

SEEDs Workshop April 15, 2017

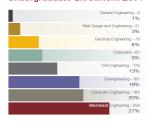
SCHOOL OF ENGINEERING Santa Clara
University

SANTA CLARA UNIVERSITY

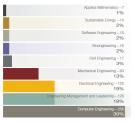
What do we do **Mechanical Engineering: Mission Statement**

To develop successful Mechanical Engineers who:

- · have broad grounding in engineering fundamentals;
- · have strong communication skills;
- have the ability to adapt to changing work environments;


SANTA CLARA UNIVERSITY Engineering = Facebook™ Applied Math Computer Electrical Chemical Systems Materials Nuclear Mechanical Environmental Industrial Bioengineering Civil www.scu.edu

SANTA CLARA UNIVERSITY



Mechanical Engineering at SCU

Undergraduate Enrollment 2014

Graduate Enrollment 2014

Total*-953, 100%

*Excludes cortificate and open univers

Summer 2014 School of Engineering e-news

www.scu.ed

SCHOOL OF ENGINEE

SANTA CLARA UNIVERSITY

2014 Freshman Admission Profile

- Acceptance rate 49.3%, 1319 enrollment
 - 50% male, 50% female
- Admitted students for the Fall 2011 had the following average scores:

 - ACT Composite (25th to 75th percentile)
 27-32

 - SAT Critical Reading
 590-680

 - SAT Math
 620-710

 - GPA
 3.67

Expenses

Tuition \$43,812Room and board \$12,921

www.scu.edu

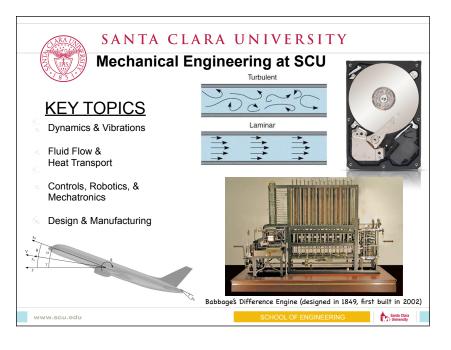
SCHOOL OF ENGINEERING

SANTA CLARA UNIVERSITY

2014 Freshman Engineering Admission Profile

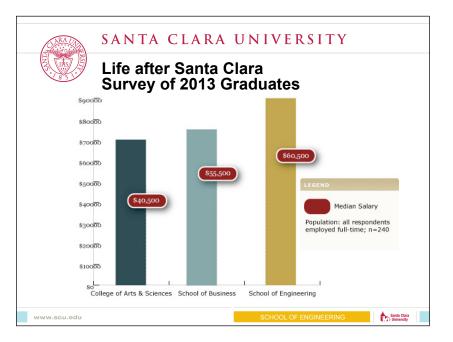
Demographic data for students enrolled for
 Admission rate
 Female (2011)
 Male (2011)
 72.0%

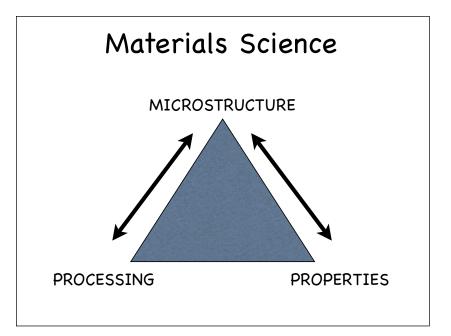
 Admitted students for the 2014 had the following average scores:

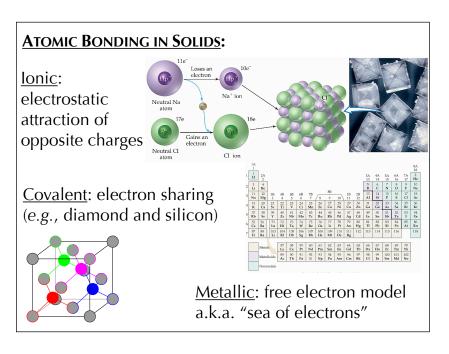

ACT Composite
 SAT Critical Reading
 SAT Math
 SAT Composite
 SAT Composite
 GPA (2011)
 30-34
 620-690
 670-750
 1,300-1430
 3.75

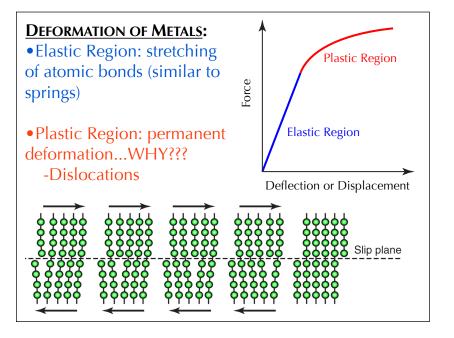
ASEE Profiles 2014, institutional research

SCHOOL OF ENGINEERING



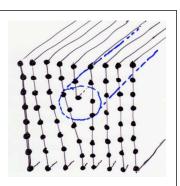






Materials Science

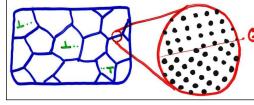
- Bridge between "Science" and "Engineering"
- May be called any of the following:
 - -Materials Science
 - -Materials Science and Engineering
 - -Materials Engineering
- Often combined with Chemical or Mechanical Engineering departments
- Most Engineering students are required to take at least one introductory course in materials



STRAIN HARDENING IN METALS:

- Higher force needed for continued plastic deformation
- Dislocation movement becomes more difficult as deformation proceeds
- Dislocations get "tangled" up with one another and it becomes harder for them to move, so more force is required to continue deforming the metal.

In a heavily deformed metal, there can be as much as $\approx 10^{12}$ cm of dislocation line per cm³ of material.


 10^{12} cm = 10^{7} km $\approx 25 \times$ distance to the moon

MICROSTRUCTURE IN SOLIDS:

- Solids formed from solidification; this leads to many micro-crystals called grains.
- Difficult for dislocations to cross a grain boundary
- By cooling faster, smaller grains are formed
- •When a solid is heated, large grains grow at the expense of smaller grains.

SUMMARY:

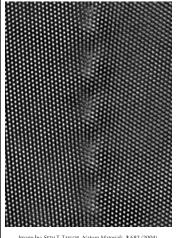


Image by: SETH T. TAYLOR, Nature Materials, 3 682 (2004).

- Stretching of atomic bonds is reversible and occurs during elastic deformation.
- Dislocation motion is <u>irreversible</u> and leads to permanent or plastic deformation.
- Solids are usually composed of several microscopic crystals known as grains.
- The size of grains increases (grain growth) when a solid material is exposed to higher temperatures.
- Dislocation motion is impeded by grain boundaries; hence, smaller grained metals tend to be more difficult to deform plastically.

LAB WORKSHEET

1) Write the names of your	group members below.		
	_		
) Write the letter of your l	orass sample here		
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>.</u>	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.0	1 1 1	
) Write the hardness value	es you measured for you	r sample below.	
(a) After consulting with the	e other members in you	ır group, write the temp	erature at which each
ample was annealed (500°			
Sample A	Sample B	Sample C	Sample D
) Which sample do you ex	spect to have the smalle	st grain size, and which	sample do you expect 1
ave the largest grain size?	•		
sma	allest grains	largest gra	ins
	B, C, or D)	(A, B, C, or	