ADOPTED CONTRIBUTIONS TO INTERNATIONAL STANDARDS

(1) NORMATIVE CONTRIBUTIONS ADOPTED:

 (The method was adopted into the 3D-HEVC video coding international standard – including the 3D-HEVC text document and the 3D-HEVC reference software HTM 14.0 onwards. Our method further simplifies the single depth intra mode.)

 (The method was adopted into the 3D-HEVC video coding international standard – including the 3D-HEVC text document JCT3V-G1005 and the 3D-HEVC reference software HTM 10.0 onwards. Our method improves reference pixel selection for depth intra coding in 3D-HEVC.)

(2) INFORMATIVE CONTRIBUTIONS ADOPTED:

 (The method was adopted into the 3D-HEVC video coding international standard – including the 3D-HEVC reference software HTM 12.0 onwards. Our method speeds up 3D-HEVC depth intra coding.)

 (The method was adopted into the 3D-HEVC video coding international standard – including the 3D-HEVC reference software HTM 10.0 onwards. Our method corrects view synthesis distortion calculation in 3D-HEVC.)

 (The method was adopted into the 3D-HEVC video coding international standard – including the 3D-HEVC reference software HTM 8.0 onwards. Our method simplifies the mode decision process on 3D-HEVC depth intra coding.)

 (The method was adopted into the H.264/MPEG-4 AVC video coding international standard – including the text document and the H.264/AVC reference software JM 12.0 onwards. Our method further improves the rate-distortion performance for fast motion estimation.)

 (The method was adopted into the H.264/MPEG-4 AVC video coding international standard – including the Text Description of Joint Model Reference Encoding Methods and Decoding Concealment Methods and the
H.264/AVC reference software JM 10.0 onwards. Ours is one of the very few fast motion estimation methods in the H.264 reference software.)