
- MECH 242 Nanoscale Heat Transfer (2 units)
- MECH 268 Computational Fluid Mechanics I (2 units)
- MECH 269 Computational Fluid Mechanics II (2 units)
- MECH 271 Viscous Flow II (2 units)
- MECH 288 Energy Conversion I (2 units)
- MECH 289 Energy Conversion II (2 units)
- MECH 345 Modern Instrumentation (2 units)

MECHANICAL ENGINEERING LABORATORIES

The mechanical engineering laboratories contain facilities for instruction and research in the fields of manufacturing, materials science, fluid mechanics, thermodynamics, heat and mass transfer, combustion, instrumentation, vibration and control systems, and robotic systems.

The Robotic Systems Laboratory is an interdisciplinary laboratory specializing in the design, control, and teleoperation of highly capable robotic systems for scientific discovery, technology validation, and engineering education. Laboratory students develop and operate systems that include spacecraft, underwater robots, aircraft, and land rovers. These projects serve as ideal testbeds for learning and conducting research in mechatronic system design, guidance and navigation, command and control systems, and human-machine interfaces.

The 2013 Solar Decathlon House is highly instrumented testbed for study of photovoltaic and solar thermal systems, as well as general home control systems. Projects include development of a carbon meter, investigation of the impact of micro-inverters on performance, and control of a solar thermal driven vapor absorption chiller.

The Micro Scale Heat Transfer Laboratory (MSHTL) develops state-of-the-art experimentation in processes such as micro-boiling, spray cooling, and laser induced fluorescence thermometry. Today, trends indicate that these processes are finding interesting applications on drop-on-demand delivery systems, ink-jet technology, and fast transient systems (such as combustion or microseconds scale boiling).
The CAM and Prototyping Laboratory consists of two machine shops and a prototyping area. One machine shop is dedicated to student use for University-directed design and research projects. The second is a teaching lab used for undergraduate and graduate instruction. Both are equipped with modern machine tools, such as lathes and milling machines. The milling machines all have two-axis computer numerically controlled (CNC) capability. The teaching lab also houses both a three-axis CNC vertical milling center (VMC) and a CNC lathe. Commercial CAM software is available to aid programming of the computer controlled equipment. The prototyping area is equipped with a rapid prototyping system that utilizes fused deposition modeling (FDM) to create plastic prototypes from CAD-generated models. Also featured in this area is a Laser CAMM CNC laser cutting system for nonmetallic materials.

The Fluid Dynamics/Thermal Science Laboratory contains equipment to illustrate the principles of fluid flow and heat transfer and to familiarize students with hydraulic machines, refrigeration cycles, and their instrumentation. The lab also contains a subsonic wind tunnel equipped with an axial flow fan with adjustable pitch blades to study aerodynamics. Research tools include modern nonintrusive flow measurement systems.

The Heat Transfer Laboratory contains equipment to describe three modes of heat transfer. The temperature measurement of the extended surface system allows students to learn steady state conduction, and the pyrometer enables measurement of emitted power by radiation. The training systems for heat exchanger and refrigeration system are also placed in the lab.

The Instrumentation Laboratory contains seven computer stations equipped with state-of-the-art, PC-based data acquisition hardware and software systems. A variety of transducers and test experiments for making mechanical, thermal, and fluid measurements are part of this lab.

The Materials Laboratory contains equipment for metallography and optical examination of the microstructure of materials as well as instruments for mechanical properties characterization including tension, compression, hardness, and impact testing. The Materials Laboratory also has a tube furnace for heat treating and a specialized bell-jar furnace for pour casting and suction casting of metallic glasses and novel alloy compositions.

The Vibrations and Control Systems Laboratory is equipped with two flexible test systems. One is capable of single or multi degree of freedom modes, free or forced motion, and adjustable damping. The other is an inverted pendulum. Both systems can be controlled by a wide variety of control algorithms and are fully computer connected for data acquisition and control.

COURSE DESCRIPTIONS

Lower-Division Undergraduate Courses

MECH 10. Graphical Communication in Design
Introduction to the design process and graphical communications tools used by engineers. Documentation of design through freehand sketching and engineering drawings. Basic descriptive geometry. Computer-aided design as a design tool. Conceptual design projects presented in poster format. **Co-requisite:** MECH 10L. (4 units)

MECH 10E. Laboratory for MECH 10
Co-requisite: MECH 10. (1 unit)

MECH 11. Materials and Manufacturing Processes
Manufacturing processes and their use in the production of mechanical components from metals and plastics. **Prerequisites:** MECH 10 and 15. (4 units)

MECH 15. Introduction to Materials Science
Physical basis of the electrical, mechanical, optical, and thermal behavior of solids. Relations between atomic structure and physical properties. **Prerequisite:** CHEM 11. **Co-requisite:** MECH 15L. (4 units)

MECH 15L. Laboratory for MECH 15
The laboratory reinforces the lecture component through hands-on experience with materials testing and analysis. Potential experiments include hardness testing, metallography, galvanic corrosion, and stress-strain measurements. **Co-requisite:** MECH 15. (1 unit)

MECH 101L. Machining Lab
Practical experience with machine tools such as mills, lathes, band saws, etc. Basic training in safe and proper use of the equipment associated with simple mechanical projects. **Laboratory:** P/NP grading. **Prerequisite:** Senior standing. **Co-requisite:** MECH 194. (1 unit)

MECH 102. Introduction to Mathematical Methods in Mechanical Engineering
The application of mathematical methods to the solution of practical engineering problems. A review of fundamental mathematical methods and calculus of a single variable, multivariable calculus, ordinary differential equations, numerical methods, and basics of linear algebra. (4 units)

MECH 114. Machine Design I
Analysis and design of mechanical systems for safe operation. Stress and deflection analysis. Failure theories for static loading and fatigue failure criteria. Team design projects begun. Formal conceptual design reports required. **Prerequisites:** MECH 15, CENG 41, and CENG 43. (4 units)

MECH 115. Machine Design II
Continuation of MECH 114. Treatment of basic machine elements (e.g., bolts, springs, gears, bearings). Design and analysis of machine elements for static and fatigue loading. Team design project completed. Design prototypes and formal final report required. **Prerequisite:** MECH 114. (4 units)

MECH 120. Engineering Mathematics
Review of ordinary differential equations (ODEs) and Laplace transform, vector calculus, linear algebra, orthogonal functions and Fourier series, partial differential equations (PDEs), and introduction to numerical solution of ODEs. (4 units)

MECH 121. Thermodynamics
Definitions of work, heat, and energy. First and second laws of thermodynamics. Properties of pure substances. Application to fixed mass systems and control volumes. Irreversibility and availability. **Prerequisite:** PHYS 32. (4 units)
MECH 122. Fluid Mechanics
Fluid properties and definitions. Fluid statics, forces on submerged surfaces, manometry. Streamlines and the description of flow fields. Euler’s and Bernoulli’s equations. Mass, momentum, and energy analysis with a control volume. Laminar and turbulent flows. Losses in pipes and ducts. Dimensional analysis and similitude. Prerequisite: CENG 42 or MECH 140 (can be taken concurrently). Co-requisite: MECH 122L. (4 units)

MECH 122L. Laboratory for MECH 122
Experiments designed to the principles of fluid flow, industrial measurement techniques, and aerodynamics. Use of modern data acquisition and writing of formal lab reports. Co-requisite: MECH 122. (1 unit)

MECH 123. Heat Transfer
Introduction to the concepts of conduction, convection, and radiation heat transfer. Application of these concepts to engineering problems. Prerequisites: MECH 121 and 122, AMTH 118 or MATH 166. Co-requisite: MECH 123L. (4 units)

MECH 123L. Laboratory for MECH 123
Laboratory work to understand concept of heat transfer. Practical experience with temperature and heat flux measurement. Co-requisite: MECH 123. (1 unit)

MECH 125. Thermal Systems Design
Analysis, design, and simulation of fluids and thermal engineering systems. Application of optimization techniques, life cycle and sustainability concepts in these systems. Prerequisite: MECH 123. (4 units)

MECH 132. Aerodynamics
Introduction to gas dynamics. Concepts of lift and drag. Mechanics of laminar and turbulent flow. Introduction to boundary-layer theory. Application to selected topics in lubrication theory, aerodynamics, turbo- machinery, and pipe networks. Offered every other year. Prerequisites: MECH 121 and 122. (4 units)

MECH 140. Dynamics
Kinematics of particles in rectilinear and curvilinear motion. Kinetics of particles, Newton’s second law, energy and momentum methods. Systems of particles. Kinematics and plane motion of rigid bodies, forces and accelerations, energy and momentum methods. Introduction to three-dimensional dynamics of rigid bodies. Prerequisites: PHYS 31, CENG 41, AMTH 106, and MECH 10. (4 units)

MECH 141. Mechanical Vibrations

MECH 141L. Laboratory for MECH 141
Dynamics and vibration experiments. The dynamics experiments include measuring moment-of-inertia of different planar shapes and gyroscopic effect. The vibration experiments include measuring spring constant, damping coefficient, and study of the behavior of overdamped, critical damped, and underdamped systems. Co-requisite: MECH 141. (1 unit)

MECH 142. Control Systems, Analysis, and Design
Introduction to system theory, transfer functions, and state space modeling of physical systems. Course topics include stability, analysis and design of PID, lead/ lag, other forms of controllers in time and frequency domains, root locus Bode diagrams, gain and phase margins. Prerequisite: MECH 141. Co-requisite: MECH 142L. (4 units)

MECH 142L. Laboratory for MECH 142
Employs the use of simulation and experimental exercises that allow the student to explore the design and performance of feedback control systems. Exercises include the modeling and analysis of physical systems, the design of feedback controllers, and the quantitative characterization of the performance of the resulting closed-loop systems. Co-requisite: MECH 142. (1 unit)

MECH 143. Mechatronics
Introduction to behavior, design, and integration of electromechanical components and systems. Review of appropriate electronic components/circuitry, mechanism configurations, and programming constructs. Use and integration of transducers, microcontrollers, and actuators. Also listed as ELEN 123. Prerequisite: ELEN 50. Co-requisite: MECH 143L. (4 units)

MECH 143L. Laboratory for MECH 143
Co-requisite MECH 143. (1 unit)

MECH 144. Smart Product Design
Design of innovative smart electromechanical devices and products. Topics include a review of the basics of mechanical, electrical, and software design and prototyping, and will emphasize the synthesis of functional systems that solve a customer need, that are developed in a team-based environment, and that are informed by the use of methodologies from the fields of systems engineering, concurrent design, and project/business management. Designs will be developed in the context of a cost-constrained business environment, and principles of accounting, marketing, and supply chain are addressed. Societal impacts of technical products and services are reviewed. Enrollment is controlled in order to have a class with students from diverse majors. Offered every other year. Prerequisite: Core Foundation-level natural science and mathematics, or equivalent and instructor approval. (4 units)

MECH 144L. Laboratory for MECH 144
Co-requisite: MECH 144. (1 unit)

MECH 145. Introduction to Aerospace Engineering
Basic design and analysis of atmospheric flight vehicles. Principles of aerodynamics, propulsion, structures and materials, flight dynamics, stability and control, mission analysis, and performance estimation. Introduction to orbital dynamics. Offered every other year. Prerequisites: MECH 122 and 140. Co-requisite: MECH 121. (4 units)

MECH 146. Mechanism Design
Kinematic analysis and synthesis of planar mechanisms. Graphical synthesis of linkages and cams. Graphical and analytical techniques for the displacement, velocity, and acceleration analysis of mechanisms. Computer-aided design of mechanisms. Three or four individual mechanism design projects. Offered every other year. Prerequisite: MECH 114. (4 units)

MECH 151. Finite Element Theory and Applications
Basic introduction to finite elements; direct and variational basis for the governing equations; elements and interpolating functions. Applications to general field problems—elasticity, fluid mechanics, and heat transfer. Extensive use of software packages. Offered every other year. Prerequisite: COEN 44 or 45 and AMTH 106. (4 units)

MECH 152. Composite Materials
Analysis of composite materials and structures. Calculation of properties and failure of composite laminates. Manufacturing considerations and design of simple composite structures. Knowledge of MATLAB or equivalent programming environment is required. Prerequisites: MECH 15, CENG 43, and COEN 44 or COEN 45. (4 units)
MECH 153. Aerospace Structures
This introductory course presents the application of fundamental theories of elasticity and stress analysis to aerospace structures. Course topics include fundamentals of elasticity, virtual work and matrix methods, bending and buckling of thin plates, component load analysis, and airframe loads, torsion, shear, and bending of thin-walled sections. Prerequisites: CENG 43 and 43L. (4 units)

MECH 155. Astrodynamics
This course provides the foundations of basic gravitation and orbital theory. Topics include gravitation and the two-body problem, position and time, orbit determination, Laplace and Gibbs methods, basic orbital maneuvers, lunar trajectories, and rocket dynamics. Prerequisite: MECH 140. (4 units)

MECH 156. Introduction to Nanotechnology
Introduction to the field of nanoscience and nanotechnology. Properties of nanomaterials and devices. Nanoelectronics: from silicon and beyond. Measurements of nanosystems. Applications and implications. Laboratory experience is an integral part of the course. This course is part of the Mechanical Engineering Program and should be suitable for juniors and seniors in engineering and first-year graduate students. Also listed as ELEN 156. Prerequisites: PHYS 33 and either PHYS 34 or MECH 15. Co-requisite: MECH 156L. (4 units)

MECH 156L. Laboratory for MECH 156
Co-requisite: MECH 156. (1 unit)

MECH 158. Aerospace Propulsion Systems

MECH 160. Modern Instrumentation for Engineers
Introduction to engineering instrumentation, computer data acquisition hardware and software, sampling theory, statistics, and error analysis. Laboratory work spans the disciplines of mechanical engineering: dynamics, fluids, heat transfer, controls, with an emphasis on report writing and experimental design. Prerequisites: MECH 123 and 141. Co-requisite: MECH 160L. (4 units)

MECH 160L. Laboratory for MECH 160
Laboratory work spans the disciplines of mechanical engineering: dynamics, controls, fluids, heat transfer, and thermodynamics, with emphasis on report writing. Students will design their own experiment and learn how to set up instrumentation using computer data acquisition hardware and software. Co-requisite: MECH 160. (1 unit)

MECH 179. Satellite Operations Laboratory
This laboratory course reviews the physical principles and control techniques appropriate to communicating with, commanding and monitoring spacecraft. Students learn to operate real satellite tracking, commanding and telemetry systems and to perform spacecraft-specific operations using approved procedures. Given the operational status of the system, students may conduct these operations on orbiting NASA spacecraft and interact with NASA scientists and engineers as part of operations process. Prerequisite: Instructor approval. (1 unit)

MECH 188. Co-op Education
Practical experience in a planned program designed to give students work experience related to their academic field of study and career objectives. Satisfactory completion of the assignment includes preparation of a summary report on co-op activities. P/NP grading. May be taken for graduate credit. (2 units)

MECH 189. Co-op Technical Report
Credit given for a technical report on a specific activity such as a design or research project, etc., after completing the co-op assignment. Approval of department co-op advisor required. Letter grades based on content and presentation quality of report. May be taken twice. May be taken for graduate credit. (2 units)

MECH 191. Senior Design Manufacturing
Laboratory course that provides supervised evening access to the machine shop and/or light fabrication area for qualified mechanical engineering students to work on their University-directed projects. Students wishing to utilize the machine shop or light fabrication during the evening shop hours are required to enroll. Enrollment in any section allows students to attend any/all evening shop hours on a drop-in basis. Staff or faculty will be present during each scheduled meeting to supervise as well as be available for consultation and manufacturing advising. P/NP Grading. Prerequisites: Students must be qualified for machine shop use through successful completion of MECH 101L and passing grade on the Mechanical Engineering Lab Safety Test. Qualifications for light fabrication area use: successful completion of the Light Fabrication Training Seminar and a passing grade on the Mechanical Engineering Lab Safety Test. (1 unit)

MECH 194. Advanced Design I: Tools
Design tools basic to all aspects of mechanical engineering, including design methodology, computer-design tools, CAD, finite element method, simulation, engineering economics, and decision making. Senior design projects begun. Prerequisite: MECH 115. (3 units)

MECH 195. Advanced Design II: Implementation
Implementation of design strategy. Detail design and fabrication of senior design projects. Quality control, testing and evaluation, standards and specifications, and human factors. Prerequisite: MECH 194. (4 units)

MECH 196. Advanced Design III: Completion and Evaluation
Design projects completed, assembled, tested, evaluated, and judged with opportunities for detailed re-evaluation by the designers. Formal public presentation of results. Final written report required. Prerequisite: MECH 195. (3 units)

MECH 198. Individual Study
By arrangement with faculty. (1–5 units)

MECH 199. Directed Research/Reading
Investigation of an engineering problem and writing an acceptable thesis. Conferences as required. Prerequisite: Senior standing. (2–4 units)

Graduate Courses

MECH 200. Advanced Engineering Mathematics I
Method of solution of the first, second, and higher order differential equations (ODEs). Integral transforms including Laplace transforms, Fourier series and Fourier transforms. Cross-listed with AMTH 200. Prerequisite: AMTH 106 or equivalent. (2 units)

MECH 201. Advanced Engineering Mathematics II
Method of solution of partial differential equations (PDEs) including separation of variables, Fourier series and Laplace transforms. Introduction to calculus of variations. Selected topics from vector analysis and linear algebra. Cross-listed with AMTH 201. Prerequisite: AMTH/MECH 200. (2 units)
MECH 202. Advanced Engineering Mathematics I and II
Method of solution of the first, second, and higher order ordinary differential equations, Laplace transforms, Fourier series, and Laplace transforms. Selected topics from vector analysis, linear algebra, and calculus of variations. Also listed as AMTH 202. (4 units)

MECH 205. Aircraft Flight Dynamics I
Review of basic aerodynamics and propulsion. Aircraft performance, including equations of flight in vertical plane, gliding, and climbing flight, range and endurance, turning flight, takeoff and landing. Prerequisite: MECH 140. (2 units)

MECH 206. Aircraft Flight Dynamics II
Developing a nonlinear six-degrees-of-freedom aircraft model, longitudinal and lateral static stability and trim, linearized longitudinal dynamics including short period and phugoid modes. Linearized lateral-directional dynamics including roll, spiral, and Dutch roll modes. Aircraft handling qualities and introduction to flight control systems. Prerequisite: MECH 140 or MECH 205. (2 units)

MECH 207. Advanced Mechatronics I
Theory of operation, analysis, and implementation of fundamental physical and electrical device components: basic circuit elements, transistors, op-amps, sensors, electro-mechanical actuators. Application to the development of simple devices. Also listed as ELEN 460. Prerequisite: MECH 141 or ELEN 100. (3 units)

MECH 208. Advanced Mechatronics II
Theory of operation, analysis, and implementation of fundamental controller implementations: analog computers, digital state machines, microcontrollers. Application to the development of closed-loop control systems. Also listed as ELEN 461. Prerequisites: MECH 207 and 217. (3 units)

MECH 209. Advanced Mechatronics III
Electro-mechanical modeling and system development. Introduction to mechatronic support subsystems: power, communication, fabrication techniques. Functional implementation of hybrid systems involving dynamic control and command logic. Also listed as ELEN 462. Prerequisite: MECH 208. (2 units)

MECH 214. Advanced Dynamics I

MECH 215. Advanced Dynamics II
Generalized active forces. Contributing and noncontributing interaction forces. Generalized inertia forces. Relationship between generalized active forces and potential energy; generalized inertia forces and kinetic energy. Prerequisite: MECH 214. (2 units)

MECH 217. Introduction to Control
Laplace transforms, block diagrams, modeling of control system components and kinematics and dynamics of control systems, and compensation. Frequency domain techniques, such as root-locus, gain-phase, Nyquist and Nichols diagrams used to analyze control systems applications. Prerequisite: AMTH 106. (2 units)

MECH 218. Guidance and Control I
Modern and classical concepts for synthesis and analysis of guidance and control systems. Frequency and time domain methods for both continuous-time and sampled data systems. Compensation techniques for continuous-time and discrete-time control systems. Prerequisite: MECH 217, 142, or instructor approval. (2 units)

MECH 219. Guidance and Control II
Continuation of MECH 218. Design and synthesis of digital and continuous-time control systems. Nonlinear control system design using phase plane and describing functions. Relay and modulator controllers. Prerequisite: MECH 218. (2 units)

MECH 220. Orbital Mechanics I
This course provides the foundations of basic gravitation and orbital theory. Topics include the two-body problem, three-body problem, Lagrangian points, orbital position as a function of time, orbits in space and classical orbital elements, launch window, and calculating launch velocity. Prerequisites: MECH 140 or equivalent and AMTH 118 or equivalent. (2 units)

MECH 221. Orbital Mechanics II
Continuation of MECH 220. Rocket dynamics and performance, orbital maneuvers, preliminary orbit determination including Gibbs and Gauss methods, Lambert’s problem, relative motion and Clohessy-Wiltshire equations, and interplanetary flight. Prerequisite: MECH 220. (2 units)

MECH 225. Gas Dynamics I
Flow of compressible fluids. One-dimensional isentropic flow, normal shock waves, frictional flow. Prerequisites: MECH 121 and 132. (2 units)

MECH 226. Gas Dynamics II
Continuation of MECH 225. Flow with heat interaction and generalized one-dimensional flow. Oblique shock waves and unsteady wave motion. Prerequisite: MECH 225. (2 units)

MECH 228. Equilibrium Thermodynamics
Principles of thermodynamic equilibrium. Equations of state, thermodynamic potentials, phase transitions, and thermodynamic stability. Prerequisite: MECH 131 or equivalent. (2 units)

MECH 230. Statistical Thermodynamics
Kinetic theory of gases. Maxwell-Boltzmann distributions, thermodynamic properties in terms of partition functions, quantum statistics, and applications. Prerequisites: AMTH 106 and MECH 121. (2 units)

MECH 232. Multibody Dynamics I
Kinematics (angular velocity, differentiation in two reference frames, velocity and acceleration of two points fixed on a rigid body and one point moving on a rigid body, generalized coordinates and generalized speeds, basis transformation matrices in terms of Euler angles and quaternions), Newton-Euler equations, kinetic energy, partial angular velocities and partial velocities, Lagrange’s equation, generalized active and inertia forces, Kane’s equation and its operational superiority in formulating equations of motion for a system of particles and hinge-connected rigid bodies in a topological tree. Prerequisite: MECH 140 or equivalent. (2 units)

MECH 233. Multibody Dynamics II
Linearization of dynamical equations, application to Kane’s formulation of the equations of motion of beams and plates undergoing large rotation with small deformation, dynamics of an arbitrary elastic body in large overall motion with small deformation and motion-induced stiffness, computationally efficient, recursive formulation of the equations of motion of a system of hinge-connected flexible bodies, component elastic mode selection, recursive formulation for a system of flexible bodies with structural loops, variable mass flexible rocket dynamics, modeling large elastic deformation with large reference frame motion. Prerequisite: MECH 232. (2 units)
Both classical size effect and quantum size effect will be discussed. Topics include introduction to statistical thermodynamics, solid state physics, scattering of charge/energy carriers, Boltzmann Transport Equation with Relaxation Time Approximation, heat conduction in thin film structure. Prerequisite: MECH243 or Undergraduate Heat Transfer. (2 units)

MECH 250. Finite Element Methods I

MECH 251. Finite Element Methods II
Isoparametric elements and higher order shape functions for stiffness and mass matrices using numerical integration. Plate and shell elements. Mesh refinement and error analysis. Linear transient thermal and structural problem using finite element approach. Eigenvalue/eigenvector analysis, frequency response and direct integration approaches for transient problems. Application of commercial FE codes. Also listed as CENG 206. Prerequisite: MECH 250. (2 units)

MECH 252. Finite Element Methods III
Solution of nonlinear problems using finite element analysis. Methods for solving nonlinear matrix equations. Material, geometrical, boundary condition (contact) and other types of nonlinearities and application to solid mechanics. Transient nonlinear problems in thermal and fluid mechanics. Application of commercial FE codes to nonlinear analysis. Also listed as CENG 207. Prerequisite: MECH 251. (2 units)

MECH 254. Introduction to Biomechanics
Overview of basic human anatomy, physiology, and anthropometry. Applications of mechanical engineering to the analysis of human motion, function, and injury. Review of issues related to designing devices for use in, or around, the human body including safety, biocompatibility, ethics, and FDA regulations. Offered every other year. (4 units)

MECH 256. Clinical Biomaterials
The objective of this course is to convey the state-of-the-art of biomaterials currently used in medical devices. The course is taught as a series of semi-independent modules on each class of biomaterials, each with examples of medical applications. Students will explore the research, commercial and regulatory literature. In teams of 2 to 4, students will prepare and orally present a design study for a solution to a medical problem requiring one or more biomaterials, covering alternatives and selection criteria, manufacture and use of the proposed medical device, and economic, regulatory, legal and ethical aspects. Students should be familiar with or prepared to learn medical, anatomical and physiological terminology. Written assignments are an annotated bibliography on the topic of the design study and an individual-written section of the team’s report. Material from lectures and student presentations will be covered on a mid-term quiz and a final examination. Also listed as BIOE 178/BIOE 278. (2 units)

MECH 266. Fundamentals of Fluid Mechanics
Mathematical formulation of the conservation laws and theorems applied to flow fields. Analytical solutions. The viscous boundary layer. Prerequisite: MECH 122. (2 units)

MECH 268. Computational Fluid Mechanics I
Introduction to numerical solution of fluid flow. Application to general and simplified forms of the fluid dynamics equations. Discretization methods, numerical grid generation, and numerical algorithms based on finite difference techniques. Prerequisite: MECH 266. (2 units)

MECH 269. Computational Fluid Mechanics II
Continuation of MECH 268. Generalized coordinate systems. Multidimensional compressible flow problems, turbulence modeling. Prerequisite: MECH 268. (2 units)

MECH 270. Viscous Flow I
Derivation of the Navier-Stokes equations. The boundary layer approximations for high Reynolds number flow. Exact and approximate solutions of laminar flows. Prerequisite: MECH 266. (2 units)

MECH 271. Viscous Flow II
Continuation of MECH 270. Similarity solutions of laminar flows. Separated flows. Fundamentals of turbulence. Introduction to numerical methods in fluid mechanics. Prerequisite: MECH 270. (2 units)

MECH 275A. Design for Competitiveness
Overview of current design techniques aimed at improving global competitiveness. Design strategies and specific techniques. Group design projects in order to put these design ideas into simulated practice. (2 units)

MECH 275B. Project Design Development
This course is a follow-up to MECH 275A and is focused on further developing product ideas from MECH 275A into physical prototypes, performing market analysis, honing business plans, and presenting these ideas to a panel of venture capitalists. Prerequisite: MECH 275A. (2 units)
MECH 276. Design for Manufacturability
Design for manufacturability and its applications within the product design process. Survey of design for manufacturability as it relates to design process, quality, robust design, material and process selection, functionality and usability. Students will participate in group and individual projects that explore design for manufacturability considerations in consumer products. (2 units)

MECH 279. Introduction to CNC I
Introduction to Computer Numeric Control (CNC) machining. Principles of conventional and CNC machining. Process identification and practical application using conventional machine tools. Job planning logic and program development for CNC. Set-up and basic operation of CNC machine through “hands-on” exercises. Introduction to Computer Aided Manufacturing (CAM) software, conversational programming, verification software, and file transfers. The class is lab intensive; the topics will be presented primarily by demonstration or student use of the equipment. (3 units)

MECH 280. Introduction to CNC II
Builds on foundation provided by MECH 279. Emphasis on CNC programming. Overview of controllers, features of CNC machines, manual and computer-aided programming, G-code basics, advanced cycles and codes. Lab projects will consist of “hands-on” operation of CNC milling machines, programming tools, and verification software. Lab component. Prerequisite: MECH 279 or instructor approval. (3 units)

MECH 281. Fracture Mechanics and Fatigue
Fracture mechanics evaluation of structures containing defects. Theoretical development of stress intensity factors. Fracture toughness testing. Relationships among stress, flaw size, and material toughness. Emphasis on design applications with examples from aerospace, nuclear, and structural components. Prerequisite: Instructor approval. (2 units)

MECH 282. Failure Analysis
This course will examine how and why engineering structures fail, and will provide the student with the tools to identify failure mechanisms and perform a failure analysis. Students will review several case studies, and will conduct independent failure analysis investigations of actual engineering systems and parts using state-of-the-art-tools. (2 units)

Kinematic synthesis of mechanisms. Graphical and analytical mechanism synthesis techniques for motion generation, function generation, and path generation problems. Overview of various computer software packages available for mechanism design. (2 units)

MECH 286. Introduction to Wind Energy Engineering
Introduction to renewable energy, history of wind energy, types and applications of various wind turbines, wind characteristics and resources, introduction to different parts of a wind turbine including the aerodynamics of propellers, mechanical elements, electrical and electronic systems, wind energy system economics, environmental aspects and impacts of wind turbines, and the future of wind energy. Also listed as ELEN 286. (2 units)

MECH 287. Introduction to Alternative Energy Systems
Assessment of current and potential future energy systems; covering resources, extraction, conversion, and end-use. Emphasis on meeting regional and global energy needs in a sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described to evaluate and analyze energy technology systems. Also listed as ELEN 280. (2 units)

MECH 288. Energy Conversion I
Introduction to nonconventional methods of power generation using solar energy, thermoelectric effect, and fuel cells. Description of the physical phenomena involved, analysis of device performance, and assessment of potential for future use. Prerequisite: MECH 121. (2 units)

MECH 289. Energy Conversion II
Discussion of magnetohydrodynamic power generation, thermionic converters, and thermonuclear fusion. Note: MECH 288 is NOT a prerequisite. (2 units)

MECH 290. Capstone Project
(2–6 units)

MECH 292. Theory and Design of Turbomachinery
Theory, operation, and elements of the design of turbomachinery that performs by the dynamic interaction of fluid stream with a bladed rotor. Emphasis on the design and efficient energy transfer between fluid stream and mechanical elements of turbomachines, including compressors, pumps, and turbines. Prerequisites: MECH 121 and 122. (2 units)

MECH 293. Special Topics in Manufacturing and Materials
Topics vary each quarter. (2 units)

MECH 294. Special Topics in Mechanical Design
Topics vary each quarter. (2 units)

MECH 295. Special Topics in Thermofluid Sciences
Topics vary each quarter. (2 units)

MECH 296A. Special Topics in Dynamics and Control
Topics vary each quarter. (2 units)

MECH 296B. Special Topics in Dynamics and Control
Topics vary each quarter. (4 units)

MECH 297. Seminar
Discrete lectures on current problems and progress in fields related to mechanical engineering. P/NP grading. (1 unit)

MECH 298. Individual Study
By arrangement. (1–6 units)

MECH 299. Master’s Thesis Research
By arrangement. (1–9 units)

MECH 300. Directed Research
Research into topics of mechanical engineering; topics and credit to be determined by instructor, report required, cannot be converted into Master or PhD research. By arrangement. Prerequisites: instructor and department chair approval. (1–6 units)

MECH 304. Design and Mechanics Problems in the Computer Industry
Design and mechanics problems related to computer peripherals. Dynamics of disk interface, stresses, and vibrations in rotating disks and flexible disks. Actuator design, impact and nonimpact printing, materials and design for manufacturability, role of CAD/CAM in design. Prerequisite: Instructor approval. (2 units)

MECH 305. Advanced Vibrations I
Response of single and two-degrees-of-freedom systems to initial, periodic, nonperiodic excitations. Reviewing the elements of analytical dynamics, including the principle of virtual work, the Hamilton’s principle and Lagrange’s equations. Response of multi-degree-of-freedom systems. Modeling and dynamic response of discrete vibrating elastic bodies. Analytical techniques for solving dynamic and vibration problems. Prerequisite: MECH 141. (2 units)

MECH 306. Advanced Vibrations II
Vector-tensor-matrix formulation with practical applications to computer simulation. Dynamic response of continuous elastic systems. Strings, membranes, beams, and plates exposed to various
MECH 308. Thermal Control of Electronic Equipment
Heat transfer methods to cool electronic equipment. Contact resistance, cooling fins, immersion cooling, boiling, and direct air cooling. Use of heat exchangers, cold plates, and heat pipes. Applications involving transistor cooling, printed circuit boards, and microelectronics. Prerequisites: MECH 122 and 123. (2 units)

MECH 310. Advanced Mechatronics IV
Application of mechatronics knowledge and skills to the development of an industry- or laboratory-sponsored mechatronics device/system. Systems engineering, concurrent design, and project management techniques. Performance assessment, verification, and validation. Advanced technical topics appropriate to this project may include robotic teleoperation, human-machine interfaces, multi-robot collaboration, and other advanced applications. Prerequisite: MECH 209. (2 units)

MECH 311. Modeling and Control of Telerobotic Systems
Case studies of telerobotic devices and mission control architectures. Analysis and control techniques relevant to the remote operation of devices, vehicles, and facilities. Development of a significant research project involving modeling, simulation, or experimentation, and leading to the publication of results. Prerequisite: Instructor approval. (4 units)

MECH 313. Aerospace Structures
Presents the fundamental theories of elasticity and stress analysis pertaining to aircraft and spacecraft structures. Course topics include aircraft/spacecraft structural elements, material selection, elasticity, torsion, shear, bending, thin-walled sections, failure criteria, buckling, fatigue, and an introduction to mechanics of composites. (4 units)

MECH 315. Digital Control Systems I

MECH 316. Digital Control Systems II

MECH 320. Phase Equilibria and Mechanical Behavior
Structure of crystalline and non-crystalline materials and the relationship between structure, defects, and mechanical properties. For all engineering disciplines. (2 units)

MECH 323. Modern Control Systems I
State space fundamentals, observer and controller canonical forms, controllability, Observability, minimum realization, stability theory, stabilizability, and tracking problem of continuous systems. Prerequisite: MECH 142 or 217. (2 units)

MECH 324. Modern Control Systems II
Shaping the dynamic response, pole placement, reduced-order observers, LQG/LTR, introduction to random process and Kalman filters. Prerequisite: MECH 323. (2 units)

MECH 325. Computational Geometry for Computer-Aided Design and Manufacture
Analytic basis for description of points, curves, and surfaces in three-dimensional space. Generation of surfaces for numerically driven machine tools. Plane coordinate geometry, three-dimensional geometry and vector algebra, coordinate transformations, three-dimensional curve and surface geometry, and curve and surface design. (2 units)

MECH 329. Introduction to Intelligent Control
Intelligent control, AI, and system science. Adaptive control and learning systems. Artificial neural networks and Hopfield model. Supervised and unsupervised learning in neural networks. Fuzzy sets and fuzzy control. Also listed as ELEN 329. Prerequisite: MECH 324. (2 units)

MECH 330. Atomic Arrangements, Defects, and Mechanical Behavior
Structure of crystalline and non-crystalline materials and the relationship between structure, defects, and mechanical properties. For all engineering disciplines. (2 units)

MECH 331. Electronic Structure and Transformations
Thermodynamics of multi-component systems and phase diagrams. Diffusion and phase transformations. For all engineering disciplines. (2 units)

MECH 335. Adaptive Control I
Overview of adaptive control, Lyapunov stability theory, direct and indirect model-reference adaptive control, least-squares system identification technique, neural network approximation, and neural-network adaptive control. Prerequisites: MECH 324, ELEN 237, and knowledge of MATLAB/Simulink. (2 units)

MECH 336. Adaptive Control II
Stability and robustness of adaptive controller, robust modification, bounded linear stability analysis, metrics-driven adaptive control, constraint-based optimal adaptive control, and advanced topics in adaptive control. Prerequisite: MECH 335 or instructor approval, ELEN 237. (2 units)

MECH 337. Robotics I
MECH 338. Robotics II

MECH 339. Robotics III
Advanced topics: parallel manipulators, redundant manipulators, underactuated manipulators, coupled manipulator/platform dynamics and control, hardware experimentation and control, dextrous manipulation, multi-robot manipulation, current research in robotic manipulation. Also listed as ELEN 339. Prerequisite: MECH 338. (2 units)

MECH 340. Introduction to Direct Access Storage Devices
Introduction to direct access storage devices, including flexible and rigid disk drives. Overview of magnetic and optical recording technology emphasizing their similarity and differences and basic principles of operation. Device components technology, including head, disk, positioning actuator, drive mechanism, drive interface, and controller. Prerequisite: Instructor approval. (2 units)

MECH 345. Modern Instrumentation and Experimentation
Overview of sensors and experimental techniques. Fundamentals of computer-based data acquisition and control, principles of operation of components in a data acquisition system. Design and analysis of engineering experiments with emphasis on practical applications. Characterization of experimental accuracy, error analysis, and statistical analysis. Experiments involving measurements and control of equipment. (2 units)

MECH 346. Design of Experiments in Mechanical Engineering
Design, planning, and implementation of an experiment. Students will work in a group to define a project, conduct background research, provide analysis, and record data. A formal report is required. Prerequisite: MECH 345 or equivalent. (2 units)

MECH 350. Composite Materials I
Design, analysis, and manufacturing of composite materials. Characterization of composites at the materials and substructural levels. Hyperselection. Manufacturing technology and its impact on design. (2 units)

MECH 351. Composite Materials II
Composite material design at the structural level. Fabrication methods. Design for damage tolerance, durability, and safety. Transfer of loads. Prerequisite: MECH 350. (2 units)

MECH 371. Space Systems Design and Engineering I
A review of the engineering principles, technical subsystems, and design processes that serve as the foundation of developing and operating spacecraft systems. This course focuses on subsystems and analyses relating to orbital mechanics, power, command and data handling, and attitude determination and control. Also listed as ENGR 371. Note: MECH 371 and 372 may be taken in any order. (4 units)

MECH 372. Space Systems Design and Engineering II
A review of the engineering principles, technical subsystems, and design processes that serve as the foundation of developing and operating spacecraft systems. This course focuses on subsystems and analyses relating to mechanical, thermal, software, and sensing elements. Also listed as ENGR 372. Note: MECH 371 and 372 may be taken in any order. (4 units)

MECH 379. Satellite Operations Laboratory
Introduces analysis and control topics relating to the operation of on-orbit spacecraft. Several teaching modules address conceptual topics to include mission and orbit planning, antenna tracking, command and telemetry operations, resource allocation, and anomaly management. Students will become certified to operate real spacecraft and will participate in the operation of both orbiting satellites and ground prototype systems. (1 unit)

MECH 399. Ph.D. Thesis Research
By arrangement. May be repeated up to 40 units. (1–9 units)

MECH 413. Vehicle Design I
Automotive vehicle design overview addressing the major subsystems that comprise a typical on-road vehicle application, including frame/cab, powertrain, suspension/steering, and auxiliary automotive. The class will cover the vehicle development constraints, requirement and technology assessments, design drivers, benchmarking, and subsystem synergies within the overall vehicle system context. (2 units)

MECH 414. Vehicle Design II
Building on Vehicle Design I instruction and material, system level automotive vehicle design that addresses the off-road vehicle applications. Major subsystems reviewed include frame/cab, powertrain, suspension/steering (including track laying), and supporting subsystems. Unique off-road duty cycle/load cases and supportability issues are addressed. Prerequisite: MECH 413. (2 units)

MECH 415. Optimization in Mechanical Design
Introduction to optimization: design and performance criteria. Application of optimization techniques in engineering design, including case studies. Functions of single and multiple variables. Optimization with constraints. Prerequisite: AMTH 106 and 245. (2 units)

MECH 420. Model Predictive Control
Review of state-space model in discrete time, stability, optimal control, prediction, Kalman filter, Measurable and un-measurable disturbance, finite and receding horizon control, MPC formulation and design. Also listed as ELEN 238. Prerequisite: MECH 323 or ELEN 236. (2 units)

MECH 423. Nonlinear Control I
Introduction to nonlinear phenomena, planar or second-order systems: qualitative behavior of linear systems, linearization, Lyapunov stability theory, LaSalle’s invariance principle, small gain theorem, and input-to-state stability. Prerequisite: MECH 323 or equivalent. (2 units)

MECH 424 Nonlinear Control II
Continuation of MECH 423. Stabilization via linearization, Integral control, integral via linearization, feedback linearization including input-output, input-state, and full-state linearization, sliding mode control, back-stepping, controllability and observability of nonlinear systems, model reference and self-tuning adaptive control. (2 units)
MECH 429. Optimal Control I
Introduction to the principles and methods of the optimal control approach: performance measure criteria including the definition of minimum-time, terminal control, minimum-control effort, tracking, and regulator problems, calculus of variations applied to optimal control problems including Euler-Lagrange equation, transversality condition constraint, Pontryagin’s minimum principle (PMP), linear quadratic regulator (LQR) and tracking control problems. Prerequisite: MECH 323 or an equivalent course in linear system theory. Students are expected to be proficient in MATLAB/Simulink or MECH 142 or equivalent. (2 units)

MECH 430. Optimal Control II
Continuation of optimal control I, control with state constraints, minimum-time and minimum-fuel problems, singular arcs, Bellman’s principle of optimality, dynamic programming, the Hamilton-Jacobi-Bellman (H-J-B) equation, and introduction to differential game theory including zero-sum game and linear quadratic differential game problem. Prerequisite: MECH 429 or an equivalent course. Students are expected to be proficient in MATLAB/Simulink. (2 units)

MECH 431. Spacecraft Dynamics I
Kinematics and Attitude dynamics, gravity-gradient stabilization, single and dual-spin stabilization, control laws with momentum exchange devices, momentum wheels. Prerequisites: MECH 140 and AMTH 106. (2 units)

MECH 432. Spacecraft Dynamics II
Continuation of MECH 431. Time-optimal slew maneuvers, momentum-biased attitude stabilization, reaction thruster attitude control, introduction to dynamics of flexible spacecraft and liquid sloshing problem. Prerequisite: MECH 431. (2 units)

OVERVIEW
Twenty-first century problems demand holistic thinking to effectively address the social, environmental, and economic impact of emerging energy technologies. We offer a graduate certificate in Renewable Energy and a multi-disciplinary master’s degree in Power Systems and Sustainable Energy. Both offerings balance deep technical expertise with practical application experience, while also promoting understanding of the economics, public policy, and ethics that shape the industry. A broad and ever-increasing range of courses—power systems, smart grid, energy management, security, and infrastructure, to name a few—are complemented by lectures, workshops, and field trips offered quarterly by our energetic Energy Club. Fuel your passion for energy engineering as you train alongside Silicon Valley professionals to meet the changing demands in energy and fulfill a pressing need in the rapidly growing renewable energy market in our Valley and in the world.

MASTER’S DEGREE PROGRAM AND REQUIREMENTS
Students interested in this major must satisfy the standard admissions criteria used by the School of Engineering, which include an undergraduate degree in a field of engineering (physics degrees will also be considered), appropriate GRE scores and (for international students) demonstrated proficiency in English. Both TOEFL and IELTS scores are acceptable for this purpose. All students are expected to maintain a minimum grade point average of 3.0 while enrolled in the program. They must also develop a Sustainable Energy Program of Studies with an academic advisor and file this document with the Graduate Services Office by the end of their first quarter at SCU.

Required courses
- Foundational classes
 - ELEN 280/MECH 287 Introduction to Alternative Energy Systems (2 units)
 - ELEN 281A Power Systems: Generation (2 units)
 - ELEN 281B Power Systems: Transmission and Distribution (2 units)
 - ELEN 285 Introduction to the Smart Grid (2 units)
 - These courses also satisfy the Graduate Core requirements.
- Management courses
 - EMGT 380 Introduction to Systems Engineering Management (2 units)
 - CENG 208 Engineering Economics and Project Finance (3 units)
Fundamental sustainability courses:
- ENGR 272 Energy Public Policy (2 units)
- ENGR 273 Sustainable Energy and Ethics (2 units)

Eight units in applied mathematics, which are to be selected in consultation with the student’s academic advisor. A set of specialized energy-related courses which are appropriate to the area of engineering in which the student is interested. These four areas are:

Mechanical Engineering
- ELEN 231 Power System Stability and Control (4 units)
- ELEN 287/ENGR 339 Energy Storage Systems (2 units)
- MECH 228 Equilibrium Thermodynamics (2 units)
- MECH 288 Energy Conversion I (2 units)

Electrical Engineering
- ELEN 231 Power System Stability and Control (4 units)
- ELEN 287/ENGR 339 Energy Storage Systems (2 units)
- ELEN 288 Energy Management or ELEN 236 Linear Control Systems (2 units)
- ELEN 353 DC to DC Power Conversion (2 units)

Computer Engineering
- COEN 233 Computer Networks (4 units)
- COEN 243 Internet of Things (4 units)
- COEN 389 Energy-Efficient Computing (2 units)

Civil Engineering
- CENG 213 Sustainable Materials (3 units) and CENG 213L (1 unit)
- CENG 219 Designing for Sustainable Construction (4 units)

Additional elective courses to complete the 45-unit requirement, which must be approved by the academic advisor. These elective courses may include a thesis, up to nine units.

Please Note: ELEN 379 Nanotechnology for Energy does not count toward the completion of this degree.

RENEWABLE ENERGY CERTIFICATE PROGRAM

The main goal of this certificate is to introduce students to the field of renewable energy. The intent is to help equip professionals in Silicon Valley with the knowledge that will help them advance in their present career or enter the renewable energy field. To enroll in this certificate an applicant should have a B.S. in Engineering from an accredited school and should maintain a grade point average of 3.0. As with most certificates in the Graduate School of Engineering, the requirement is 16 quarter units. Eight of these units are in Power Systems, four units are in Renewable Energy, with the remaining four units in Sustainability as shown below.
The Lockheed Martin-Santa Clara University Program

OBJECTIVE

The purpose of this chapter is to describe a joint program between Lockheed Martin and Santa Clara University (SCU) for graduate education in space systems engineering. It contains background on the program and its description and structure. The program was formulated in consultation with the faculty and administrators of the School of Engineering at Santa Clara and the University of Denver as well as with management from Lockheed Martin. The program is approved by the SCU Provost Office.

BACKGROUND

Lockheed Martin has developed an Engineering Leadership Development Program (ELDP) to develop its most promising engineers who have demonstrated leadership potential and are team-oriented, excellent communicators, and problem solvers. The ELDP was first introduced at Lockheed Martin’s site near Denver and the company established an agreement with the University of Denver (DU) by which the University provides graduate degrees for ELDP participants in two aspects of systems engineering: computer systems engineering and mechatronics systems engineering. The degree program in mechatronics systems engineering commenced in January 2005; the program in computer systems engineering 12 months later. The yearly average number chosen for the ELDP program at Denver is about 30.

Lockheed Martin has now launched the ELDP at its Sunnyvale, California, site, which employs more engineers than its Denver site. The company has established a program at Santa Clara University similar to the one at DU. This program serves two purposes: to provide a graduate degree in some aspect of space systems engineering for the Sunnyvale employees and to enable members of the ELDP group who are transferred from Denver to Sunnyvale and from Sunnyvale to Denver to continue their education in the other city at the other university. This chapter describes the Santa Clara program that meets the needs of Lockheed Martin and cooperates with the University of Denver so that ELDP members who move between Denver and Sunnyvale can take courses at both universities and receive their degree from the university that gives more than 50 percent unit credits.

Although this program was motivated by the interests of Lockheed Martin and establishes specific opportunities for its ELDP student, the Santa Clara University degree tracks and courses offered through this program are available for all qualifying Santa Clara University students.
THE SCU-LOCKHEED MARTIN-DU PROGRAMS

Curricula

Currently, two degree programs exist at DU tailored to the ELDP, both in “Systems Engineering”: the M.S. in Computer Systems Engineering and the M.S. in Mechatronics Systems Engineering.

Santa Clara has created two new courses in space systems engineering (called Technical Development Curriculum or TDC courses by Lockheed Martin) and has defined four program tracks (shown below) within the current degree structure, in line with the “Systems Engineering” emphasis as requested by Lockheed Martin. There are other tracks available.

1. M.S. in Mechanical Engineering (specialization in Mechatronics) (see Plan A for curricular details) 45 units
2. M.S. in Electrical Engineering (specialization in Mechatronics) (see Plan B for curricular details) 46 units
3. M.S. in Software Engineering (see Plan C for curricular details) 46 units
4. M.S. in Computer Engineering (specialization in Software Engineering) (see Plan D for curricular details) 45 units

Common features of these programs:

1. The programs adhere to the current existing curriculum structures with the incorporation of the TDC courses, in order to maintain program quality and provide the right mixture of theory and practice.
2. The programs are in close alignment with existing DU-Lockheed Martin programs and their courses, and thus have many one-to-one correspondences on a course-by-course basis. This facilitates students transferring from one site to another.
3. There are two Technical Development Curriculum (TDC) courses—a total of eight units, specified under the “elective” portion of the SCU existing structure. The TDC courses are “Space Systems Design and Engineering I and II,” developed by SCU.
4. There is a project management sequence—a total of four units, current recommended courses are EMGT 330 and 335.
5. There is a systems engineering sequence—a total of four units, current recommended courses are EMGT 380 and 381.

Admissions

Per SCU regulations, all ELDP students follow normal application procedures through the School of Engineering Graduate Services office. This includes submission of official copies of transcripts from all previous institutions. Admission to SCU is determined by the School of Engineering. Lockheed will inform SCU of applicants who are participants in ELDP.

The School of Engineering waives the GRE for ELDP applicants who have completed a B.S. degree in engineering, computer science, natural science, or mathematics with a GPA of 3.0 or better (on a scale of 4), except that all M.S. in Software Engineering applicants must have a prior degree in computing or must take the GRE Subject Test in Computer Science, which would then be considered in the admissions decision.

Transfer Credits

The School of Engineering will accept up to 22 units of transfer credit toward a 45-unit or 46-unit master’s degree (so that at least half the credits for an SCU degree will have been earned at Santa Clara) provided that no more than nine of the units may be transferred from institutions other than the University of Denver. The 22-unit limit therefore applies to all students from DU, not just Lockheed students, but not to students from other institutions. The DU department faculty and Graduate Council approved a similar policy with respect to SCU.

Departments may establish specific lists of DU courses that are pre-approved for transfer into SCU degree programs. Any department may ask its department faculty in charge of each specialization track to determine transfer equivalents from DU courses required by their track. Any request for transfer credit for courses other than those pre-approved as above must be approved by the student’s faculty advisor.

All transfer units must meet the usual criteria:

• Transferred courses must be of appropriate graduate level and quality compared to courses at SCU.
• Transferred courses must have a grade of B or better.
• Transferred courses must not have been applied to another degree.
• Transferred courses must not repeat prior coursework.

Venue

In general, SCU courses will be taught on the Santa Clara campus. The exception to this are the TDC courses which are often taught at a campus laboratory located in the NASA Research Park in Moffett Field, CA.
Minimum Enrollment
In any quarter, a TDC course will be offered only if ten or more students are registered (or paid for).

Tuition Payment
There is no change to the current practice for collecting tuition.

Oversight
Santa Clara University will monitor the program for continuous improvement and will conduct a review after three years to make a decision about the future of the program, i.e., continue without modification, continue with modification, or discontinue.

PLAN A
M.S. DEGREE IN MECHANICAL ENGINEERING
(SPECIALIZATION IN MECHATRONICS)

Prerequisite
For students without a B.S. degree in Mechanical Engineering or equivalent, some foundation courses may be needed.

Overview
- TDC courses 8 units
- Systems Engineering and Project Management 8
- Mathematics 8
- Mechatronics 6
- Robotics and Control 8
- Thesis or Capstone Project 2
- Issues in Professional Practice 2
- Technical Electives 3

Total 45 units

TDC Courses
- Space Systems Design and Engineering I ENGR/MECH 371 4 units
- Space Systems Design and Engineering II ENGR/MECH 372 4

Systems Engineering and Project Management
- Project Management EMGT 330 and 335 4 units
- Intro to Systems Engineering EMGT 380 2
- System Conceptual Design EMGT 381 2

Mathematics
- Advanced Engineering Mathematics I & II AMTH/MECH 202 4 units
 or the equivalent two-course sequence AMTH/MECH 200 and 201
- One additional math sequence approved by advisor

Mechatronics
- Advanced Mechatronics I MECH 207 3 units
- Advanced Mechatronics II MECH 208 3

Robotics and Control
- Robotics I MECH/ELEN 337 2 units
- Robotics II MECH/ELEN 338 2
- Control systems sequence approved by advisor

Thesis or Capstone Project
- Thesis or Capstone Project MECH 290 or 299 2 units
- Issues in Professional Practice course, from the Engineering & Society list of approved graduate core courses ENGR or EMGT courses 2

Technical Electives
- Technical Electives 3 units
PLAN B
M.S. DEGREE IN ELECTRICAL ENGINEERING
(SPECIALIZATION IN MECHATRONICS)

Prerequisite
For students without a B.S. degree in Electrical Engineering or equivalent, some foundation courses may be needed.

Overview
- TDC courses 8 units
- Systems Engineering and Project Management 8
- Core: Mathematics and Electrical Engineering 14
- Mechatronics 8
- Issues in Professional Practice 2
- Technical Electives 6
Total 46 units

TDC Courses
- Space Systems Design and Engineering I ENGR/MECH 371 4 units
- Space Systems Design and Engineering II ENGR/MECH 372 4

Systems Engineering and Project Management
- Project Management EMGT 330 and 335 4 units
- Intro to Systems Engineering EMGT 380 2
- System Conceptual Design EMGT 381 2

Core: Mathematics and Electrical Engineering: Select 14 units from:
- Design of Scientific Experiments AMTH 217 and 219 4 units
- Linear Algebra II AMTH 246 2
- Applied Graph Theory I AMTH 256 2
- Design and Analysis of Algorithms AMTH 377 4
- Advanced Logic Design ELEN 127 2
- Electromagnetic Field Theory I ELEN 201 2
- Signals, Circuits, and Systems ELEN 210 2
- Modern Network Analysis I ELEN 211 2

Mechatronics
- Intro to Control Systems ELEN 230 2 units
- Advanced Mechatronics I ELEN 460/MECH 207 2
- Advanced Mechatronics II ELEN 461/MECH 208 2
- Advanced Mechatronics III ELEN 462/MECH 209 2

Technical Electives: Select 6 units from:
- Design of Feedback Control Systems ELEN 231 2 units
- Control Systems I, II ELEN 236, 330 2, 2
- Microsensors ELEN 271 2
- Robotics I, II, III ELEN/MECH 337, 338, 339 2, 2, 2
- Special Topics: Vision Systems for Robotic Applications MECH 296 2
- Advanced Mechatronics IV MECH 310 2
- Modeling and Control of Telerobotic Systems MECH 311 4
PLAN C
M.S. DEGREE IN SOFTWARE ENGINEERING

Prerequisite
This is for students who have a bachelor’s degree in computer science, computer engineering, or equivalent.

Overview
- TDC courses 8 units
- Systems Engineering and Project Management 8
- Core: Software Engineering Core 20
- Capstone Project 6
- Computer Engineering Graduate Electives 4
Total 46 units

TDC Courses
- Space Systems Design and Engineering I ENGR/MECH 371 4 units
- Space Systems Design and Engineering II ENGR/MECH 372 4

Systems Engineering and Project Management
- Project Management EMGT 330 and 335 4 units
- Intro to Systems Engineering EMGT 380 2
- System Conceptual Design EMGT 381 2

Core: Software Engineering Core
- Design and Analysis of Algorithms AMTH 377/COEN 279 4 units
- Truth, Deduction, and Computation COEN 260 4
- Software Engineering COEN 285 4
- Software Quality Assurance & Testing COEN 286 2
- Software Ethics COEN 288 2
- Formal Methods in Software Engnrng COEN 385 2
- Software Architecture COEN 386 2

Capstone Project
- Software Engineering Capstone COEN 485 6 units

Computer Engineering Graduate Electives
- Computer Engineering Graduate Courses COEN courses 4 units

PLAN D
M.S. DEGREE IN COMPUTER ENGINEERING
(EMPHASIS IN SOFTWARE ENGINEERING)

Prerequisite
This is for students who have completed (grade B or better) the undergraduate senior/graduate first-year level or equivalent of at least two of the following core courses prior to this M.S. degree:

Overview
- TDC courses 8 units
- Systems Engineering and Project Management 8
- Computer Engineering Core and Graduate Electives 13
- Software Engineering Specialization Courses 16
Total 45 units

TDC Courses
- Space Systems Design and Engineering I ENGR/MECH 371 4 units
- Space Systems Design and Engineering II ENGR/MECH 372 4

Systems Engineering and Project Management
- Project Management EMGT 330 and 335 4 units
- Intro to Systems Engineering EMGT 380 2
- System Conceptual Design EMGT 381 2

(A) Computer Engineering Core: Select 0–12 units from:
- Design and Analysis of Algorithms AMTH 377/COEN 279 4 units
- Computer Architecture COEN 210 4
- Computer Networks COEN 233 4
- Principles of Programming Languages COEN 256 4
- Operating Systems COEN 283 4

Capstone Project
- Software Engineering Capstone EMGT 330 and 335 4 units

Computer Engineering Graduate Electives
- Computer Engineering Graduate Courses COEN courses 4 units
The student must take these core course(s) or equivalent that is/are not completed prior to admission. Equivalent core courses completed prior to admission should not be repeated, but the units may be used for graduate engineering elective courses instead.

(B) Graduate Engineering Electives: Select 0–13 units to complete the 45-unit degree requirement:

- Graduate Engineering Electives 0–13 units

Software Engineering Specialization Courses

- Truth, Deduction, and Computation COEN 260 4 units
- Software Engineering COEN 285 4 units
- Software Quality Assurance & Testing COEN 286 2 units
- Software Ethics COEN 288 2 units
- Formal Methods in Software Engineering COEN 385 2 units
- Software Architecture COEN 386 2 units

Campus Life

Santa Clara students are encouraged to participate in extracurricular activities as part of their total development. The primary educational objective in supporting student activities and organizations is to foster a community that is enriched by men and women of diverse backgrounds, wherein freedom of inquiry and expression enjoys high priority.

The following sections describe various aspects of student life and services.

CAMPUS MINISTRY

Fostering the University’s mission to develop the whole person, Campus Ministry offers a variety of programs and opportunities where faith may be explored, discovered, and developed. The Campus Ministry team is committed to supporting the spiritual and personal growth of all students, regardless of faith tradition, if any, and a welcoming and inclusive environment for all.

The team consists of ten full-time members, eleven resident ministers residing in residence halls, and sixteen student interns. Campus Ministry offers the University community a variety of programs: liturgies, other sacramental celebrations, retreats, discussion groups, Christian Life Communities (CLCs), Bible study, ecumenical and interfaith gatherings, social justice events, counseling and spiritual direction. Campus Ministry also supports religiously-affiliated student clubs, including those for Muslim, Jewish, Hindu, and Orthodox students.

Please visit the website at: scu.edu/cm or stop by our office in Benson Center.

STUDENT MEDIA

KSCU: KSCU is a student-run, non-commercial radio station at 103.3 FM. The program format features primarily independent music, including indie rock, punk, ska, jazz, blues, and reggae. Students may get involved with the radio station as a staff member or as a volunteer disc jockey, office assistant, fundraiser, or sound technical staff. The staff of KSCU operates all aspects of an FM radio station in accordance with SCU’s mission and goals, and Federal Communications Commission regulations.

The Redwood: SCU’s yearbook strives to maintain proper journalistic guidelines while producing an accurate and quality book for the University community. Entirely student run, with the aid of a faculty advisor, *The Redwood* offers paid and volunteer positions in writing, design, and photography. Students at-large are encouraged to participate by contributing to the yearbook.

Santa Clara Review: A student-edited literary magazine that publishes poetry, fiction, nonfiction, and art, the *Santa Clara Review* is published biannually, drawing on submissions from SCU students, faculty, staff, and writers outside of SCU. The Santa Clara Review is committed to the development of student literary talent, in both editorial knowledge and creative writing skills. Students may get involved with the magazine in several staff positions and with opportunities to volunteer in the areas of poetry, fiction, nonfiction, art, and management.
The Santa Clara: The Santa Clara is the University’s undergraduate weekly newspaper, serving as an informative and entertaining student-run campus publication. Students may get involved in a staff position or as a volunteer writer, photographer, or member of the business staff.

STUDENT RESOURCES AND SERVICES

Listed below are some of the service centers established to meet the needs of students. Each center provides a variety of programs to encourage personal growth.

COWELL COUNSELING AND PSYCHOLOGICAL SERVICES (CAPS)

Counseling and Psychological Services offers mental health services to undergraduate and graduate students. The mission of the services is to support the developmental growth of students in ways that enable them to become more effective in their personal, academic, and social functioning. Counseling helps students address psychological issues that may affect their successful participation in the learning community. Among the psychosocial and developmental issues that students work on with their counselors are depression, anxiety, interpersonal problems, disturbed sleep or eating behaviors, acculturation, academic motivation, homesickness, family concerns, intimacy, and sexuality. The services are confidential and free and include individual counseling, couples counseling, group counseling, and psycho-educational programs.

COWELL STUDENT HEALTH SERVICES

Student Health Services provides quality, accessible, and convenient medical care to Santa Clara students. The Health Services provides primary medical care, physicals, diagnosis of illness and injuries, immunizations, gynecological examinations, limited in-house pharmacy, and referral to specialists when needed. The Health Services staff includes a physician, nurse practitioners, physician assistants, registered nurses, and medical assistants. In addition, a psychiatrist, registered dietician, and physical therapy assistant are each available on a part-time basis.

Graduate students who choose to use the Health Services must pay a health fee of $90 per quarter to be seen. The Health Services does not charge for visits, but does charge students for laboratory work, medications, medical equipment, and other specialized services. Students are seen on an appointment basis and usually can be seen the same day, if an appointment is requested in the morning. The center is open from 8:30 a.m. to 5 p.m. Monday through Friday when classes are in session. When the Health Services is closed, there is an advice nurse available by phone and volunteer student emergency medical technicians who can visit students on campus. The center is closed from mid-June to mid-August.

All international graduate students must carry health insurance, either their own personal plan or the University-sponsored plan. Graduate students who want to purchase the University health insurance must also pay the $90 per quarter health fee. Please call the insurance coordinator at 408-554-2379 for further information.

ACADEMIC FACILITIES

The University is located on a 106-acre campus in the city of Santa Clara near the southern end of the San Francisco Bay in one of the world’s great cultural centers. More than 50 buildings on campus house 15 student residences, a main library, a law library, two student centers, the de Saisset Museum, extensive performing arts and athletic facilities, and a recreation and fitness center.

Santa Clara’s campus has the advantage of being located in the heart of Silicon Valley—a region known for its extraordinary visionaries, who have designed and created some of the most significant scientific and technological advances of our age. More than a place, Silicon Valley is a mindset—home to more than 2 million residents and 6,600 science- and technology-related companies. And that does not include San Francisco, which is just an hour away.

Santa Clara’s campus is well known for its beauty and Mission-style architecture. Newly opened in 2013, the brick-paved Abby Sobrato Mall leads visitors from the University’s main entrance to the heart of campus—the Mission Santa Clara de Asís. The roses and palm and olive trees of the Mission Gardens surround the historic Mission Church, which was restored in 1928. The adjacent Adobe Lodge is the oldest building on campus. In 1981, it was restored to its 1822 decor.

ACADEMIC FACILITIES

Amid all this beauty and history are modern, world-class academic facilities. Students study and thrive in places such as the Joanne E. Harrington Learning Commons, Sobrato Family Learning Center, and Orradre Library. Individuals and groups alike enjoy studying in its inviting, light-filled, and open environment. Notably, the library features an Automated Retrieval System, a high-density storage area where up to 900,000 books and other publications can be stored and retrieved using robotic-assisted technology.

Another example of Santa Clara’s excellent academic facilities is Lucas Hall, home of the Leavey School of Business. This modern 85,000-square-foot building houses classrooms, meeting rooms, offices, study spaces, and a café. Classrooms are equipped with state-of-the-art videoconferencing equipment as well as a multiplex system to record faculty lectures for later review by students. The Arts and Sciences Building adjacent to Lucas Hall is home to the Markkula Center for Applied Ethics as well as academic departments, classrooms, and a 2,200-square-foot digital television studio—among the best found on any campus nationwide.

Also nearby is the Patricia A. and Stephen C. Schott Admission and Enrollment Services Building, a welcome center for campus visitors and home to several University departments. Opened in 2012, the lobby of this green-certified structure includes technology-infused exhibits that illustrate Santa Clara’s Jesuit mission. Among other green features on campus are two solar-powered homes built in 2007 and 2009 for the U.S. Department of Energy’s Solar Decathlon. Both now serve as laboratories for solar and sustainability technologies.
A planned groundbreaking in 2018, and an opening in 2020, will introduce the new Sobrato Campus for Discovery and Innovation, made possible by a game-changing gift of $100 million from John A. and Susan Sobrato. The 300,000-square-foot, state-of-the-art facility will enhance STEM education and promote cross-disciplinary exploration.

ATHLETICS AND THE ARTS

Athletics is an important part of the University, and Bronco spirit is evident everywhere on campus. Among the newest additions to Santa Clara’s athletics facilities is Stephen Schott Stadium, home field for the men’s baseball team. The stadium features batting cages, a clubhouse, concessions stands, and seating for 1,500 fans. Across the street is Bellomy Field—eight acres of well-lit, grassy field space used for club and intramural sports like rugby and field hockey. Adjacent to Bellomy Field is the well-appointed women’s softball field, which opened in 2013. Other athletic venues on campus include the 6,400-seat Stevens Stadium, home to the men’s and women’s soccer programs, and the Leavey Event Center, the University’s premier basketball facility. Over the years, it has hosted nine West Coast Conference Basketball Championships.

The arts, an equally important part of life at Santa Clara University, are on vibrant display at the de Saisset Museum, the University’s accredited museum of art and history. The de Saisset presents changing art exhibitions throughout the year and serves as the caretaker of the University’s California History Collection, which includes artifacts from the Native American, Mission, and early Santa Clara College periods. The Edward M. Dowd Art and Art History building opened in 2016. The 45,000-square-foot facility includes modern studios for students and faculty, technology-rich classrooms, student workspaces, and meeting areas. The building features a rotunda on the third floor with an outdoor terrace area. Student, faculty, and visiting artists’ work is displayed both indoors and outdoors.

SCU Presents represents the performing arts on campus, including the Louis B. Mayer Theatre, the Fess Parker Studio Theatre, and the Music Recital Hall. Mayer Theatre is Santa Clara’s premier theatre facility, housing 500 intimate seats in either a flexible proscenium or thrust stage setting. The Fess Parker Studio Theatre has no fixed stage or seating. Its black-box design, complete with movable catwalks, provides superb flexibility in an experimental setting. The 250-seat Music Recital Hall provides a contemporary setting where students, faculty, and guest artists offer a variety of performances.

STUDENT LIFE

Santa Clara has 10 on-campus residence halls, most with traditional double rooms and large common bathrooms, others with suite arrangements conducive to more informal living. Juniors and seniors can apply for townhouse-style living in the 138-unit University Villas across from the main campus. Opened in 2012, Graham Hall is Santa Clara’s newest residence hall. The environmentally friendly building boasts 96 mini-suites, lounges, full kitchens, and laundry facilities for every eight-room “neighborhood.” In addition, the residence hall has two classrooms, a small theater, outdoor barbecue and picnic areas, and a large courtyard.

The Robert F. Benson Memorial Center serves as a hub for campus life. The Benson Center offers dining services and houses the campus bookstore, post office, and meeting rooms. The University’s main dining hall there, Marketplace, resembles an upscale food court with numerous stations and options. For a more informal experience, The Bronco is the Benson Center’s late-night venue, serving beverages and pub-style food.

Another hot-spot for student life, the Paul L. Locatelli, S.J., Student Activity Center includes a 6,000-square-foot gathering hall with a high ceiling that can accommodate dances and concerts as well as pre- and post-game activities. Designed with environmental sensitivity, the building is energy efficient and has daytime lighting controls and motion sensors to maximize use of natural light. For fitness-minded students, the Pat Malley Fitness and Recreation Center features a 9,500-square-foot weight training and cardiovascular exercise room, three basketball courts, a swimming pool, and other facilities to support the recreational and fitness needs of the campus community.

The campus features many locations for quiet reflection as well. One such place is the St. Clare Garden, which features plants and flowers arranged into five groups to portray the stages of the saint’s life. For campus members who want a more hands-on relationship with nature, the Forge Garden, SCU’s half-acre organic garden, serves as a campus space for course research, service learning, and sustainable food production.
STATEMENT OF RESPONSIBILITIES AND STANDARDS OF CONDUCT

For the most current information on the student conduct code and all policies and procedures regarding the student judicial system, please refer to the Office of Student Life website at www.scu.edu/studentlife/osd.

The goal of Santa Clara University is to provide students with a general education so that they will acquire knowledge, skill, and wisdom to deal with and contribute to contemporary society in constructive ways. As an institution of higher education rooted in the Jesuit tradition, the University is committed to creating and sustaining an environment that facilitates not only academic development but also the personal and spiritual development of its members. This commitment of the University encourages the greatest possible degree of freedom for individual choice and expression, with the expectation that individual members of the community will:

• Be honest.
• Demonstrate self-respect.
• Demonstrate respect for others.
• Demonstrate respect for the law and University policies, procedures, and standards; their administration; and the process for changing those laws, policies, procedures, and standards.

In keeping with this commitment, this Statement of Responsibilities and Standards of Conduct and related policies and procedures have been formulated to guarantee each student’s freedom to learn and to protect the fundamental rights of others. There can be no rights and freedoms if all who claim them do not recognize and respect the same rights and freedoms for others. In addition to the laws of the nation, the state of California, and the local community, the University administration has established policies, procedures, and standards deemed necessary to achieve its objectives as a Catholic, Jesuit university.

All members of the Santa Clara community are expected to conduct themselves in a manner that is consistent with the goals of the institution and to demonstrate respect for self, others, and their property. Students living off campus are members of this community, and as such are representatives to the community at large. In this regard, students living off campus maintain an equal measure of accountability to the values and expectations of all members of this community as identified in the Student Conduct Code.

Whether living in or traversing through the neighborhood, or parking in the street, students are expected to adhere to the same high standards of conduct and behavior that are consistent with the students’ developing role as responsible and accountable citizens, and that reflect well upon the Santa Clara University community.
All members of the University community have a strong responsibility to protect and maintain an academic climate in which the fundamental freedom to learn can be enjoyed by all and where the rights and well-being of all members of the community are protected. The University reserves the right to review student conduct that occurs on and off campus when such behavior is inconsistent with this expectation and the Student Conduct Code. The following acts subject students to disciplinary action:

1. Engaging in any form of academic dishonesty, such as plagiarism (representing the work or ideas of others as one’s own without giving proper acknowledgment), cheating (e.g., copying the work of another person, falsifying laboratory data, sabotaging the work of others), and other acts generally understood to be dishonest by faculty or students in an academic context. (Law students, refer to School of Law code.)

2. Illegal use, possession, or distribution of drugs. The use or possession of equipment, products, or materials that are used or intended for use in manufacturing, growing, using, or distributing any drug or controlled substance. Possessing, concealing, storing, carrying, or using any drug paraphernalia as defined in California Health and Safety Code § 11364.5, including, but not limited to, objects intended for use or designed for use in ingesting, inhaling, or otherwise introducing marijuana, cocaine, hashish, or hashish oil into the human body. A reported violation of this section will result in the confiscation and immediate disposal of drugs and drug paraphernalia by University officials.

3. Falsification or misuse, including non-authentic, altered, or fraudulent misuse, of University records, permits, documents, communication equipment, or identification cards and government-issued documents.

4. Knowingly furnishing false or incomplete information to the University, a University official, or judicial hearing board in response to an authorized request.

5. Disorderly, lewd, indecent, or obscene conduct; excessive or prolonged noise; behavior that interferes with the orderly functioning of the University, or interferes with an individual’s pursuit of an education on University-owned or controlled property or during an authorized University class, field trip, seminar, competition or other meeting, or University-related activity.

6. Detention, physical abuse, or conduct that threatens imminent bodily harm or endangers the physical well-being of any person, including harm to self.

7. Nonconsensual physical contact of a sexual nature such as sexual misconduct, sexual assault, and rape.

8. Destruction, damage, or misuse of University property or the property of any other person or group.

9. Theft or conversion of University property or the property of any other person or group.

10. Hazing, harassing, threatening, degrading language or actions, including stalking, or any practice by a group or individual that degrades a student or employee, endangers health, jeopardizes personal safety, or interferes with an employee’s duties or with a student’s class attendance or a person’s educational pursuits.

11. Engaging in single or multiple acts—verbal, written, or physical—in violation of the Student Conduct Code motivated in whole or in part by a person or group’s actual or perceived race, color, national origin, ancestry, sex, sexual orientation, age, religious creed, physical, or mental disability, medical condition, as defined by California law, marital status, citizenship status, gender identity, gender expression, genetic information, military or veteran status, or other status protected by law, and which has the purpose or effect of unreasonably and substantially interfering with an individual’s or group’s safety or security, or which creates an intimidating, hostile, and objectively offensive educational, living or working environment. Bias-related conduct in violation of the Student Conduct Code on the basis of actual or perceived religious faith and political affiliation/orientation is also prohibited.

12. Making a video recording, audio recording, or streaming audio/video of private, non-public conversations and/or meetings, inclusive of the classroom setting, without the knowledge and consent of all recorded parties.¹

13. Intentional obstruction or disruption of teaching, research, administration, disciplinary procedures, or other University activities; or obstruction or disruption that interferes with the freedom of movement, both pedestrian and vehicular.

14. Possessing, concealing, storing, carrying, or using any real or simulated weapons (including toy guns). The definition of weapons includes, but is not limited to, firearms (including BB/pellet, Airsoft, and paintball guns—regardless of whether they are disassembled), knives (switchblade, double-edged, hunting-style [fixed-blade] of any length, throwing, folding [pocket-style with a blade that locks into place], and knives with blades of 2.5 inches in length or greater), explosives (including, though not limited to, fireworks and firecrackers), ammunition, dangerous chemicals, or any other dangerous weapons or instruments, or chemicals as defined by, though not limited to, California State Law except if expressly authorized by University policy or procedure (see “Housing and Residence Life Policies” for information that pertains to Residence Life). A reported violation of this section will result in the immediate confiscation and disposal of real or simulated weapons by University officials.

15. Unauthorized entry into or use of deference of University facilities, including residence halls and other buildings and grounds, including unauthorized entry into or presence in or on a University building; unauthorized erection or use on University property of any structures including specifically but not limited to tents, huts, gazebos, shelters, platforms, and public address systems; or unauthorized use of University property for dances, concerts, assemblies, meetings, sleeping, cooking, or eating if said activity interferes with the operation of the University or surrounding community.

16. Publication, posting, or distribution through the use of University resources (e.g., computer networks, telephone lines, e-mail services, Internet connections), or at authorized University activities of material that violates the law of libel, obscenity, postal regulations, the fair use of copyrighted materials, or any law or statute or University policy.

¹The recording of classroom lectures, discussions, simulations, and other course-related activity is governed by this University recording policy, which balances the legitimate needs of students with disabilities that require the accommodation, the intellectual property concerns of its instructors, and the privacy of its students. In some instances, federal law may permit students with documented disabilities to record classroom activity. Disabilities Resources will determine if classroom recording is an appropriate academic adjustment, auxiliary aid, and/or service with respect to each individual student’s documentation.
17. Failure to comply with a reasonable request or order of a University executive or other authorized official(s); refusal or failure to leave such premises because of conduct prescribed by this code when such conduct constitutes violations of this code or a danger to personal safety, property, or educational or other appropriate University activities on such premises; or refusal or failure to identify oneself when requested by a University official provided the official is identified and indicates legitimate reason for the request.

18. Possession, consumption, sale, or action under the influence of alcoholic beverages by persons under the age of 21; furnishing alcoholic beverages to persons under the age of 21; consumption of alcoholic beverages in a public place (all areas other than individual residences, private offices, and scheduled private functions); excessive and inappropriate use of alcoholic beverages. (See also “Alcohol Policy Within the Residence Halls” on page 27 of the Student Handbook)

19. Engaging in acts or deeds that may violate existing federal, state, county or municipal laws or ordinances that materially or adversely affect the individual’s suitability as a member of the Santa Clara University community.

20. Tampering with, removing, damaging, or destroying fire extinguishers, fire alarm boxes, smoke or heat detectors, emergency call boxes, and other safety equipment anywhere on University property; creating a fire, safety, or health hazard; or failure to respond to fire alarms, evacuate buildings during alarm activation, or respond to the directions of emergency personnel.

21. Any behavior that disrupts or causes disruption of computer services; damages, alters, or destroys data or records; adversely affects computer software, programs, systems, or networks; or uses data, computer systems, or networks to devise or execute any scheme to defraud, deceive, extort, or wrongfully obtain money, property, or data.

Students who are alleged to have violated the Student Conduct Code may be subject to disciplinary action and, if applicable, may also be subject to criminal prosecution.

Retention of Hard Copy of Judicial Records

1. The hard copy file of a student’s entire judicial history is kept for a minimum of one (1) academic year beyond the academic year in which the date of the last violation of the Student Conduct Code occurred. When a student commits a violation of academic integrity, the hard copy file is retained for the remainder of a student’s academic career.

2. The files of any student who has received one or more of the following sanctions will be maintained for three (3) academic years beyond the academic year in which the student’s tenure in his/her current degree program at the University has ended:
 - Removal from University housing
 - Disciplinary probation
 - Deferred suspension
 - Suspension

3. The judicial files of a student who has been expelled will be maintained for seven (7) years beyond the academic year in which the student’s tenure at the University has ended.

The University reserves the right to change this policy at any time at its sole discretion.

Judicial Records Policy

The Office of Student Life maintains a hard copy file and a digital record of a student’s judicial history. Judicial records are educational records, and are thereby subject to the Family Educational Rights and Privacy Act (FERPA) and the University’s Student Records Policy.

The judicial record is confidential and is only shared internally with University officials in instances when the student grants permission to release the record, or there is what FERPA defines “an educational need to know” basis for the request. The judicial record is maintained throughout the student’s enrollment and thereafter as indicated below. A student’s judicial record will only be released from the hard copy file to a person or party external to the University if the student has granted permission, where the disclosure of the record is permissible under the provisions of FERPA, or where the University is required to do so by law. The digital copy of the judicial record will only be released to an external person or party where the University is required to do so by law.
University Policies

SPEAKERS POLICY

The purpose of this policy is to assure the right of free expression and exchange of ideas, to minimize conflict between the exercise of that right and the rights of others in the effective use of University facilities, and to minimize possible interference with the University’s responsibilities as an educational institution.

The time, place, and manner of exercising speech on campus are subject to regulations adopted by the University administration. Orderly conduct, noninterference with University functions or activities, and identification of sponsoring groups or individuals are required. Outdoor sound amplification will be permitted only with explicit approval of the Vice Provost for Student Life or designee. (Refer to “Amplification of Sound.”)

Members of the faculty, academic departments, staff, administrative offices, or student organizations registered by authorized student government bodies may invite non-University speakers to address meetings on campus. Student groups that have not been registered by authorized student government bodies may not invite non-University speakers to address meetings on campus. If there would likely be extensive public notice or controversy associated with the presence of any speaker on campus, prior notice should be given to the head of the Office of Marketing and Communications in the case of likely inquiries from external constituencies of the University or media; and to the Director of Campus Safety Services in the case of possible protest or disruption. Except for unusual circumstances, the notice should be at least one week before the meeting or event is to occur.

The presence of a guest speaker on the campus of Santa Clara University does not necessarily imply approval or endorsement by the University of the views expressed by the speaker or by anyone else present at the event.

The person or organization sponsoring a speaker around whom there would likely be extensive public notice or controversy is responsible for including the above statement in its advertisement, announcements, and news releases. If deemed appropriate, the University administration may also require the above statement be read at the beginning of the event.

Whenever the University administration considers it appropriate in furtherance of educational objectives, it may require either or both of the following:

• That the meeting be chaired by a person approved by the University administration

• Any invitation to a non-University speaker extended by a registered student organization, member of the faculty, staff, academic department, or administrative department may be rescinded only if the President, or his authorized designee, determines, after appropriate inquiry, that the proposed speech will constitute a clear and present danger to the orderly operation or peaceful conduct of campus activities by the speaker’s advocacy of such actions as:

– Willful damage or destruction, or seizure of University buildings or other property

– Disruption or impairment of, or interference with, classes or other University activities

– Physical harm, coercion, intimidation, or other invasion of the rights of University students, faculty, staff, or guests

– Violation of law

– Other disorder of a violent or seriously disruptive nature

LIABILITY AND PROPERTY INSURANCE

Except by expressed arrangement with the University, the University’s insurance does not cover students’ liability or students’ personal property. Students may wish to seek the services of their personal insurance agent to arrange for such coverage.

STUDENT PARKING

Parking on campus requires a valid parking permit at all times. Parking permits are available for purchase at Campus Safety Services (located in the parking structure) between 8 a.m. and midnight, seven days a week. Call 408-554-4441 for further information.

Copies of the current rules are contained in the Parking Plan, which can be found at Campus Safety’s website: www.scu.edu/cs.

TITLE IX AND AMERICANS WITH DISABILITIES ACT

The Americans with Disabilities Act, as amended requires that the university ensure that all students have equal access to academic and university programs. Students with disabilities who are registered with the Disabilities Resources Office may be qualified to receive an accommodation, auxiliary aid or service based on supporting documentation. The federal department of education has issued a clarification of laws associated with Title IX and class attendance. To be in compliance with Title IX, a school must offer appropriate accommodation to a student whose absence is related to pregnancy or childbirth for as long as the student’s doctor deems the absence to be medically necessary.

See “supporting the academic success of pregnant and parenting students under Title IX of the Education Amendments of 1972,” U.S. Department Of Education, Office For Civil Rights, June 2013.

NONDISCRIMINATION POLICY

Santa Clara University prohibits discrimination and harassment on the basis of a person’s actual or perceived race, color, national origin, ancestry, sex, sexual orientation, age, religious creed, physical or mental disability, medical condition as defined by California law, marital status, citizenship status, gender identity, gender expression, genetic information, military or veteran status, or other status protected by law in the administration of its educational policies, admissions policies, scholarships and loan programs, athletics, or employment-related policies, programs, and activities; or other University-administered policies, programs, and activities. The University condemns and will not tolerate such harassment or discrimination against any employee, student, visitor, or guest on the basis of any status protected by University policy or law, and upholds a zero tolerance policy for sexual violence and sexual misconduct.
The University will take prompt and effective corrective action including, where appropriate, disciplinary action up to and including dismissal or expulsion. The University may implement interim measures in order to maintain a safe and non-discriminatory educational environment. Additionally, it is the University's policy that there shall be no retaliation against a person alleging discrimination, harassment or sexual misconduct, cooperating with an investigation, or participating in an informal or formal resolution procedure.

The Office of EEO and Title IX is responsible for monitoring the university's compliance with federal and state nondiscrimination laws, assisting with all aspects of investigating and resolving reported violations of Policy 311: Prevention of Unlawful Discrimination, Unlawful Harassment and Sexual Misconduct. The EEO and Title IX Coordinator is also designated as the ADA/504 Coordinator responsible for coordinating efforts to comply with federal and state disability laws and regulations. The University encourages those who have witnessed or experienced any form of discrimination, harassment, or sexual misconduct to report the incident promptly, to seek all available assistance, and to pursue informal or formal resolution processes as described in this policy. Inquiries regarding equal opportunity policies, the filing of grievances, or requests for a copy of the University's grievance procedures covering discrimination and harassment complaints should be directed to:

Belinda Guthrie, EEO and Title IX Coordinator
Office of EEO and Title IX
Santa Clara University
900 Lafayette Street
Suite 100
Santa Clara, CA 95053
408-554-4113
bguthrie@scu.edu

A person may also file a complaint within the time required by law with the appropriate federal or state agency. Depending upon the nature of the complaint, the appropriate agency may be the federal Equal Employment Opportunity Commission (EEOC), the federal Office for Civil Rights (OCR), or the California Department of Fair Employment and Housing (DFEHN).

DRUG-FREE POLICIES

It is the goal of Santa Clara University to maintain a drug-free workplace and campus. The unlawful manufacture, distribution, dispensation, possession, and/or use of controlled substances or the unlawful possession, use, or distribution of alcohol is prohibited on the Santa Clara University campus, in the workplace, or as part of any of the University's activities. This includes the unlawful use of controlled substances or alcohol in the workplace even if it does not result in impaired job performance or in unacceptable conduct.

The unlawful presence of any controlled substance or alcohol in the workplace and campus itself is prohibited. The workplace and campus are presumed to include all Santa Clara premises where the activities of the University are conducted.

Violations will result in disciplinary action up to and including termination of employment for faculty and staff or expulsion of students. A disciplinary action may also include the completion of an appropriate rehabilitation program. Violations may also be referred to the appropriate authorities for prosecution.

The program information is distributed on an annual basis to all faculty, staff, and students. New staff employees are given a copy in New Employee Orientation. New faculty employees are given a copy at New Faculty Orientation. The program is reviewed at least biennially by the Office of Student Life, Affirmative Action Office, and the Department of Human Resources. Contact the Office of Student Life for a complete copy of the program.

GENDER-BASED DISCRIMINATION AND SEXUAL MISCONDUCT POLICY PURPOSE STATEMENT

Santa Clara University is committed to providing an environment free of gender-based discrimination, including sexual harassment, sexual misconduct, sexual violence and assault, relationship (dating and domestic) violence, and stalking. The University provides resources and reporting options to students, faculty, and staff to address concerns related to gender-based discrimination and sexual misconduct prohibited by Title IX and University policy, and, through training and education, works to prevent its occurrence. The University seeks to provide a consistent, caring, and timely response when sexual and gender-based misconduct occurs within the University community. When the University becomes aware of allegations of sexual misconduct, it will take prompt and effective action. This action may include an initial assessment of safety and well-being, implementing interim remedies at no cost to the complainant for protection and support, discussing how the complainant wishes to proceed, initiating an investigation, and identifying appropriate avenues for resolution. The University’s response will be overseen by the EEO and Title IX Coordinator.

The University’s Gender-Based Discrimination and Sexual Misconduct Policy applies to all students, faculty, and staff, and includes any individual regularly or temporarily employed, studying, living, visiting, or serving in an official capacity at Santa Clara University (including volunteers and contractors). The policy applies to both on-campus and off-campus conduct and to online actions that have a potential or actual adverse impact on any member of the University community, or which substantially interfere with a person’s ability to participate in University activities, or which could affect a substantial University interest or its educational mission.

POLICY STATEMENT ON WHAT CONSTITUTES CONSENT

The University adheres to California’s definition of affirmative consent for sexual activity. “Affirmative consent” means affirmative, conscious, and voluntary agreement to engage in sexual activity. Under this definition, “No” always means “No.” “Yes” means “Yes” only if it is a clear, knowing, and voluntary consent to any sexual activity. Affirmative consent must be ongoing throughout a sexual activity and can be revoked at any time.

The existence of a dating relationship between the persons involved, or the fact of past sexual relations between them, should never by itself be assumed to be an indicator of consent. Fully informed consent means that a person understands the details of a sexual interaction (who, what, when, where, why, and how).

It is the responsibility of each person involved in the sexual activity to ensure that he or she has the affirmative consent of the other or others to engage in that activity. Consent can be given by words or action, but non-verbal consent is not as clear as talking about what a person does or does not want sexually. Consent to some form of sexual activity cannot be automatically taken as consent to any other form of sexual activity. Silence—without actions demonstrating permission—cannot be assumed to show consent. Consent is also not voluntary if forced or coerced. Coercing a person into sexual activity violates the University’s
policy in the same way as physically forcing someone into sexual activity. Because alcohol or drug use can impair the capacity to consent, sexual activity while under the influence of alcohol or drugs raises questions about consent. It shall not be a valid excuse that the accused (hereafter “respondent”) believed that the reporting party (hereafter “complainant”), affirmatively consented to the sexual activity if the accused knew or reasonably should have known that the complainant was unable to consent to the sexual activity.

REPORTING OPTIONS

There are several ways to report an incident of gender-based discrimination, sexual misconduct, sexual violence, intimate partner violence, and stalking.

• For immediate, emergency assistance or to report a crime, students should call the City of Santa Clara Police Department: dial 911 or call Campus Safety Services: dial 408-554-4444. For immediate, emergency assistance or to report a crime, students should call the City of Santa Clara Police Department: dial 911 or call Campus Safety Services: dial 408-554-4444.

• Students wishing to seek confidential assistance may do so by speaking with professionals who have the privilege of maintaining confidentiality except in extreme cases of immediacy of threat or abuse of a minor. Confidential resources include on- and off-campus mental counselors, health service providers, advisors available through the University’s Violence Prevention Program, local rape crisis counselors, domestic violence resources, and members of the clergy and chaplains.

• Students may report incidents and seek support from University officials, including the EEO and Title IX Coordinator, Office of Student Life, Residence Life (including Community Facilitators, Resident Directors, Assistant Resident Directors, Neighborhood Representatives, and Assistant Area Coordinators), Spirituality Facilitators, Housing, Athletics and Recreation, Center for Student Leadership, Drahmann Center, Disability Resources, Career Center, and Campus Ministry. Theses University resources are required to report incidents to the EEO and Title IX Coordinator, who will oversee investigation and resolution process. At the time a report is made, a complainant does not have to decide whether or not to request disciplinary action.

For more information about reporting, response, and adjudication, please see the University’s Gender-Based Discrimination and Sexual Misconduct Policy or contact the EEO and Title IX Coordinator, Belinda Guthrie, 900 Lafayette Street, Suite 100, 408-554-4113, bguthrie@scu.edu, or the Violence Prevention Program Coordinator, Olga Phoenix, 862 Market Street, 408-554-4409, ophoenix@scu.edu.

COMPUTING AND ELECTRONIC RESOURCES POLICY

The computing and other electronic resources at SCU are provided solely for the support of students and employees in the pursuit of their scholarly or required academic activities, and for conducting the business of the University. General guidelines for use of computing, communication, and electronic resources on campus are based upon principles of etiquette, fairness, and legality. In using these resources at SCU, community members are expected to be respectful of other individuals’ ability to enjoy equal access to the resources, refrain from malicious or annoying behavior, and abide by state and national laws, including those related to intellectual property and copyright. More details are available in the University’s Acceptable Use Policy, accessible at: it.scu.edu/policies/NetPolicy.shtml, or from Information Technology.

SMOKE-FREE AND TOBACCO-FREE POLICY

Santa Clara University has adopted a smoke-free and tobacco-free policy on the University campuses in Santa Clara and Berkeley. All University faculty, staff, students, and visitors are covered by this policy. In addition, all persons using University facilities are subject to this policy.

The term “smoking” means inhaling, exhaling, burning, or carrying of any lighted or heated tobacco product, as well as smoking substances other than tobacco, or operating electronic smoking devices and other smoking instruments. “Tobacco product” means all forms of tobacco, including but not limited to cigarettes, cigars, pipes, hookahs, electronic smoking devices, and all forms of smokeless tobacco. “Tobacco-related” means the use of a tobacco brand or corporate name, trademark, logo, symbol, motto, or advertising message that is identifiable with the ones used for any tobacco product brand or company which manufactures tobacco products.

General Rules:

• Smoking is prohibited.

• The use of tobacco products is prohibited.

• Sale and advertising of tobacco products and tobacco-related products are prohibited.

POLICY FOR WITHDRAWAL FOR HEALTH REASONS

Students may experience an illness, injury, or psychological condition, herein referred to as a health condition, which significantly impairs their ability to function successfully or safely in their roles as students. In these instances, time away from the University for treatment and recovery can restore functioning to a level that will enable them to return to the University.

The Vice Provost for Student Life or designee, in consultation with the appropriate mental and medical health professionals and other staff as deemed necessary, is responsible for the implementation of the policy.

Contact the Office of Student Life for a copy of the entire Policy for Withdrawal for Health Reasons or refer to the website: www.scu.edu/studentlife/resources/policies.cfm.
Academic Accreditations

University Accreditation
Western Association of Schools and Colleges (WASC)
Senior College and University Commission
985 Atlantic Avenue, Suite 100
Alameda, CA 94501
510-748-9001

Specialized Academic Accreditations
American Association of Museums
ABET Inc.
American Bar Association
American Chemical Society
Association of American Law Schools
Association of Theological Schools
Association to Advance Collegiate Schools of Business–Accounting
California Board of Behavioral Sciences Accredited Marriage and Family Therapists
California State Commission on Teacher Credentialing
State Bar of California

Santa Clara University Senior Leadership

UNIVERSITY ADMINISTRATION
Michael E. Engh, S.J., Ph.D. ... President
Dennis C. Jacobs, Ph.D. .. Provost and Vice President for Academic Affairs
Michael P. Crowley, MBA ... Vice President for Finance and Administration
Michael B. Sexton, M.A. ... Vice President for Enrollment Management
James C. Lyons, MPA .. Vice President for University Relations
Molly A. McDonald, J.D. .. Chief of Staff
Renee Baumgartner, Ph.D. ... Director of Athletics
John M. Ottoboni, J.D. ... General Counsel and Chief Operating Officer
Dorian Llywelyn, S.J. ... Executive Director, Ignatian Center for Jesuit Education
Dennis C. Smolarski, S.J. .. Interim Director of Campus Ministry

OFFICE OF THE PROVOST
Dennis C. Jacobs, Ph.D. .. Provost and Vice President for Academic Affairs
Debbie Tahmassebi, Ph.D. ... Dean, College of Arts and Sciences
Caryn L. Beck-Dudley, J.D. .. Dean, Leavey School of Business
Alfonso Ortega, Ph.D. .. Dean, School of Engineering
Lisa A. Kloppenberg, J.D. .. Dean, School of Law
Sabrina Zirkel, Ph.D. .. Dean, School of Education and Counseling Psychology
Kevin O’Brien, S.J., STL, J.D. Dean, Jesuit School of Theology, Santa Clara University
Elsa Chen, Ph.D. .. Vice Provost, Academic Affairs
Robert Owen, DPA .. Vice Provost, Information Services, and Chief Information Officer
Ed Ryan, Ph.D. .. Vice Provost, Planning and Institutional Effectiveness
Jeanne Rosenberger, M.A. ... Vice Provost, Student Life, and Dean of Students

COLLEGE OF ARTS AND SCIENCES
Debbie Tahmassebi, Ph.D. ... Dean
John Birmingham, Ph.D. Associate Dean
Stephen C. Lee, Ph.D. ... Associate Dean
Kate Morris, Ph.D. .. Associate Dean
Kathleen Villarruel Schneider, J.D. Senior Assistant Dean
Rafael D. Ulate, M.A. ... Senior Assistant Dean
Michelle Bezanson, Ph.D. Chair, Anthropology
Andrea Pappas, M.A. ... Chair, Art and Art History
Angel L. Islas, Ph.D. ... Chair, Biology
Dongsoo Shin, Ph.D. .. Chair, Chemistry and Biochemistry
Daniel W. Turkeltaub, Ph.D. ... Chair, Classics
Michael T. Whalen, MFA ... Chair, Communication
Juliana Chang, Ph.D. .. Chair, Economics
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helen Popper, Ph.D.</td>
<td>Chair, Environmental Studies and Sciences</td>
</tr>
<tr>
<td>Nancy C. Unger, Ph.D.</td>
<td>Chair, History</td>
</tr>
<tr>
<td>Edward F. Schaefer, Ph.D.</td>
<td>Chair, Mathematics and Computer Science</td>
</tr>
<tr>
<td>Jill L. Pellettiere, Ph.D.</td>
<td>Chair, Modern Languages and Literatures</td>
</tr>
<tr>
<td>Teresa McCollough, DMA</td>
<td>Chair, Music</td>
</tr>
<tr>
<td>Lawrence J. Nelson, Ph.D.</td>
<td>Chair, Philosophy</td>
</tr>
<tr>
<td>Betty A. Young, Ph.D.</td>
<td>Chair, Physics</td>
</tr>
<tr>
<td>Gregory P. Corning, Ph.D.</td>
<td>Chair, Political Science</td>
</tr>
<tr>
<td>Patricia M. Simone, Ph.D.</td>
<td>Chair, Psychology</td>
</tr>
<tr>
<td>David B. Gray, Ph.D.</td>
<td>Chair, Religious Studies</td>
</tr>
<tr>
<td>Enrique S. Pumar, Ph.D.</td>
<td>Chair, Sociology</td>
</tr>
<tr>
<td>David J. Popalisky, MFA.</td>
<td>Chair, Theatre and Dance</td>
</tr>
<tr>
<td>Linda Garber, Ph.D.</td>
<td>Chair, Women’s and Gender Studies</td>
</tr>
<tr>
<td>Barbara M. Burns, Ph.D.</td>
<td>Director, Child Studies Program</td>
</tr>
<tr>
<td>Anna Sampaio, Ph.D.</td>
<td>Chair, Ethnic Studies Program</td>
</tr>
<tr>
<td>Stephen C. Lee, Ph.D.</td>
<td>Director, Individual Studies Program</td>
</tr>
<tr>
<td>Major Jason Noble.</td>
<td>Director, Military Science Program</td>
</tr>
<tr>
<td>Patricia M. Simone, Ph.D.</td>
<td>Director, Neuroscience Program</td>
</tr>
<tr>
<td>Craig M. Stephens, Ph.D.</td>
<td>Director, Public Health Program</td>
</tr>
</tbody>
</table>

LEAVEY SCHOOL OF BUSINESS

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caryn L. Beck-Dudley, J.D.</td>
<td>Dean</td>
</tr>
<tr>
<td>Narendra Agrawal, Ph.D.</td>
<td>Associate Dean of Faculty</td>
</tr>
<tr>
<td>Susan Parker, Ph.D.</td>
<td>Associate Dean of Curriculum</td>
</tr>
<tr>
<td>Larry Robertson, Ph.D.</td>
<td>Associate Dean, Executive Development Center</td>
</tr>
<tr>
<td>Laura E. Hauff.</td>
<td>Senior Assistant Dean</td>
</tr>
<tr>
<td>Carolyn Evans, Ph.D.</td>
<td>Senior Assistant Dean, Graduate Business Programs</td>
</tr>
<tr>
<td>Donna Perry, J.D.</td>
<td>Assistant Dean, Marketing and Communications</td>
</tr>
<tr>
<td>Jo-Anne Shibes, M.A.</td>
<td>Senior Assistant Dean, Undergraduate Business Programs</td>
</tr>
<tr>
<td>Elizabeth Barron Silva, M.A.</td>
<td>Assistant Dean, Finance and Administration</td>
</tr>
<tr>
<td>Haidan Li, Ph.D.</td>
<td>Chair, Accounting</td>
</tr>
<tr>
<td>Linda Kamas, Ph.D.</td>
<td>Chair, Economics</td>
</tr>
<tr>
<td>Carrie Pan, Ph.D.</td>
<td>Chair, Finance</td>
</tr>
<tr>
<td>Manuel G. Velasquez, Ph.D.</td>
<td>Chair, Management</td>
</tr>
<tr>
<td>Kirbi Kalyanam, Ph.D.</td>
<td>Chair, Marketing</td>
</tr>
<tr>
<td>Manoochehr Ghiassi, Ph.D.</td>
<td>Co-chair, Operations Management and Information Systems</td>
</tr>
<tr>
<td>Haibing Lu, Ph.D.</td>
<td>Co-chair, Operations Management and Information Systems</td>
</tr>
<tr>
<td>Helen Popper, Ph.D.</td>
<td>Director, Individual Studies Program</td>
</tr>
</tbody>
</table>

SCHOOL OF ENGINEERING

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfonso Ortega, Ph.D.</td>
<td>Associate Dean, Graduate Programs</td>
</tr>
<tr>
<td>Aleksandar Zecevic, Ph.D.</td>
<td>Associate Dean, Undergraduate Programs</td>
</tr>
<tr>
<td>Ruth E. Davis, Ph.D.</td>
<td>Associate Dean, Research and Faculty Development</td>
</tr>
<tr>
<td>Christopher Kitts, Ph.D.</td>
<td>Senior Assistant Dean</td>
</tr>
<tr>
<td>David E. Clark, MBA & ME.</td>
<td>Senior Assistant Dean</td>
</tr>
<tr>
<td>Stephen A. Chiappari, Ph.D.</td>
<td>Chair, Applied Mathematics</td>
</tr>
<tr>
<td>Yuling Yan, Ph.D.</td>
<td>Chair, Bioengineering</td>
</tr>
<tr>
<td>Reynaud L. Serrette, Ph.D.</td>
<td>Acting Chair, Civil Engineering</td>
</tr>
<tr>
<td>Nam Ling, Ph.D.</td>
<td>Chair, Computer Engineering</td>
</tr>
<tr>
<td>Shoba Krishnan, Ph.D.</td>
<td>Chair, Electrical Engineering</td>
</tr>
<tr>
<td>Frank Barone, M.S.</td>
<td>Chair, Engineering Management</td>
</tr>
<tr>
<td>Jessica Kuczynski, Ph.D.</td>
<td>Director, General Engineering Program</td>
</tr>
<tr>
<td>Drazen Fabris, Ph.D.</td>
<td>Chair, Mechanical Engineering</td>
</tr>
</tbody>
</table>

CENTERS OF DISTINCTION

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirk O. Hanson, MBA.</td>
<td>Executive Director, Markkula Center for Applied Ethics</td>
</tr>
<tr>
<td>Thane Kreiner, Ph.D.</td>
<td>Executive Director, Miller Center for Social Entrepreneurship</td>
</tr>
<tr>
<td>Dorian Llywelyn, S.J.</td>
<td>Executive Director, Ignatian Center for Jesuit Education</td>
</tr>
</tbody>
</table>

ADMINISTRATION AND FINANCE

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael P. Crowley.</td>
<td>Vice President, Finance and Administration</td>
</tr>
<tr>
<td>TBD</td>
<td>Associate Vice President, Finance</td>
</tr>
<tr>
<td>Jane H. Barrantes, M.Ed.</td>
<td>Assistant Vice President, Auxiliary Services</td>
</tr>
<tr>
<td>Charles Ambregel.</td>
<td>Assistant Vice President, Human Resources</td>
</tr>
<tr>
<td>Christopher M. Shay, M.S.</td>
<td>Assistant Vice President, University Operations</td>
</tr>
<tr>
<td>John E. Kerrigan, CFA.</td>
<td>Chief Investment Officer</td>
</tr>
</tbody>
</table>

ENROLLMENT MANAGEMENT

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael B. Sexton, M.A.</td>
<td>Vice President, Enrollment Management</td>
</tr>
<tr>
<td>Eva Blanco Masias, M.Ed.</td>
<td>Dean of Undergraduate Admission</td>
</tr>
<tr>
<td>Nan Merz, M.S.</td>
<td>Dean of University Financial Aid Services</td>
</tr>
</tbody>
</table>

UNIVERSITY RELATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>James C. Lyons, MPA.</td>
<td>Vice President, University Relations</td>
</tr>
<tr>
<td>Nancy T. Calderon, B.A.</td>
<td>Associate Vice President, Principal Gifts</td>
</tr>
<tr>
<td>Katie Rohrer, B.S., MBA.</td>
<td>Associate Vice President, Development and Campaigns</td>
</tr>
<tr>
<td>Mike Wallace, B.A.</td>
<td>Associate Vice President, Constituent Relations</td>
</tr>
<tr>
<td>Kathryn Kale, BSC.</td>
<td>Assistant Vice President, Alumni Relations</td>
</tr>
<tr>
<td>Kathryn Kale.</td>
<td>Interim Vice President, Marketing and Communications</td>
</tr>
</tbody>
</table>
Board of Trustees
Paul Gentzkow, Chair
Margaret M. Bradshaw, Vice Chair*

Erick Berrelleza, S.J.
Matthew Carnes, S.J.
William S. Carter
Louis M. Castruccio
Howard Charney
Gerald T. Cobb, S.J.
Michael E. Engh, S.J.*
Robert J. Finocchio Jr.
Henry J. Gage III
Elizabeth (Libby) Gates MacPhee
Peter C. Gotcher
Rebecca Guerra
Salvador O. Gutierrez
Tim Haley
Ellen M. Hancock
Richard D. Haughey
Richard J. Justice
Timothy R. Lannon, S.J.
William P. Leahy, S.J.
Heidi LeBaron Leupp
John C. Lewis
Arthur F. Liebscher, S.J.*
Robert Lloyd

Kristi Markkula Bowers
Ronnie Lott
Joseph M. McShane, S.J.
Jeffrey A. Miller
Kapil K. Nanda
Bryan Neider
Edward A. Panelli
Betsy Rafael
Willem P. Roelandts
Stephen C. Schott
Robert H. Smith
Timothy Smith
John A. Sobrato
John M. Sobrato
Larry W. Sonsini
Steven Sordello
Mary Stevens
Gilbert Sunghera, S.J.
William E. Terry
Gregory Vaughan
Charmaine A. Warmenhoven
Agnieszka Winkler

Penelope (Penny) Alexander
Mary Atwell*
Marie Barry
Janice Berthold*
Michael Blach
Bob Breshock*
Julie Breshock*
Joseph R. Bronson
Rudolf L. Brutoco, M.D.
Alexandria L. Cabral
Kathryn Chou
Christi Coors Ficeli
Jim Cunha
Michael Dachs
Ray Davilla Jr.
Thalia Doherty
Kathleen Duncan
Steve Finn
Gregory Goethals, S.J.
Joseph Gonyea III
Joseph Grasser
Ginny Haughhey
Mike Heffernan
Laurie Hernandez
Catherine Horan-Walker
Therese Ivancovich
Ryan Joy
David Le Baron
Carla Lewis
Jim Losch
Casey McGlynn

R. Donald McNeil
John McPhee
Martin Melone
Anne Milligan
Peter Moore
Peter Morin
Dan Mount
Patrick Nally
Bryan Neider
Michael Nicoletti
Kyle Ozawa
Claude D. Perasso Jr.
Rise Jones Pichon
Marc Reboh
Julie Robson
Andrew Schatzman*
Stephen E. Schott
Byron Scordelis
Lisa Stevens
Margaret Taylor
John Torrey
Sue Valeriote
Maria Nash Vaughn
Carolyn Von Der Ahe
Robert Williams
Lewis Wolff
Patrick Yam
S. Christine Zanello
Andrea Zurek

*Ex officio
Engineering Advisory Board
July 1, 2018 – June 30, 2019

Marcy Alstott
Consultant/Executive
OpsTrak Consulting/Dash Robotics

Jack Balletto
Managing Member, Sunrise Capital Funds
Balletto Management Company

James Bickford
Global Powerwall Program Manager
Tesla Motors

Ivo Bolsens
Vice President, Chief Technology Officer
Xilinx, Incorporated

Chuck Cantoni
Former President & CEO
Alara, Incorporated

Bill Carter
Retired, Xilinx Fellow
Board of Trustees

Kevin Carter
Partner
SV Angel

Ross Dakin
Senior Strategist, Global Tech & Operations
Bank of America

Jessica Gilmartin
Chief Marketing Officer
Stealth Start-Up

Mir Imran
Chairman & CEO Modulus, Inc.
Managing Director
InCube Ventures LP

Waguih Ishak, Ph.D., Co-Chairman
Division Vice President, Science & Technology
Director, Corning West Technology Center
Corning Incorporated

Jack Jia
Chief Executive Officer
Trusper, Incorporated

Allison Kopf
Founder and Chief Executive Officer
Agrilyst

James P. Losch
Retired, Chairman & Founder
Hallmark Construction

James Lyons, Ex-Officio Member
Vice President for University Relations
Santa Clara University

Brad Mattson
Chief Executive Officer
Siva Power

John Maydonovitch
President & CEO
MCE, Incorporated

Eric Monsef
Principal & Co-Founder
IncYou

Renee Niemi
Senior Vice President
GM Smart Home Group
Logitech, Inc

Alfonso Ortega
Dean of School of Engineering
Santa Clara University

Richard L. Reginato
Chief Engineer – THAAD Development
Program Manager
Lockheed Martin Space Systems Company

Pam Rissman
SJUSD Teacher, Math & Stem
Dartmouth Middle School
University Faculty

ENDOWED CHAIRS
University

Joseph S. Alemany Professor
Gina Hens-Piazza (Jesuit School of Theology)

Pedro Arrupe, S.J. Professor
Paul A. Soukup, S.J. (Communication)

Fay Boyle Professor
Enrique S. Pumar (Sociology)

Howard and Alida Charney Professor
Thane Kreiner (Miller Center for Social Entrepreneurship)

Edmund Campion, S.J. Professor
Paul P. Mariani, S.J. (History)

Peter Canisius, S.J. Professor
Mark A. Aschheim (Civil Engineering)

Ignacio Ellacuría, S.J., University Professor for Jesuit Studies
Jerome Baggett (Jesuit School of Theology)

Lee and Seymour Graff Professor
Ruth E. Davis (Computer Engineering)

Lee and Seymour Graff Professor II
Betty A. Young (Physics)

Paul L. Locatelli, S.J. Professor
Michael Zampelli, S.J. (Theatre and Dance)

J. Thomas and Kathleen L. McCarthy Professor
David Feldman (Counseling Psychology)

Regis and Dianne McKenna Professor
Shannon Vallor (Philosophy)

John Courtney Murray, S.J. Professor of Social Ethics
Kirk O. Hanson (Markkula Center)

John Nobili, S.J. Professor
Amelia Fuller (Chemistry and Biochemistry)

Presidential Professor of Ethics and the Common Good
Gary Spitko (Law)

Phil and Bobbie Sanfilippo Professor
Allen Hammond IV (Law)

Sanfilippo Family Professor
Nam Ling (Computer Engineering)

Santa Clara Jesuit Community Professor
Paul G. Crowley, S.J. (Religious Studies)
Benjamin and Mae Swig Professor
Narendra Agrawal (Operations Management and Information Systems)

Harold and Eddyhe Toso Professor
(open)

College of Arts and Sciences
Augustin Cardinal Bea, S.J., University Professor
Thomas G. Plante (Psychology)

Patrick A. Donohoe, S.J. Professor
Laura L. Ellingson (Communication and Women’s and Gender Studies)

Bernard J. Hanley Professor
David B. Gray (Religious Studies)

Gerard Manley Hopkins, S.J. Professor
Ronald T. Hansen (English)

Fletcher Jones Professor
Eric Tillman (Chemistry)

Clare Boothe Luce Professor
Grace Stokes (Chemistry) Nicolette Meshkat (Mathematics and Computer Science)

Knight Ridder/San Jose Mercury News Professor
Michael T. Whalen (Communication)

Walter E. Schmidt, S.J. Professor
Barbara A. Molony (History)

Michael and Elizabeth Valeriote Professor
Janice Edgerly-Rooks (Biology)

William J. Rewak Professor
Aldo L. Billingslea (Theater and Dance)

School of Engineering
Thomas J. Bannan Professor
Sally L. Wood (Electrical Engineering)

Wilmot J. Nicholson Family Professor
Sukhmander Singh (Civil Engineering)

Robert W. Peters Professor
Edwin Maurer (Civil Engineering)

John M. Sobrato Professor
Alfonso Ortega (Engineering)

William and Janice Terry Professor
Chris Kitts (Mechanical Engineering) (Electrical Engineering)

School of Business
Michael Accolti, S.J. Professorship for Leadership
Barry Z. Posner (Management)

Mario L. Belotti Professor
Hersh M. Shefrin (Finance)

William T. Cleary Professor
Albert V. Bruno (Marketing)

Charles J. Dirksen Professor of Business Ethics
Manuel G. Velasquez (Management)

Robert and Susan Finocchio Professor
Kris J. Mitchener (Economics)

W. M. Keck Foundation Professor
Mario L. Belotti (Economics)

Glenn Klimek Professor
Meit Statman (Finance)

Robert and Barbara McCullough Professor
Yongtae Kim (Accounting)

Naumes Family Professor
Gregory A. Baker (Management)

Michel and Mary Orradre Professor
Alexander J. Field (Economics)

Stephen and Patricia Schott Professor
(open)

L. J. Skaggs Distinguished Professor
Kirthi Kalyanam (Marketing)

William and Janice Terry Professor
Sanjiv Das (Finance)

Gerald and Bonita A. Wilkinson Professor
Hoje Jo (Finance)

School of Law
Katharine and George Alexander Professorship
Michelle Oberman (Law)

John A. and Elizabeth H. Sutro Professor
David L. Sloss (Law)

Irene Mabie Professor
Kerry Macintosh (Law)
Engineering Faculty

DAVOOD ABDOLLAHIAN (2014)
Lecturer in Mechanical Engineering
B.S. 1973, University of Michigan
M.S. 1975, Ph.D. 1979, University of California, Berkeley

RAMESH ABHARI (2013)
RTI Lecturer in Electrical Engineering
B.Sc. 1992, Amirkabir University; M.Sc. 1996, Iran University of Science and Technology; Ph.D. 2003, University of Toronto

MARGARETA ACKERMAN (2017)
Assistant Professor in Computer Engineering
B.Math 2006, M.Math 2007, Ph.D. 2012, University of Waterloo, Canada

KOOROSH AFLATOONI (2014)
Lecturer in Mechanical Engineering
B.Sc. 1989, Amirkabir University, Tehran; M.A.Sc 1994; Ph.D. 1998, University of Waterloo, Waterloo, Canada

ELLIE AHI (2008)
Lecturer in Engineering Management and Leadership
B.S. 1983, San Jose State University; M.S. 2007, Santa Clara University

AHMED AMER (2009)
Associate Professor in Computer Engineering
B.S. 1994, M.S. 1997, American University in Cairo; Ph.D. 2002, University of California, Santa Cruz

MOE AMOUZGAR (2014)
Lecturer in Computer Engineering
B.E. 1989, McGill University, Canada; M.S. 2000, Southern Methodist University; Ph.D. 2013, Concordia University, Canada

FARZANA ANSARI (2016)
Lecturer in Bioengineering
B.S. 2009, University of Southern California
M.S. 2012, Ph.D. 2015, University of California, Berkeley

ISMAIL EMRE ARACI (2015)
Assistant Professor of Bioengineering
Ph.D. 2010, University of Arizona

ZEYNEP ARACI (2017)
Lecturer in Bioengineering
B.S. 2001, Ege University; M.Sc. 2003, Izmir Dokuz Eylul University; M.Sc. 2007; Ph.D. 2010, University of Arizona

MARK ASCHHEIM (2003)
Professor of Civil Engineering;
Peter Canisius SJ Professor;
Chair, Department of Civil Engineering
Registered Professional Engineer in Civil Engineering

PRASHANTH ASURI (2011)
Assistant Professor of Bioengineering
B.E. 2003, National Institute of Technology; Ph.D. 2007, Rensselaer Polytechnic Institute

DAVAR ATKINSON (1999)
Associate Professor of Computer Engineering

AMIR L. ATTIA (2018)
Lecturer in Computer Engineering

MOHAMMAD AYOUBI (2008)
Associate Professor of Mechanical Engineering
B.S. 1991, Amirkabir University;
M.S. 1998, Sharif University of Technology;
Ph.D. 2007, Purdue University

SALMAN AZHAR (2003)
Lecturer in Computer Engineering
B.S. 1987, Wake Forest University;
M.S. 1989, Ph.D. 1993, Duke University

HEE MAN BAE (2015)
Lecturer in Mechanical Engineering
B.S. 1970, Texas Tech University; M.S. 1972, Iowa State University; Ph.D. 1975, University of Oklahoma

OCTAVE BAKER (1985)
Lecturer in Engineering Management and Leadership
B.S. 1966, Drake University; M.S. 1973, California State University, San Francisco; Ph.D. 1977, University of Michigan

BONITA BANDUCCI (2000)
Lecturer in Engineering
B.A. 1969, University of California, Santa Cruz

ARUN BANERJEE (2010)
Lecturer in Applied Mathematics and Computer Engineering
B.S. 1995, University of Washington; M.A. 1996, Stanford University; M.S. 1999, GiK Institute, Pakistan;
M.S. 2003, Ph. D. 2006, Purdue University

AMERICO CARVALHO (2017)
Lecturer in Computer Engineering
M.S. 1993, Ecole Informatique & Techniques
Avancées, Paris, France; MBA 1995, Université René Descartes, Paris, France; Ph.D. 2002, Université Pierre & Marie Curie, Paris, France

SHUE-LEE CHANG (2007)
Lecturer in Electrical Engineering
B.S. 1982, Chung-Yuan University, Taiwan; M.S. 1990, California State University, Fullerton; Ph.D. 2001, Santa Clara University

AJAY CHATTERJEE (2015)
Lecturer in Mechanical Engineering
B.Tech. 1980, Indian Institute of Technology Delhi; Ph.D. 1986, Pennsylvania State University

STEVE BASSI (2014)
Lecturer in Computer Engineering
B.S. 2006, Santa Clara University; M.S. 2008, US Naval Postgraduate School

Lecturer in Mechanical Engineering
B.S. 1989, University of Portland; M.S. 1995, University of California, DAVIS; Ph.D. 2000, Santa Clara University

PETER BERGSTROM (2014)
Lecturer in Computer Engineering
B.S. 2004, B.A. 2004, University of California, Santa Cruz; M.S. 2009, Santa Clara University

NIRDOSH BHATNAGAR (2002)
Lecturer in Applied Mathematics and Computer Engineering
M.S., Ph.D., Stanford University

RAEAF BHATTI (2010)
Lecturer in Computer Engineering
B.S. 1999, GiK Institute, Pakistan;
M.S. 2003, Ph. D. 2006, Purdue University

MOHAMMAD AYOUBI (2008)
Associate Professor of Mechanical Engineering
B.S. 1991, Amirkabir University;
M.S. 1998, Sharif University of Technology;
Ph.D. 2007, Purdue University

SALMAN AZHAR (2003)
Lecturer in Computer Engineering
B.S. 1987, Wake Forest University;
M.S. 1989, Ph.D. 1993, Duke University

HEE MAN BAE (2015)
Lecturer in Mechanical Engineering
B.S. 1970, Texas Tech University; M.S. 1972, Iowa State University; Ph.D. 1975, University of Oklahoma

OCTAVE BAKER (1985)
Lecturer in Engineering Management and Leadership
B.S. 1966, Drake University; M.S. 1973, California State University, San Francisco; Ph.D. 1977, University of Michigan

BONITA BANDUCCI (2000)
Lecturer in Engineering
B.A. 1969, University of California, Santa Cruz

ARUN BANERJEE (2010)
Lecturer in Applied Mathematics and Computer Engineering
B.S. 1995, University of Washington; M.A. 1996, Stanford University; M.S. 1999, GiK Institute, Pakistan;
M.S. 2003, Ph. D. 2006, Purdue University

AMERICO CARVALHO (2017)
Lecturer in Computer Engineering
M.S. 1993, Ecole Informatique & Techniques
Avancées, Paris, France; MBA 1995, Université René Descartes, Paris, France; Ph.D. 2002, Université Pierre & Marie Curie, Paris, France

SHUE-LEE CHANG (2007)
Lecturer in Electrical Engineering
B.S. 1982, Chung-Yuan University, Taiwan; M.S. 1990, California State University, Fullerton; Ph.D. 2001, Santa Clara University

AJAY CHATTERJEE (2015)
Lecturer in Mechanical Engineering
B.Tech. 1980, Indian Institute of Technology Delhi; Ph.D. 1986, Pennsylvania State University
STEPHEN A. CHIAPPARI (1990)
Senior Lecturer in Applied Mathematics
Chair, Department of Applied Mathematics
B.S. 1984, Santa Clara University;
Ph.D. 1990, University of Illinois; Urbana-Champaign

RUTH E. DAVIS (1979)
Professor of Computer Engineering;
Associate Dean, Undergraduate Studies;
Lee and Seymour Graff Professor
B.S. 1973, Santa Clara University; M.S. 1976, San Jose State University; Ph.D. 1979, University of California, Santa Cruz

PAUL DAVISON (2009)
Lecturer in Bioengineering and Engineering Management and Leadership
B.S. 1984, California Polytechnic University, Pomona; M.S. 2008, Santa Clara University

RANCE DELONG (2003)
Lecturer in Computer Engineering
B.S. 1985, Roanoke College; Ph.D. 1991, University of Virginia

VALERIA DEPAIVA (2011)
Lecturer in Computer Engineering

BEHNAM DEZFOULI (2016)
Assistant Professor in Computer Engineering
B.S. 2006, M.S. 2009, University of Najafabad; Ph.D. 2014, Universiti Teknologi Malaysia

ALBERTO DIAZ-TOSTADO (2017)
Lecturer in Computer Engineering
B.S. 2016, M.S. 2017, Santa Clara University

NIK DJORDJEVIC (2010)
Lecturer in Mechanical Engineering
B.S. 1976, M.S. 1978, University of California, Los Angeles

HUGH DOUGHERTY (1982)
Lecturer in Mechanical Engineering
M.E. 1958, Stevens Institute of Technology; MAEE 1963, Ph.D. 1966, Rensselaer Polytechnic Institute

MICHAEL DREW (2005)
Lecturer in Mechanical Engineering
B.S. 1994, University of Virginia; M.S. 2002, Ph.D. 2005, University of California, Berkeley

SANTANU DUTTA (2001)
Lecturer in Electrical Engineering

YACOUB EL-ZIQ (1993)
Lecturer in Electrical Engineering
B.Sc. 1972, Cairo University; M.Sc. 1975, New York City College; Ph.D. 1977, Utah State University

AMR ELKADY (2014)
Lecturer in Computer Engineering
B.S. 1994, American University in Cairo; M.S. 2005, Carleton University

SILVIA M. B. FIGUEIRA (1998)
Lecturer in Electrical Engineering
B.Sc. 1996, Federal University of Rio de Janeiro; M.S. 1999, University of California, San Diego

E. JOHN FINNEMORE (1979)
Professor Emeritus of Civil Engineering
B.S. 1960, University of London; M.S. 1966, Ph.D. 1970, Stanford University; Registered Professional Engineer in Civil Engineering

CARL FUSSELL (1977)
Lecturer in Computer Engineering
B.S. 1971, Santa Clara University; M.S. 1973, Loyola University
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Education</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam Ghadiri</td>
<td>Lecturer in Engineering</td>
<td>B.A., 2006, University of California, Berkeley; J.D., 2011, University of San Francisco, School of Law</td>
<td></td>
</tr>
<tr>
<td>Majid Garghi</td>
<td>Lecturer in Mechanical Engineering</td>
<td>B.Sc. 2000, M.Sc. 2002, Sharif University of Technology; Ph.D. 2008, University of Waterloo</td>
<td></td>
</tr>
<tr>
<td>Alec Go</td>
<td>Lecturer in Computer Engineering</td>
<td>B.S. Pennsylvania State University; M.S. 2012, Stanford University</td>
<td></td>
</tr>
<tr>
<td>Brian Green</td>
<td>Lecturer in Bioengineering and Engineering</td>
<td>B.S. 2000, University of California, Davis; M.A. 2006, Ph.D. 2013, Graduate Theological Union, Berkeley</td>
<td></td>
</tr>
<tr>
<td>Bruce S. Greene</td>
<td>Lecturer in Electrical Engineering</td>
<td>B.S. 1987, Boston University; M.S. 1989, University of Illinois; Ph.D. 2003, Santa Clara University</td>
<td></td>
</tr>
<tr>
<td>Radhika S. Grover</td>
<td>Lecturer in Computer Engineering</td>
<td>B.S. 1991, Indian Institute of Technology; Roorkee, India; M.S. 1992, Birla Institute of Technology, India; Ph.D. 2003, Santa Clara University</td>
<td></td>
</tr>
<tr>
<td>Kiran Gunnam</td>
<td>Lecturer in Electrical Engineering</td>
<td>B. Tech. 1999 Jawaharlal Nehru Technological University India; M.S.E.E. 2003, Ph.D. Computer Engineering 2006 Texas A& M University, College Station, Texas</td>
<td></td>
</tr>
<tr>
<td>Abhishek Gupta</td>
<td>Lecturer in Computer Engineering</td>
<td>B.Tech. 2008, Indian Institute of Technology at Roorkee, India; M.S. 2011, Ph.D. 2014, University of Illinois, Urbana-Champaign</td>
<td></td>
</tr>
<tr>
<td>Ying Hao</td>
<td>Lecturer in Bioengineering</td>
<td>M.D., Ph.D. 1995, Tongji Medical College, Huazhong University of Science and Technology; M.S. 2008, Stanford University</td>
<td></td>
</tr>
<tr>
<td>Masum Hasan</td>
<td>Lecturer in Computer Engineering</td>
<td>B.Eng/M. Eng 1985, Odessa National Polytechnic University; M Math 1991, Ph.D. 1996, University of Waterloo</td>
<td></td>
</tr>
<tr>
<td>Rachel He</td>
<td>Associate Professor of Civil Engineering</td>
<td>B.E. 1993, M.E. 1996, Chongqing University, People’s Republic of China; Ph.D. 2000, University of Wisconsin, Madison</td>
<td></td>
</tr>
<tr>
<td>Timothy J. Healy</td>
<td>Professor of Electrical Engineering</td>
<td>BSEE 1958, Seattle University; MSEE 1959, Stanford University; Ph.D. 1966, University of Colorado, Boulder</td>
<td></td>
</tr>
<tr>
<td>Neyram Hemati</td>
<td>Lecturer in Mechanical Engineering</td>
<td>M.S. 1984, Ph.D. 1988, Cornell University</td>
<td></td>
</tr>
<tr>
<td>Timothy K. Hight</td>
<td>Associate Professor of Mechanical Engineering</td>
<td>B.S. 1972, California Institute of Technology; M.S. 1973, Ph.D. 1977, Stanford University; Registered Professional Engineer in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>Mahantesh S. Hiremath</td>
<td>Lecturer in Mechanical Engineering</td>
<td>M.S. 1984, Ph. D. 1987, Ohio State University</td>
<td></td>
</tr>
<tr>
<td>Chris Hoffman</td>
<td>Lecturer in Computer Engineering</td>
<td>B.A. 2006, University of La Verne; M.S. 2013, Santa Clara University</td>
<td></td>
</tr>
<tr>
<td>Nicholas Hoh</td>
<td>Lecturer in Mechanical Engineering</td>
<td>B.S. 2008, Cornell University; Ph.D. 2013, California Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Joanne Holliday</td>
<td>Associate Professor of Computer Engineering</td>
<td>B.S. 1971, University of California, Berkeley; M.S. 1976, Northeastern University, Boston; Ph.D. 2000, University of California, Santa Barbara</td>
<td></td>
</tr>
<tr>
<td>Stephen Hudgens</td>
<td>Lecturer in Electrical Engineering and Engineering</td>
<td>Ph.D. 1976, University of Chicago</td>
<td></td>
</tr>
<tr>
<td>Clifford Hwang</td>
<td>Lecturer in Electrical Engineering</td>
<td>B.S. 1992, University of California, San Diego; M.S. 1994, Engineer’s Degree 1999, Ph.D. 1999, University of California, Los Angeles</td>
<td></td>
</tr>
<tr>
<td>Pravin Jain</td>
<td>Lecturer in Engineering Management and Leadership Engineering</td>
<td>B.S. 1974, University of Poona, India; M.S. 1976, Oregon State University; MBA 1980, University of Portland</td>
<td></td>
</tr>
<tr>
<td>Anant Jalnapurkar</td>
<td>Lecturer in Computer Engineering</td>
<td>B.E., Pune University, India; M.Sc., Ph.D., University of Saskatchewan, Canada</td>
<td></td>
</tr>
<tr>
<td>Brad James</td>
<td>Lecturer in Mechanical Engineering</td>
<td>B.S. 1988, University of Washington; Ph.D. 1994, Colorado School of Mines</td>
<td></td>
</tr>
<tr>
<td>Alka Jarvis</td>
<td>Lecturer in Computer Engineering</td>
<td>MBA 1996, British Tutorial University</td>
<td></td>
</tr>
<tr>
<td>Minqiang Jiang</td>
<td>Research Assistant Professor</td>
<td>B.S. 1984, Xiand University, China; M.S. 1987, Tsinghua University, China; Ph.D. 2006, Santa Clara University</td>
<td></td>
</tr>
<tr>
<td>David Kao</td>
<td>Lecturer in Computer Engineering</td>
<td>M.S. 1988, University of Nevada; Ph.D. 1991, Arizona State University</td>
<td></td>
</tr>
</tbody>
</table>
Hussameddine Kabbani (2015)
Lecturer in Mechanical Engineering
Bachelor in Mechanical Engineering 2003,
Beirut Arab University; Masters in
Mechanical Engineering 2005, Beirut
Arab University; Ph.D. 2008, University
of Nevada, Las Vegas

Rajeev Kelkar (2004)
Lecturer in Mechanical Engineering
and Bioengineering
B.S. 1988, Worcester Polytechnic
Institute; M.S. 1990, M. Phil. 1993,
Ph.D. 1996, Columbia University

Maryam Khangabhi (2013)
Assistant Professor in Electrical Engineering
B.S. 1990, Universite De Nice-Sophia
Antipolis; M.S. 1993, Ph. D. 1998,
Ecole Polytechnique

Hayang Kim (2015)
Lecturer in Computer Engineering
B.S. 2003, M.S. 2005,
Ewha Women’s University,
South Korea; Ph.D. 2014,
Georgia Institute of Technology

Unyoung (Ashley) Kim (2009)
Assistant Professor of Bioengineering
B.S. 1999, M.S. 2001, Korea Advanced
Institute of Science and Technology
(KAIST); Ph.D. 2009,
University of California, Santa Barbara

Lecturer in Mechanical Engineering
B.S. 1979, University of California,
Los Angeles; M.S. 2000,
University of Phoenix

Christopher A. Kitts (1997)
Associate Professor of Mechanical Engineering
B.S.E. 1987, Princeton University;
M.P.A. 1991, University of Colorado;
M.S. 1992, Ph.D. 2006,
Stanford University

Robert J. Kleinhenz (2009)
Lecturer in Applied Mathematics
B.S. 1971, University of Santa Clara;
M.A. 1973, Ph.D. 1977,
University of Illinois

Walter Kozacky (2013)
Lecturer in Electrical Engineering
B.S. 1977, University of Illinois;
M.S. 2004, Ph.D. 2012,
Santa Clara University

Roland Krause (2016)
Lecturer in Computer Engineering
Dipl.-Ing. 1990, University of Dortmund
Dr. Ing. 1996, University of Dortmund

Shoba Krishnan (1999)
Professor of Electrical Engineering
Chair, Department of Electrical Engineering
B.TECH 1987, Jawaharlal Nehru
Technological University; M.S. 1990,
Ph.D. 1993, Michigan State University

Zoltan Kurczveil (2011)
Lecturer in Computer Engineering
B.A. 1998, U.C. Berkeley; M.S. 2004,
Santa Clara University; MBA 2008,
University of California,
Berkeley Haas School of Business

Diana D. Lee (1995)
Lecturer in Applied Mathematics
B.A. 1989, Rice University; M.S. 1994,
Santa Clara University

Hohyun Lee (2009)
Assistant Professor of Mechanical Engineering
B.S. 2003, Seoul National University;
S.M. 2005, Ph.D. 2009,
Massachusetts Institute of Technology

Lecturer in Electrical Engineering
B.S. 1979, M.S. 1985, Santa Clara
University

Ronald Lesnja (2013)
Lecturer in Engineering Management
and Leadership
B.S.E.E. 1970, Marquette University;
MBA, 1977 Loyola University of Chicago;
Doctor of Management In Organizational
Leadership 2006, University of Phoenix

Daniel W. Lewis (1975)
Associate Professor of Computer Engineering
BSEE, 1968, Georgia Institute of
Technology; MSE 1972, E.E. 1975,
Ph.D. 1975, Syracuse University

Jim Lewis (2017)
Lecturer in Computer Engineering
B.S. 1991, University of California, Davis;
M.S. 1993, University of Wisconsin-
Madison

Gary Li (2013)
Lecturer in Bioengineering
Ph.D. 2000, Nanjing University

Xiang Li (2018)
Assistant Professor of Computer Engineering
B.S. 2009, Heilongjiang University,
China; M.S. 2012, Chinese Academy of
Sciences, China; M.S. 2014, University
of Florida, Gainesville; Ph.D. 2018 (ex-
pected), University of Florida, Gainesville

Nigel H. Lin (2016)
Lecturer in Computer Engineering
Tamkang University, Taiwan

San Lin (2010)
Lecturer in Electrical Engineering
B.S. 1977, Rangoon Institute of Technology;
M.A. Sc. 1984, University of Toronto;
Ph.D. 2004, Santa Clara University

Nam Ling (1989)
Professor of Computer Engineering; Chair,
Department of Computer Engineering;
Sanfilippo Family Professor
B.Eng. 1981, National University of
Singapore; M.S. 1985, Ph.D. 1989,
University of Louisiana at Lafayette

Kan Liu (2015)
Lecturer in Computer Engineering
B.S. 1982, Xiamen University, China;
M.S. 1984, Peking University, China;
M.A. 1989, University of South Florida;
Ph.D. 1988, Ohio State University

Leo Liu (2014)
Lecturer in Computer Engineering
B.S. 1978, Northern Jiao Tong University,
China; M.S. 1981, Peking University,
China; Ph.D. 1988, Yale University

Ying Liu (2018)
Assistant Professor of Computer Engineering
B.S. 2006, Beijing University of Posts and
Telecommunications, China; M.S. 2008,
Ph.D. 2012, The State University of
New York at Buffalo

Yuhong Liu (2015)
Assistant Professor of Computer Engineering
B.S. 2004, M.S. 2007, Beijing
University of Posts and
Telecommunications, China; Ph.D. 2012,
University of Rhode Island

Michael LoMisis (2008)
Lecturer in Civil Engineering
B.S. 1997, M.S. 2002,
Santa Clara University

Biao Lu (2015)
Assistant Professor of Bioengineering
M.D. 1988, Msc. 1991 Shanghai Medical
University, China; BSc. 2001, Ph.D.,
2004, University of Manitoba, Canada

Don MacCubbin (1996)
Lecturer in Mechanical Engineering
B.A. 2004, Santa Clara University

Enas Mahmoud (2017)
Lecturer in Bioengineering
B.S. 2002, M.S. 2006, Ph.D. 2008,
Cairo University

Sathish Manickam (2014)
Lecturer in Bioengineering
Ph.D. 2009, University of California,
Los Angeles
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Institution</th>
<th>Degree Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDWIN MAURER (2003)</td>
<td>Professor of Civil Engineering</td>
<td>Robert W. Peters Professor</td>
<td>B.S. 1985, University of Rhode Island; M.S. 1989, University of California, Berkeley; Ph.D. 2002, University of Washington</td>
</tr>
<tr>
<td>MICHAEL McELFRESH (2011)</td>
<td>Lecturer in Electrical Engineering</td>
<td>Santa Clara University</td>
<td>B.S. 1979, University of California, Davis; M.A. 1981, Washington University; Ph.D. 1988, University of California, San Diego</td>
</tr>
<tr>
<td>AARON MELMAN (2005)</td>
<td>Renewable Term Lecturer in Applied Mathematics</td>
<td>Stony Brook University</td>
<td>B.Sc. 1983, University of Louvain; M.Sc. 1986, Technion - Israel Institute of Technology; Ph.D. 1992, California Institute of Technology</td>
</tr>
<tr>
<td>MAGDA METWALLY (1986)</td>
<td>Lecturer in Applied Mathematics</td>
<td>Stony Brook University</td>
<td>B.S. 1967, Ain-Shams University, Egypt; M.S. 1972, University of British Columbia; Ph.D. 1982, Santa Clara University</td>
</tr>
<tr>
<td>KEYVAN MOATAQI (2003)</td>
<td>Lecturer in Computer Engineering</td>
<td>University of Graz, Austria</td>
<td>B.S. 1975, M.S. 1979, Ph.D. 1982, Technical University of Graz, Austria</td>
</tr>
<tr>
<td>RAMIN MOAZENI (2014)</td>
<td>Lecturer in Computer Engineering</td>
<td>Isfahan University, Iran</td>
<td>B.S. 1999, Isfahan University of Technology, Iran; M.S. 2003, California State University, East Bay; M.S. 2008, University of Southern California</td>
</tr>
<tr>
<td>BRADEN MOLHOEK (2018)</td>
<td>Lecturer in Computer Engineering</td>
<td>Boston University</td>
<td>B.A. 2003, Ohio Wesleyan University; M.T.S. 2005, Boston University; Ph.D. 2016, Graduate Theological Union</td>
</tr>
<tr>
<td>SAMIHA MOURAD (1987)</td>
<td>Professor of Electrical Engineering</td>
<td>Ain-Shams University, Egypt</td>
<td>B.S. 1960, Ain-Shams University, Egypt; M.S. 1984, Polytechnic University, New York; Ph.D. 1970, North Carolina State University</td>
</tr>
<tr>
<td>GHULAM MUSTAFA (2013)</td>
<td>Lecturer in Mechanical Engineering</td>
<td>Texas Tech University</td>
<td>B.S. 1980, NED University of Engineering and Technology; M.S. 1987, Ph.D. 1992, Texas Tech University</td>
</tr>
<tr>
<td>ANGELA MUSURLIAN (2014)</td>
<td>Lecturer in Computer Engineering</td>
<td>Rio de Janeiro State University, Brazil</td>
<td>B.S. 1989, University of Science and Technology, Brazil; M.S. 1993, Madrid Polytechnic University, Madrid, Spain</td>
</tr>
<tr>
<td>AYHAN MUTLU (2004)</td>
<td>Lecturer in Electrical Engineering</td>
<td>Middle East Technical University</td>
<td>B.S. 1996, Middle East Technical University; Ph.D. 2004, Santa Clara University</td>
</tr>
<tr>
<td>MADIALLY J. (SIM) NARASIMHA (2002)</td>
<td>Lecturer in Electrical Engineering</td>
<td>Bangalore University</td>
<td>B.E. 1971, Bangalore University; M.S. 1976, Ph.D. 1976, Stanford University</td>
</tr>
<tr>
<td>JOSEPH NEIPP (1999)</td>
<td>Lecturer in Engineering Management and Leadership</td>
<td>University of California, Santa Cruz</td>
<td>B.A. 1970, University of California, Santa Cruz; M.S. 1979, University of San Francisco</td>
</tr>
<tr>
<td>TONYA NILSSON (2010)</td>
<td>Senior Lecturer in Civil Engineering</td>
<td>University of California, Davis</td>
<td>B.S. 1991, California Polytechnic State University, San Luis Obispo; M.S. 1993, Stanford University; Ph.D. 2002, University of California, Davis</td>
</tr>
<tr>
<td>GERARDO NOREIGA (2012)</td>
<td>Lecturer in Bioengineering</td>
<td>San Jose State University</td>
<td>B.S. 1985, University of South Florida University, Russia</td>
</tr>
<tr>
<td>T. KIM PARNELL (2011)</td>
<td>Lecturer in Mechanical Engineering</td>
<td>Stanford University</td>
<td>B.S. 1978, Georgia Tech; M.S. 1979, Ph.D. 1984, Stanford University</td>
</tr>
<tr>
<td>VLADIMIR PATRYSHEV (2014)</td>
<td>Lecturer in Computer Engineering</td>
<td>St. Petersburg State University</td>
<td>M.S. 1973, St. Petersburg State University, Russia</td>
</tr>
<tr>
<td>ON SHUN PAK (2013)</td>
<td>Assistant Professor of Mechanical Engineering</td>
<td>University of Hong Kong</td>
<td>B.Eng. 2008, University of Hong Kong; M.S. 2010, Ph.D. 2013, University of California, San Diego</td>
</tr>
</tbody>
</table>
NICHOLAS PERA (2006)
Lecturer in Civil Engineering
B.S. 1995, Santa Clara University

BRUCE PITTMAN (2002)
Lecturer in Engineering Management and Leadership
B.S. 1976, University of California, Davis; M.S. 1984, Santa Clara University

KRISTEN PURDUM (2014)
Lecturer in Applied Mathematics
B.S. 1996, Mount Union College; M.S. 2013, Santa Clara University

KISHORE PUSUKURI (2017)
Lecturer in Computer Engineering
B. Tech. 2002, Kakatiya University of India; Ph.D. 2012, University of California, Riverside

XIAOSHU QIAN (2003)
Lecturer in Electrical Engineering
B.S. 1982, Zhejiang University (China); M.S. 1990, 1994, Ph.D. 1996, University of Rhode Island

ALI REZA RAHIMI (1983)
Lecturer in Mechanical Engineering
B.S. 1974, Arya-Mehr, University of India; Ph.D. 1982, University of California, Berkeley

MAH Mud RAHMAN (1986)
Associate Professor of Electrical Engineering
B.S.E.E. 1969, University of Engineering and Technology, Dhaka, Bangladesh; M.Eng. 1981, Dr. Eng. 1984, Tokyo Institute of Technology

TEZASWI RAJA (2009)
Lecturer in Electrical Engineering
M.S. 2002, Ph.D. 2004, Rutgers University

DAVID RICH (2008)
Lecturer in Mechanical Engineering
Ph.D. 2006, University of California, Berkeley

HENRY RIVERS (2002)
Lecturer in Applied Mathematics
B.S. 1994, National University; M.S. 1999, 2002, Santa Clara University

INDRAJIT ROY (2015)
Lecturer in Computer Engineering
B.Tech. 2005, Indian Institute of Technology, Kanpur, India; M.S. 2008, Ph.D. 2010, University of Texas at Austin

SOHINI ROYCHOWDHURY (2018)
Lecturer in Computer Engineering
B.Eng. 2007, Birla Institute of Technology, India; S. 2010, Kansas State University; Ph.D. 2014, University of Minnesota

MICHEL A. SAAD (1959)
Professor Emeritus of Mechanical Engineering
B.S. 1949, Alexandria University; M.S. 1953, Massachusetts Institute of Technology, Ph.D. 1956, University of Michigan, Ann Arbor; Registered Professional Engineer in Mechanical Engineering

ERIC SABELMAN (2000)
Lecturer in Mechanical Engineering
B.S. 1968, M.S. 1969, Ph.D. 1976, Stanford University

RANJANA SAHA (2009)
Lecturer in Mechanical Engineering
Ph.D. 2001, Stanford University

SAMAR SAHA (2003)
Lecturer in Electrical Engineering
B.c. 1971, Cotton College, India; M.Sc. 1973, Ph.D. 1981, Gauhati University, India; M.S. 1992, Stanford University

SWATI SAXENA (2018)
Lecturer in Mechanical Engineering
B.Tech. 2006, IIT Kanpur, India; M.S. 2008, Ph.D. 2012, Penn State University

HISHAM SAID (2011)
Assistant Professor in Civil Engineering
B.S. 2003, M.S. 2006, Cairo University, Egypt; Ph.D. 2010, University of Illinois

JULIA SCOTT (2016)
Lecturer in Bioengineering
B.S. 2003, Ph.D. 2010, University of California, Davis; M.S. 2006, University of California, San Diego

DENNIS SEGER (2016)
Lecturer in Engineering Management and Leadership
B.S. 1975, Texas A&M University; AEA Stanford Executive Institute 1995

PAUL SEMENZA (2016)
Lecturer in Engineering Management and Leadership
B.S. 1985, M.S. 1990, Tufts University; Master in Public Policy 1994, Harvard University

CALVIN SELLERS (2012)
Lecturer in Mechanical Engineering
B.S., San Jose State University

GIOVANNI SENI (2003)
Lecturer in Computer Engineering
B.S. 1988, Los Andes University; Bogotá, Colombia; M.S. 1992; Ph.D. 1995, State University of New York, Buffalo

PANTHEA SEPEHRBAND (2012)
Assistant Professor in Mechanical Engineering
B.Sc. 2000, University of Theron; M.Sc. 2004, Sharif University of Technology; Ph.D. 2010, University of Waterloo

REYNAUD L. SERRETTE (1991)
Professor of Civil Engineering
B.S. 1987, M.S. 1988, University of Minnesota; Ph.D. 1992, Cornell University

NAVID SHAGHAGHI (2014)
Lecturer in Computer Engineering
B.S. 2012, B.A. 2012, University of California, Berkeley; M.S. 2014, Santa Clara University

CRIRUS SHAKERI (2009)
Lecturer in Computer Engineering
Ph.D. 1998, Worcester Polytechnic Institute

WEJIA SHANG (1994)
Associate Professor of Computer Engineering
B.S. 1982, Changsha Institute of Technology, China; M.S. 1984, Ph.D. 1990, Purdue University

NADYA SHIROKOVA (2009)
Lecturer in Applied Mathematics
Ph.D. 1998, University of Chicago

TERRY E. SHOUP (1989)
Professor of Mechanical Engineering
BME 1966, M.S. 1967, Ph.D. 1969, Ohio State University; Registered Professional Engineer in Mechanical Engineering

DRAGOSLAV D. SILJAK (1964)
Professor Emeritus of Electrical Engineering
BSEE 1958, MSEE 1961, Dr. Sci. 1963, University of Belgrade

MATT SIMKINS (2014)
Lecturer in Computer Engineering
B.S. 2004, California State University, Chico; Ph.D. 2013, University of California, Santa Cruz

SUKHMANDER SINGH (1986)
Professor of Civil Engineering, Nicholas Family Professor
B.S. 1964, Punjabi University; M.S. 1966, Indian Institute of Technology, Delhi; Ph.D. 1979, University of California, Berkeley; Registered Professional Engineer in Civil Engineering and Geotechnical Engineering
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Degrees</th>
</tr>
</thead>
</table>
| **JAMES SOWERS (2005)** | Lecturer in Electrical Engineering
B.S. 1978, Cornell University;
M.S. 1982, Stanford University |
| **SAMBSAVIA SRINIVASAN (2009)** | Lecturer in Electrical Engineering
B.E. 1968, University of Madras;
M. Tech 1970, Ph.D. 1975,
Indian Institute of Technology |
| **NATALIYA STAROSTINA (2018)** | Lecturer in Mechanical Engineering
B.S., M.S. 1994, Peter the Great
St-Petersburg State Technical University, Russia;
Ph.D. 2009, Russian Academy of Science, Russia |
| **MARIAN STETSON-RODRIGUEZ (2001)** | Lecturer in Engineering
B.A. 1976, University of California, Berkeley;
M.S. 1997, Pepperdine University |
| **CRAIG L. STEVENS (2006)** | Lecturer in Mechanical Engineering
B.S. 1982, California Polytechnic State University, San Luis Obispo;
M.S. 1985, Stanford University |
| **ALEX SUMARSONO (2017)** | Lecturer in Computer Engineering
B.S. 1982, M.S. 1985, Iowa State University;
Ph.D. 2015, Mississippi State University |
| **ALLEN SWEET (2002)** | Lecturer in Electrical Engineering
B.S. 1966, Worcester Polytechnic;
M.S. 1968, Ph.D., 1970,
Cornell University |
| **JUN SUN (2015)** | Lecturer in Computer Engineering
B.S. 1989, Shanghai Jiao Tong University;
Ph.D. 1996, University of Illinois at Urbana-Champaign |
| **ABDIE TABRIZI (1990)** | Lecturer in Mechanical Engineering
B.S. 1977, University of Tulsa;
M.S. 1979, Oklahoma State University;
Ph.D. 1986, University of Tennessee |
| **JAMES TAGUCHI (2016)** | Lecturer in Computer Engineering
B.S. 2011, Santa Clara University;
M.S. 2013, Naval Postgraduate School |
| **MICHAEL TAYLOR (2015)** | Assistant Professor in Mechanical Engineering
B.S. 2003, John Hopkins University;
M.S. 2005, Ph.D. 2008,
University of California, Berkeley |
| **NICHOLAS TRAN (2007)** | Lecturer in Computer Engineering
B.S. 1987, University of Minnesota;
Ph.D. 1992, University of California, Santa Barbara |
| **THANG TRAN (2016)** | Lecturer in Computer Engineering
B.S. 1980, M.S. 1984, Ph.D. 1992,
University of Texas-Austin; MBA, 1995, St. Edwards University |
| **DAVID TRINDADE (1986)** | Lecturer in Engineering Management and Leadership
B.S. 1965, Brown University;
M.S. 1968, University of Rochester;
M.S. 1976, Ph.D. 1980,
University of Vermont |
| **CALVIN TSENG (2013)** | Lecturer in Mechanical Engineering
B.S. 1979, M.S. 1981, National Tsinghua University;
Ph.D. 1987, University of California, Berkeley |
| **SHANNON VALLOR (2012)** | Lecturer in Engineering
Ph.D., 2001, Boston College |
| **SUBIR VARMA (2017)** | Lecturer in Computer Engineering
B.Tech. 1985, Indian Institute of Technology-Kanpur, India;
M.S. 1987, Ph.D. 1990, University of Maryland-College Park |
| **LANNY VINCENT** | Lecturer in Engineering
B.A. 1975, Davidson College;
M.Div. 1978, Yale Divinity School |
| **HIEN VU (2013)** | Lecturer in Computer Engineering
B.S. 1997, M.S. 2005,
Santa Clara University; M.S. 2008,
San Jose State University |
| **GARY WALZ (2008)** | Lecturer in Civil Engineering
B.S. 1978, Santa Clara University |
| **ERHENG WANG (2015)** | Lecturer in Mechanical Engineering
B.S. 2000, Ph.D. 2005, University of Science and Technology, China;
Ph.D. 2010, University of Rhode Island |
| **MING-HWA WANG (1996)** | Lecturer in Computer Engineering
B.Ed. 1977, National Taiwan Normal University;
M.S. 1982, Rochester Institute of Technology;
Ph.D. 1991, Illinois Institute of Technology |
| **TUNGHWA WANG (1995)** | Lecturer in Computer Engineering
B.S. 1971, National Taiwan University;
M.S. 1975, University of Rhode Island;
M.S. 1981, Ph.D. 1986,
Illinois Institute of Technology |
| **YUAN WANG (2014)** | Lecturer in Computer Engineering
B.Eng. 1987, M. Eng. 1990, Beijing University of Technology (then Beijing Polytechnic University), China;
Ph.D. 1995, University of Western Ontario, Canada |
| **JANET A. WARRINGTON (2014)** | Lecturer in Bioengineering
B.S. 1974, University of Toledo;
B.S. 1988, California State University, Hayward;
Ph.D. 1992, University of California, Irvine |
| **JOE WEBER** | Lecturer in Electrical Engineering
B.A. 1988 Norte Dame;
M.S. 1995, Ph.D. 1993, University of California, Berkeley;
M.B.A. 2004, University of Colorado at Boulder |
| **DANIEL WHITE (2014)** | Lecturer in Mechanical Engineering
B.S. 2004, Texas A&M University;
M.S. 2008, Ph.D. 2011,
Massachusetts Institute of Technology |
| **GLENN A. WILLIAMS (2009)** | Lecturer in Applied Mathematics
B.S. 1984, Northwestern University;
M.S. 1992, Ph.D. 1998,
University of North Carolina |
| **SARAH KATE WILSON (2006)** | Associate Professor of Electrical Engineering
B.A. Bryn Mawr College;
M.S. 1987, Ph.D. 1994, Stanford University |
| **SALLY L. WOOD (1985)** | Professor of Electrical Engineering
B.S. 1969, Columbia University;
M.S. 1975, Ph.D. 1978, Stanford University |
| **PETER J. WOYTOWITZ (1994)** | Lecturer in Civil Engineering and Mechanical Engineering
B.S. 1976, University of Maryland;
M.S. 1980, Santa Clara University;
ENGR 1985, Stanford University;
Ph.D. 1993, Santa Clara University |
| **WEI XIAO (2017)** | Lecturer in Computer Engineering
B.S. 1997, Beijing Polytechnic University;
China; M.S. 2001, University of Science & Technology of China |
TOSHIHIGE YAMADA (2006)
Lecturer in Electrical Engineering
B.S. 1981, M.S. 1983,
University of Tokyo; Ph.D. 1992,
Arizona State University

YULING YAN (2008)
Professor of Bioengineering; Chair,
Department of Bioengineering
David Packard Fellow
B.S. 1983, M.S. 1986, Nanjing
Institute of Technology;
Ph.D. 1991, Keio University

CARY Y. YANG (1983)
Professor of Electrical Engineering
Director, Center for Nanostructures
BSEE 1970, MSEE 1971, Ph.D. 1975,
University of Pennsylvania

YI-HUA EDWARD YANG (2014)
Lecturer in Computer Engineering
B.S. 1989, Nanjing University;
M.S. 1995, University of Toronto;
Ph.D. 2001, University of Texas at Austin

AMR ZAKY (1998)
Lecturer in Computer Engineering
M.S. 1982, Alexandria University; Ph.D.
1989, Ohio State University

SERGIO ZARANTONELLO (1990)
Lecturer in Applied Mathematics
B.S. 1968, M.S. 1968, Ph.D. 1972,
University of Wisconsin, Madison

ALEKSANDAR ZECEVIC (1993)
Professor of Electrical Engineering
Associate Dean for Graduate Programs
B.S. 1984, University of Belgrade,
Belgrade, Yugoslavia; M.S. 1990,
Ph.D. 1993, Santa Clara University

ZHIVEN (JONATHAN) ZHANG
(2011)
Associate Professor of Bioengineering
B.S. 1989, Nanjing University;
M.S. 1995, University of Toronto;
Ph.D. 2001, University of Texas at Austin

SOHAIL ZAIDI (2013)
Lecturer in Mechanical Engineering
B.S. 1976, Punjab University; B.S. 1982,
University of Engineering & Technology;
M.S. 1985 Quaid-I-Azam University;
Ph.D. 1990, Cranfield University;
MBA 1998, Nottingham University

Index

A
Academic Calendarix
Academic Programs................................ 3, 9
Accreditations, University 238
Administrators, School of
Engineering241
Admissions17
Adobe Lodge223
Advisor12, 102, 132, 213
Advisory Board, Engineering245
Aid, Financial36
Aid, Financial, Deadlines for37
Alcoholic Beverage Policy230
Alumni ..5
Analog Circuit Design
Certificate....................................... 45, 133
Application Fee19, 32
Application Requirements
Certificate Programs17
Master of Science Programs18, 55
Ph.D. and Engineer’s Degrees19
Applied Mathematics55
Faculty ...55
Course Descriptions 56
ASIC Design
and Test Certificate 45, 132
Assistantships, Teaching
and Research37
Athletics and Recreation 7, 224

B
Bellomy Fields224
Benson Memorial Center225
Billing and Payment Procedures32
Bioengineering63
Course Descriptions66
Laboratories65

C
Calendar, Academicix
California State
Graduate Fellowships 36
CAM and Prototyping Lab189
Campus ..6
Campus Map270
Campus Ministry221
Campus Security and
Crime Statistics Act30
Center for Social Entrepreneurship ...4
Centers of Distinction4
Center of Performing Arts7
Certificate Programs9, 43,
103, 132, 184
Civil Engineering81
Course Descriptions85
Faculty ..81
Laboratories84
Communications Laboratory136
Computer Engineering99
Course Descriptions104
Faculty5
Laboratories103
Ph.D. in102
Requirements100, 101
Computer Science103
Computing Facilities223
Computing and Electronic
Resources Policy236
Concrete Testing Laboratory ..84
Concurrent Enrollment28
Conduct Code227
Confidential Records29
Controls Certificate48, 184
Cooperative Education Option28
Counseling Center
and Psychological Services222
Course Descriptions,
see individual departments
Course Load,
see individual departments
Cowell Health Center222
D
de Saisset Museum 6, 224
Deadlines
For Financial Aid 37
Digital Signal Processing
Certificate 46, 133
Digital Systems Laboratory... 103, 136
Doctor of Philosophy Program .. 11
Application Procedure 15
Doctoral Committee 12
Preliminary Examination ... 12
Requirements 14
Dropping Courses, Fee 32
Drug-Free Policies 234
Dynamics and Controls 180
Dynamics Certificate 49, 185

E
Electrical Engineering 127
Course Descriptions 137
Degree Requirements 127
Faculty 127
Laboratories 136
Ph.D. in 129
Electronic Devices Laboratory . 136
Endowed Academic Chairs ... 247
Engineer's Degree1, 19, 103, 129, 184
Engineering Management and Leadership 167
Admission to 168
Course Descriptions 170
Degree Requirements 168
Faculty 167
English for Engineers 19
Environmental Laboratory .. 84
Expenses, see Fees

F
Facilities, University 223
Faculty 5, 247
FAFSA 36
Fees 31
FERPA 29
Financial Aid, see Aid, Financial
Financial Information 36
Fluid Dynamics/Thermal
Science Laboratory 190
Fundamentals of Electrical
Engineering Certificate 47, 135

G
Gender-Based Discrimination and
Sexual Misconduct Policy 235
Geology Laboratory 84
Grading System 25
Graduate Core 23
Graduate courses,
see individual departments
Graduate Degree Programs ... 3, 9
Graduation
Petition for 27
Requirements 23
Green Computing Laboratory.. 104

H
Health Insurance 31
Health Services,
see Cowell Health Center
Honor Code 23
Hydraulics Laboratory 84
Ignatian Center for Jesuit Education 4
Image and Video Processing Laboratory 136
Incomplete Grades 26
Industrial Track 14
Information Assurance
Certificate 103
Instrumentation Laboratory ... 190
Insurance, Liability and Property ... 233
Intelligent Control Laboratory .. 136
International Students 15, 27

J-K
Judicial Records Policy 231
KSCU-FM Radio 221

L
Laboratories 84, 103, 136, 189
Late Fees 32
Library, Learning Commons ... 223
Loans 36
Lockheed Martin-Santa Clara
University Program 211

M
Malley Fitness and Recreation Center 7, 225
Management Program,
see Engineering Management and Leadership
Map 270
Markkula Center for Applied Ethics 5
Master of Science Degree
Programs 10, 18, 64, 82, 99, 101, 129, 167
Materials Engineering 180
Materials Engineering
Certificate 50, 186
Materials Laboratory 190
Mathematical Finance,
Concentration in 55
Mayer Theatre 224
Mechanical Design 181
Mechanical Design Analysis
Certificate 51, 186
Mechanical Engineering ... 179
Faculty 179
Course Descriptions 190
Laboratories 189
Ph.D. in 183
Mechatronics Systems
Engineering Certificate 52, 187
Media Services 221
Micro Scale Heat
Transfer Laboratory 190
Microwave and Antennas
Certificate 48, 135
Miller Center for Entrepreneurship ... 4
Minor in Science, Technology, and Society 11, 39
Mission Santa Clara 1, 223
Mission Statement 1
Multimedia Compression
Laboratory 104
Music and Dance Building 224

N
Nondiscrimination Policy 233, inside back cover

O
Officers 239
Open University/Open Enrollment Program 15, 17

P
Parking 233
Parking, Permit Fee 32
Payment Methods 33
Petition for Graduation 27
Ph.D. Program,
see Doctor of Philosophy Program
Privacy, Rights to 29
Program of Studies 26
Provost, Office of 239

R
Radio, see KSCU-FM
Records, Student 29
Recreation 224
Redwood, The 221
Refunds 34
Regents, Board of 243
Registration, Fee 32
Renewable Energy Certificate .. 44
Repeating Courses 26
Requirements for Programs 9
Residency Requirements,
Ph.D. Program 13
Robotic Systems
Laboratory 136, 189
Robotics and Mechatronic
Systems 182

S
SCHOOL OF ENGINEERING 267

<table>
<thead>
<tr>
<th>Organization</th>
<th>Building Name</th>
<th>Number</th>
<th>Map Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS Card Office</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Activities Programming Board (APB)</td>
<td>Locatelli Activity Center</td>
<td>710</td>
<td>E6</td>
</tr>
<tr>
<td>Admission & Enrollment Services</td>
<td>Schott Admissions</td>
<td>406</td>
<td>C5</td>
</tr>
<tr>
<td>& Enrollment</td>
<td>Services Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adobe Lodge</td>
<td>Adobe Lodge</td>
<td>108</td>
<td>A5</td>
</tr>
<tr>
<td>Alumni Relations</td>
<td>Domohoe Alumni</td>
<td>103</td>
<td>B6</td>
</tr>
<tr>
<td>Associated Students (ASSCU)</td>
<td>Locatelli Activity Center</td>
<td>710</td>
<td>E6</td>
</tr>
<tr>
<td>Athletics</td>
<td>Leavey Center</td>
<td>702</td>
<td>E6</td>
</tr>
<tr>
<td>Bronco Bench Foundation</td>
<td>Leavey Center</td>
<td>702</td>
<td>E6</td>
</tr>
<tr>
<td>Bronco Corner Bookstore</td>
<td>Benson Center</td>
<td>303</td>
<td>B6</td>
</tr>
<tr>
<td>Bursar’s Office</td>
<td>Schott Admission</td>
<td>406</td>
<td>C5</td>
</tr>
<tr>
<td>& Enrollment</td>
<td>Services Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Legacy Project</td>
<td>St. Joseph’s Hall</td>
<td>102</td>
<td>B5</td>
</tr>
<tr>
<td>California Studies Initiative (CASI)</td>
<td>Bannan Hall</td>
<td>405</td>
<td>C5</td>
</tr>
<tr>
<td>Campus Ministry</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Campus Safety Services</td>
<td>Main Parking Structure</td>
<td>714</td>
<td>C6</td>
</tr>
<tr>
<td>Career Center</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Center for Student Leadership</td>
<td>Locatelli Activity Center</td>
<td>710</td>
<td>E6</td>
</tr>
<tr>
<td>Center for Sustainability</td>
<td>Varsi Hall</td>
<td>106</td>
<td>A5</td>
</tr>
<tr>
<td>Counseling & Psychological Services (CAPS)</td>
<td>Cowell Building</td>
<td>701</td>
<td>D7</td>
</tr>
<tr>
<td>Cowell Health Center</td>
<td>Schott Admission</td>
<td>406</td>
<td>C5</td>
</tr>
<tr>
<td>& Enrollment</td>
<td>Services Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development Office</td>
<td>Loyola Hall</td>
<td>425 ECR</td>
<td>E10</td>
</tr>
<tr>
<td>Dining Services</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Disabilities Resources</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Drahmann Advising & Learning Resources Center</td>
<td>Kenna Hall</td>
<td>204</td>
<td>B6</td>
</tr>
<tr>
<td>Facilities</td>
<td>Support Services Bldg.</td>
<td>604</td>
<td>D9</td>
</tr>
<tr>
<td>Faculty Development Program</td>
<td>St. Joseph’s Hall</td>
<td>102</td>
<td>B5</td>
</tr>
<tr>
<td>Finance & Administration, V.P.</td>
<td>Walsh Admin. Bldg.</td>
<td>201</td>
<td>B4</td>
</tr>
<tr>
<td>Financial Aid Office</td>
<td>Schott Admissions</td>
<td>406</td>
<td>C5</td>
</tr>
<tr>
<td>& Enrollment</td>
<td>Services Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Engagement</td>
<td>Varsi Hall</td>
<td>106</td>
<td>A5</td>
</tr>
<tr>
<td>Housing</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Human Resources</td>
<td>475 El Camino Real</td>
<td>401</td>
<td>E4</td>
</tr>
<tr>
<td>Information Desk</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Information Technology (IT)</td>
<td>Learning Commons</td>
<td>401</td>
<td>C6</td>
</tr>
<tr>
<td>Institutional Research</td>
<td>Walsh Admin. Bldg.</td>
<td>201</td>
<td>B4</td>
</tr>
<tr>
<td>International Student Services</td>
<td>Varsi Hall</td>
<td>106</td>
<td>A5</td>
</tr>
<tr>
<td>Jesuit Community</td>
<td>Jesuit Residence</td>
<td>801 Franklin St.</td>
<td>A3</td>
</tr>
<tr>
<td>Law, The Advocate & Student Bar Assoc</td>
<td>Bannan Hall</td>
<td>405</td>
<td>C5</td>
</tr>
<tr>
<td>Law, Development & Alumni Relations</td>
<td>Bannan Hall</td>
<td>405</td>
<td>C5</td>
</tr>
<tr>
<td>Media Services</td>
<td>Learning Commons</td>
<td>401</td>
<td>C6</td>
</tr>
<tr>
<td>Multicultural Center</td>
<td>Shapell Lounge</td>
<td>302</td>
<td>B6</td>
</tr>
<tr>
<td>Multicultural Learning Office</td>
<td>St. Joseph’s Hall</td>
<td>102</td>
<td>B5</td>
</tr>
<tr>
<td>Northern California</td>
<td>900 Lafayette St.</td>
<td>900</td>
<td>A3</td>
</tr>
<tr>
<td>Innocence Project</td>
<td>475 El Camino Real</td>
<td>401</td>
<td>E4</td>
</tr>
<tr>
<td>Office of EEO and Title IX</td>
<td>St. Joseph’s Hall</td>
<td>102</td>
<td>B5</td>
</tr>
<tr>
<td>Office of Fellowships</td>
<td>Nobili Hall</td>
<td>109</td>
<td>A4</td>
</tr>
<tr>
<td>Office of General Counsel</td>
<td>Loyola Hall</td>
<td>425 ECR</td>
<td>E10</td>
</tr>
<tr>
<td>Office of Marketing & Communications</td>
<td>Schott Admission</td>
<td>406</td>
<td>C5</td>
</tr>
<tr>
<td>& Enrollment</td>
<td>Services Building</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization</th>
<th>Building Name</th>
<th>Number</th>
<th>Map Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Undergraduate Studies</td>
<td>Varsi Hall</td>
<td>106</td>
<td>A5</td>
</tr>
<tr>
<td>Planning and Projects</td>
<td>Support Services Bldg.</td>
<td>604</td>
<td>D9</td>
</tr>
<tr>
<td>Post Office</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>President’s Office</td>
<td>Walsh Admin. Bldg.</td>
<td>201</td>
<td>B4</td>
</tr>
<tr>
<td>Provost’s Office</td>
<td>Walsh Admin. Bldg.</td>
<td>201</td>
<td>B4</td>
</tr>
<tr>
<td>Recreation</td>
<td>Malley Center</td>
<td>715</td>
<td>D6</td>
</tr>
<tr>
<td>Residence Life</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Resident Ministry</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Residential Learning Communities</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>SCU Presents</td>
<td>Music & Dance Bldg.</td>
<td>114</td>
<td>A3</td>
</tr>
<tr>
<td>Sponsored Projects</td>
<td>St. Joseph’s Hall</td>
<td>102</td>
<td>B5</td>
</tr>
<tr>
<td>Student Life</td>
<td>Benson Center</td>
<td>301</td>
<td>B6</td>
</tr>
<tr>
<td>Transportation Services</td>
<td>Main Parking Structure</td>
<td>714</td>
<td>D5</td>
</tr>
<tr>
<td>Undergraduate Admission</td>
<td>Schott Admission</td>
<td>406</td>
<td>C5</td>
</tr>
<tr>
<td>& Enrollment</td>
<td>Services Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Archives</td>
<td>Learning Commons</td>
<td>401</td>
<td>C6</td>
</tr>
<tr>
<td>University Cashier</td>
<td>University Finance Office</td>
<td>201</td>
<td>B4</td>
</tr>
<tr>
<td>University Event Planning Office</td>
<td>Walsh Admin. Bldg.</td>
<td>475 El Camino Real</td>
<td>E4</td>
</tr>
<tr>
<td>University Finance Office</td>
<td>Support Services Bldg.</td>
<td>604</td>
<td>D9</td>
</tr>
<tr>
<td>University Operations</td>
<td>475 El Camino Real</td>
<td>401</td>
<td>E4</td>
</tr>
<tr>
<td>University Relations</td>
<td>Loyola Hall</td>
<td>425 ECR</td>
<td>E10</td>
</tr>
<tr>
<td>Wellness Center</td>
<td>Kennedy Commons</td>
<td>306</td>
<td>A6</td>
</tr>
<tr>
<td>Centers of Distinction</td>
<td>Ignatian Center for</td>
<td>605A</td>
<td>C8</td>
</tr>
<tr>
<td>Jesuit Education</td>
<td>Markkula Center for</td>
<td>804</td>
<td>C4</td>
</tr>
<tr>
<td>Applied Ethics</td>
<td>Miller Center for</td>
<td>109</td>
<td>A4</td>
</tr>
<tr>
<td>Social Entrepreneurship</td>
<td>Nobili Hall</td>
<td>109</td>
<td>A4</td>
</tr>
<tr>
<td>Resident Halls</td>
<td>Bellarmine Residence Hall</td>
<td>2505 The Alameda</td>
<td>C10</td>
</tr>
<tr>
<td>Campi Residence Hall</td>
<td>505</td>
<td>C7</td>
<td></td>
</tr>
<tr>
<td>Casa Italiana Residence Hall</td>
<td>602</td>
<td>D8</td>
<td></td>
</tr>
<tr>
<td>Dunne Residence Hall</td>
<td>308</td>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>Graham Residence Hall</td>
<td>501</td>
<td>C7</td>
<td></td>
</tr>
<tr>
<td>McLaughlin Walsh Residence Hall</td>
<td>304</td>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>Sanfilippo Residence Hall</td>
<td>506</td>
<td>D8</td>
<td></td>
</tr>
<tr>
<td>Sobrato Residence Hall</td>
<td>605</td>
<td>C8</td>
<td></td>
</tr>
<tr>
<td>St. Clare Residence Hall</td>
<td>3355 The Alameda</td>
<td>307</td>
<td>A7</td>
</tr>
<tr>
<td>Swig Residence Hall</td>
<td>University Villas</td>
<td>1260 Campbell Ave.</td>
<td>F7</td>
</tr>
<tr>
<td>Buildings (alphabetical)</td>
<td>No.</td>
<td>Loc.</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Adobe Lodge</td>
<td>108</td>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>Alumni Science Hall</td>
<td>208</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>Bannan Engineering</td>
<td>404</td>
<td>C5</td>
<td></td>
</tr>
<tr>
<td>Bannan Engineering Labs</td>
<td>403</td>
<td>C5</td>
<td></td>
</tr>
<tr>
<td>Bannan Hall</td>
<td>405</td>
<td>C5</td>
<td></td>
</tr>
<tr>
<td>Bellarmine Residence Hall</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benson Memorial Center</td>
<td>301</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>Bergin Hall</td>
<td>203</td>
<td>B5</td>
<td></td>
</tr>
<tr>
<td>Bronco Corner Bookstore</td>
<td>303</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>Camptis Residence Hall</td>
<td>505</td>
<td>C7</td>
<td></td>
</tr>
<tr>
<td>Campus Safety Services</td>
<td>714</td>
<td>C6</td>
<td></td>
</tr>
<tr>
<td>Casa Italiana Residence Hall</td>
<td>602</td>
<td>D8</td>
<td></td>
</tr>
<tr>
<td>Commerce Plaza</td>
<td>*</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>Cowell Health Center</td>
<td>701</td>
<td>B7</td>
<td></td>
</tr>
<tr>
<td>Daly Science Center</td>
<td>207, 210, 211</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>de Saisset Museum</td>
<td>206</td>
<td>B4</td>
<td></td>
</tr>
<tr>
<td>Donohoe Alumni House</td>
<td>103</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>Dunne Residence Hall</td>
<td>308</td>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>Edward M. Dowd Art and Art History Building</td>
<td>*</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>University Finance Office</td>
<td>*</td>
<td>E4</td>
<td></td>
</tr>
<tr>
<td>and Human Resources Building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forge Garden</td>
<td>*</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>Graduate Pastoral Ministries</td>
<td>*</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>Graham Residence Hall</td>
<td>501</td>
<td>C7</td>
<td></td>
</tr>
<tr>
<td>Guadalupe Hall</td>
<td>*</td>
<td>F6</td>
<td></td>
</tr>
<tr>
<td>Heafey Law Library</td>
<td>202</td>
<td>B5</td>
<td></td>
</tr>
<tr>
<td>Ignatian Center</td>
<td>605A</td>
<td>D8</td>
<td></td>
</tr>
<tr>
<td>Jesuit Residence Community</td>
<td>*</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>Kenna Hall</td>
<td>204</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>Learning Commons, Tech. Center, and Library</td>
<td>401</td>
<td>C6</td>
<td></td>
</tr>
<tr>
<td>Leavey Event Center</td>
<td>702</td>
<td>E6</td>
<td></td>
</tr>
<tr>
<td>Locatelli Student Activity Center</td>
<td>710</td>
<td>E5</td>
<td></td>
</tr>
<tr>
<td>Loyola Hall</td>
<td>802</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>Lucas Hall</td>
<td>802</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>Main Parking Structure</td>
<td>714</td>
<td>D5</td>
<td></td>
</tr>
</tbody>
</table>

Schools
- **College of Arts & Sciences**
 - Main office in Vari Hall
 - Leavey School of Business
 - Main office in Lucas Hall
- **School of Engineering**
 - Graduate - Guadalupe Hall
 - Undergraduate – Bannan Engineering
 - School of Law
 - Bannan Hall
 - Bergin Hall
 - and Heafey Law Library
 - School of Education and Counseling Psychology
 - Guadalupe Hall
- **Jesuit School of Theology**
 - Berkeley Campus: 1735 Le Roy Ave. Berkeley, CA
 - Santa Clara Campus: Kenna Hall

Centers of Distinction
- Ignatian Center for Jesuit Education
- Markkula Center for Applied Ethics
- Miller Center for Social Entrepreneurship

Off Campus Addresses
- **Bellarmine Residence Hall** C10
 - Classics A4
 - 2505 The Alameda
 - 874 Lafayette St.
- **School of Education and Counseling Psychology**
 - East San Jose Satellite Campus
 - 14271 Story Rd. San Jose, CA 95127
 - 775 Franklin St.
 - 890 Benton St.
- **Guadalupe Hall** F6
 - 455 El Camino Real
 - School of Education and Counseling Psychology
 - School of Engineering, Dean's Office
 - University Finance Office, EDC & HR E3
 - 475 El Camino Real
 - Jesuit Residence Community A2
 - 801 Franklin St.
 - Jesuit School of Theology
 - 1735 Le Roy Avenue Berkeley, CA
 - 1030 The Alameda
- **Kids on Campus** B8
 - 2705 The Alameda
- **Loyola Hall E10**
 - 425 El Camino Real
- **North Campus Parking Structure B2**
 - 1063 Alviso St.
- **Northern California Innocence Project**
 - And Office of EEO and Title IX A3
 - Commerce Plaza, 900 Lafayette St.
 - Performing Arts Annex B1
 - 733 Benton St.
 - St. Clare Residence Hall B1
 - 3555 The Alameda
 - University Villas F7
 - 1260 Campbell Ave.
Santa Clara University reserves the right to make program, regulation, and fee changes at any time without prior notice. The University strives to assure the accuracy of the information in this bulletin at the time of publication; however, certain statements contained in this bulletin may change or need correction.

NONDISCRIMINATION POLICY

Santa Clara University prohibits discrimination and harassment on the basis of a person's actual or perceived race, color, national origin, ancestry, sex, sexual orientation, age, religious creed, physical or mental disability, medical condition as defined by California law, marital status, citizenship status, gender identity, gender expression, genetic information, military or veteran status, or other status protected by law in the administration of its educational policies, admissions policies, scholarships and loan programs, athletics, or employment-related policies, programs, and activities; or other University-administered policies, programs, and activities. The University condemns and will not tolerate such harassment or discrimination against any employee, student, visitor, or guest on the basis of any status protected by university policy or law, and upholds a zero tolerance policy for sexual violence and sexual misconduct.

The University will take prompt and effective corrective action including, where appropriate, disciplinary action up to and including dismissal or expulsion. The university may implement interim measures in order to maintain a safe and nondiscriminatory educational environment. Additionally, it is the University’s policy that there shall be no retaliation against a person for alleging discrimination, harassment or sexual misconduct, cooperating with an investigation, or participating in an informal or formal resolution procedure.

The Office of EEO and Title IX is responsible for monitoring the university’s compliance with federal and state nondiscrimination laws, assisting with all aspects of investigating and resolving reported violations of Policy 311: Prevention of Unlawful Discrimination, Unlawful Harassment and Sexual Misconduct. The EEO and Title IX Coordinator is also designated as the ADA/504 Coordinator responsible for coordinating efforts to comply with federal and state disability laws and regulations. The University encourages those who have witnessed or experienced any form of discrimination, harassment, or sexual misconduct to report the incident promptly, to seek all available assistance, and to pursue informal or formal resolution processes as described in this policy. Inquiries regarding equal opportunity policies, the filing of grievances, or requests for a copy of the University’s grievance procedures covering discrimination and harassment complaints should be directed to:

Belinda Guthrie, EEO and Title IX Coordinator
Office of EEO and Title IX
Santa Clara University
900 Lafayette Street
Suite 100
Santa Clara, CA 95053
408-554-4113
bguthrie@scu.edu

A person may also file a complaint within the time required by law with the appropriate federal or state agency. Depending upon the nature of the complaint, the appropriate agency may be the federal Equal Employment Opportunity Commission (EEOC), the federal Office for Civil Rights (OCR), or the California Department of Fair Employment and Housing (DFEH).