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 Our research investigates the use of causal modeling and its application towards mapping 

out cybersecurity threat patterns. We test the strength of various methods of data breaches 

over its impact on the breach’s discovery time as well as the number of records lost. 

Utilizing a Causal Modeling framework, we simulate the isolation of confounding variables 

while testing the robustness of varying estimators. The motivation is to shed a unique insight 

provided by the usage of Causal Modeling in cybersecurity.  
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1. Introduction  

The purpose of this paper is to demonstrate the application of 

Causal Modeling in the domain of Cybersecurity. We engage in 

the scientific inquiry into the underlying causes of data breaches. 

Using methods of causal analysis that link concepts to 

observations, and a rationale connecting concepts to practice. The 

notion of causality, as used in Computer Science, provides 

principles that guide the problem specification, elaboration of the 

procedures, and interpretation of datasets. We employ causal 

modeling for the purpose of providing a computable measurement 

of a certain group of data breaches. 

We tackle a variety of data breach problems that affect our 

industries and have an impact on the overall economy.  In our 

work, we demonstrate how the usage of Causal Modeling can help 

us locate such data breach problems.  Statistical analysis is enough 

for identifying associative relationships. While this is useful for 

general analysis, Causal Modeling provides a different structure 

with interventions included in it.  Interventions tell us what would 

have happened if events other than the ones we are currently 

observing had happened.  Such interventions allow us to avoid 

unnecessary steps and come directly to the point. It can also 

provide justification as to why and how the desired step or 

conclusion is arrived and provide defense for potential future 

cases. In order to intervene, we needed to estimate the effect of 

changing an input from its current value, for which no data exists. 

Such questions, involving estimating a counterfactual, are 

common in decision-making scenarios. 

 Statistical Prediction is the estimation of an outcome based on 

the observed association between a set of independent variables 

and a set of dependent variables. Its main application is 

forecasting. 

Causality is the identification of the mechanisms and processes 

through which a certain outcome is produced. It can be used in 

predicting future events that are similarly connected via 

mechanisms and processes. Causal relations are not features that 

can be directly read off from the data, but have to be inferred. The 

field of causal discovery is concerned with this inference and the 

assumptions that support it.  

Our research focuses on two aspects of Causal Modeling: 

Causal Discovery and Causal Inference. Causal Discovery 

algorithms try to derive causal relations from observational data. 

Given a set of data, a causal discovery algorithm returns a set of 

statements regarding the causal interactions between the measured 

variables. 

Causal Inference is the process of drawing a conclusion about 

a causal connection based on the conditions of the occurrence of 

an effect. The main difference between causal inference and 

statistical inference of association is that the former analyzes the 

response of the effect variable when the cause is changed. The 

process shows causal direction, which is rarely found by statistical 

correlation alone. For example, a question that  causal reasoning 

can answer is: Is there a causal link between the distribution across 

values of a certain variable X and values of another variable Y? 

Causal inference process solves causal problems 

systematically, by methods such as counterfactual analysis, 
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graphical models, and the association between counterfactual and 

graphical methods. 

Causal modeling resolves questions about possible causes by 

providing explanation of phenomena as the result of previous 

events. One can generate a plausible explanation for gaps within 

cybersecurity infrastructure.  The usage of Causal Modeling can 

help us locate a set of data breach problems and help provide a 

solution for such problems. 

The objective of this research is to evaluate the risks of data 

breach  of cybersecurity incidents with the overall aim to identify 

patterns of importance amongst the dataset, accomplished by 

noting causes and effects in the modeling process. This is achieved 

by studying the characteristics of the VERIS Community Database 

(VCDB) of cybersecurity incidents. VCDB is a widely used open-

source dataset containing a breadth of information regarding data 

breaches. 

2. Background 

We offer a scientific method based on the notion of causation. 

Following are the motivations behind the use of Causal Modeling 

for Cybersecurity:  

One can draw from past experiences, and try to build a 

probability distribution [1]. Standard probability theory has been 

productive in these problems and similar ones, when the past 

experiences are readily available for analysis. But there are 

instances where it fails to provide adequate concepts and 

mathematical methods, particularly when the past experiences are 

either not available, or are not relevant.    

A context like breach of data can interact with the phenomena 

of interest in ways that standard probability theory does not 

productively capture; that is, in ways that standard probability 

theory does not provide insights and methods for useful modeling 

and fails to capture key concepts.  Some of these key concepts are 

the necessary and sufficient conditions that produce the essential 

model of the cause-effect relationships involved.   

A necessary condition is one that is required if a certain effect 

is to follow. A sufficient condition, on the other hand, is enough 

for certain effects to follow.  

Some of the usage of the necessary and sufficient conditions 

are as follows: we have to look for causes that are common in the 

cases where the effect also occurs. Thus, some event is not a 

necessary condition if it happens without the effect occurring [2,3]. 

We can explore causal modeling on observational data.  In 

general, to determine whether or not an uncertain variable xk (the 

supposed effect) is responsive or unresponsive to decision d we 

have to answer the query “Would the outcome of xk have been the 

same had we chosen a different alternative for d?" Questions of 

this form are counterfactual queries [4,5]. 

   We define the Counterfactual World as follows.  there are 

some uncertain variables, X (of which xk is an instance), such as 

data leakage (including some uncertainty as to why, and are we 

sure about the leakage?)  in the scenario; there is also the set of  

potential causes C [6].  Possible candidates for the causes in C are: 

• malware in the system  

• hacking  

• human error   

Let U be the total set of possible effects pertaining to some 

scenario S.  These are possibilities that should be determined 

correctly. There are variables  X ⊆ U, which are uncertain 

variables.  We also have a set of decisions D (for example, the 

decision that the data leakage  is, indeed, there, and that it is there 

because of the bugs). Given these notions, the concept of 

counterfactual world can be defined.  A counterfactual world of X 

and D is any instance of such world retained by X ∪ D, after the 

decision maker selects a particular instance of  D [7]. 

Definitions of unresponsiveness and responsiveness are to be 

understood next. Suppose that we have some uncertain variables, 

which form a set X. Also, suppose that we have a set of decisions 

D. There can be counterfactual worlds  D that can form union with 

the set X.  D is the set of scenarios where there is  a list of 

counterfactual decisions (and the outcomes associated with the 

decisions), which may never take place in the real world as we 

encounter it. X is unresponsive to D, denoted as X  ↚ D, if X 

assumes the same instance in all counterfactual worlds of X ∪ D 

[8]. That is, instances of  X do not affect  the status of X ∪ D. In 

the case of Cybersecurity, an example of a counterfactual world 

can be one in which no cybersecurity compromise is ever reported. 

These counterfactual variables are not observed, and, most 

probably, will never be observed. Examples of X can be concerns 

about Cybersecurity. These two can form a union,  but X is 

unresponsive to D,  since the instances of such concern do not 

affect the union. In contrast, one can think of a set X as being 

responsive to a set D. In this case, let the set X be the same as 

before, namely, the set of concerns about Cybersecurity, for 

example, concerns about data leakage as an element of X. The 

counterfactual world D can be one where Cybersecurity 

compromise is supposed to be reported to computer users, but 

ignored. 

If concerns about the data leakage problem is an example of X, 

then it can assume different instances in different counterfactual 

worlds of X U D.  

For example, “If one had this concern about data leakage, then 

one may or may not have ignored the Cybersecurity compromise 

report”.  

This shows that some instances of X can belong to some 

counterfactual world of X U D. Therefore, X is responsive to D.  

X refers to the collections of events (indicating, for example, 

different states of data leakage) some of which occur after 

decision(s) D have been made. Given decisions D, the variables in 

the set C are causes of x with respect to D if all the following three 

conditions are met: 

• Condition 1: x is not a member of C.  

• Condition 2: x is responsive to D.   

• Condition 3: C’ is a minimal set of variables such that x is 

unresponsive to D in worlds limited by C’ (that is, x ← D, 

and C’ is a minimal set such that x ↚ c’ D).    
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The third condition is saying that C has a definite influence on 

x being responsive to D. The influence is that the relevant cause 

(or causes) must be included in whichever set of variables that also 

necessarily differ (being responsive) in accord with x being 

responsive to D.  So, the set C’ that limits the relation of x with D 

(regarding responsiveness) is a minimal set.   

The following are the brief explanations with regard to the 

system discussed here.  

• Condition 1 affirms that the effect (X) is not a member of 

the set of causes.  

• Condition 2 affirms that for x (data leakage) to be caused 

with respect to decision D (data leakage must have been 

caused by the bugs in the system), it must be responsive to 

that decision.  

• Condition 3 states the following: suppose  that one can find 

a set of variables Y such that X, data leakage, can be 

different in different counterfactual worlds only when Y is 

different.  In that case, Y must contain a set of  causes. 

Our approach in this paper is showing the effects of 

intervention. Causal modeling  helps us ask the right questions 

about causation and helps us devise a way to emulate it by means 

that are not intrusive. Our emulation of interventions  are based on 

observational studies and using data to find causal relation between 

them.  

Causal relations are not features that can be directly read off 

from the data, but have to be inferred. The field of causal discovery 

is concerned with the inference and the assumptions that support 

it. Instrumental variable method ensures that we obtain the close-

to-correct causal effect, even if there are unobserved conditions.  

Combining propensity-based and regression-based methods 

provides us with a causal estimate that is accurate whenever the 

model is correctly specified.  

The potential outcomes framework can be detailed as follows: 

counterfactual variables such as “knowledge and action of a person 

P had  he received the information that the cybersecurity of his 

computer system has been compromised ”and “knowledge and 

action of a person P had he not received the information that the 

cybersecurity of his computer system has been compromised” are 

as appropriate as traditional variables such as “knowledge and 

action of a person P” – though one of these counterfactual variables 

is not observed, and most probably, will never be observed, in the 

case of this person P . 

2.1.  Common Cause, Confounding, Control, and Instrumental 

Variables.  

Common causes explain the fact that there are concepts related 

to causation that are more important than correlation. 

Suppose that a person has received a “Compromised Host” 

notice from some authorities, and also his computer-savvy friend 

(who may or may not know about the notice) has checked this 

person’s computer and is confident that attackers have gained 

unauthorized access to this person’s computer. Therefore, this 

person is worried about cybersecurity, and would like to take steps. 

What are the causes of receiving such as notice? What are the 

causes of this computer-savvy friend being confident that attackers 

have gained unauthorized access to this person’s computer? If 

there is some disaster, it could cause the “Compromised Host” 

notice  to go out. It could also cause one’s computer-savvy friend 

being confident that attackers have gained unauthorized access to 

this person’s computer. 

If a disaster happens, both of these are likely. This means in a 

data set one can find a correlation between the two.  

We know there is no causal effect of receiving a 

“Compromised Host” notice  on one’s computer-savvy friend 

(who may or may not know about the notice) being confident that 

attackers have gained unauthorized access to this person’s 

computer, or vice versa. This is the essence of “correlation does 

not imply causation”.  

When there is a common cause between two variables, then the 

variables will be correlated. This is part of the reasoning behind 

the phrase, “There is no correlation without causation”. 

Suppose that we are dealing with two concepts, named A and 

B. If neither A nor B has been definitely known to cause the other, 

and the two are correlated, there must be some common cause of 

the two. It may not be a direct cause of each of them, but it is there 

somewhere. This implies that we need to control for common 

causes if we are trying to estimate a causal effect of A on B. 

Common cause variation is fluctuation caused by unknown 

factors resulting in a steady but random distribution of output 

around the average of the data. 

Suppose that we take the average of the data, and do a steady 

but random distribution of output around the average. There will 

be unknown factors that will result in that distribution. This will 

cause a source of variation called common cause variability. This 

is a measure of  the potential of the process – which includes how 

well the process can perform, if and when special cause variation 

is removed.  Common cause variation is also called random 

variation, or non-controllable variation. 

If we do not include hidden common causes in our model, we 

will estimate causal effects incorrectly. This is similar to the notion 

of confounders (in this particular case, some cybersecurity disaster 

has happened). 

Confounding variables are to be understood in terms of data 

generating model. Pearl defines the concept of confounding as 

follows: Let X denote some independent variable (for example, the 

“Compromised system “notice), and Y some dependent variable 

(the person is worried and wants to take action). We might want to 

estimate what effect X has on Y, without regard to other potential 

factors; for example, if the person is, at the same time, not feeling 

well. We say that X and Y are confounded by some other variable 

Z whenever Z is a cause of both X and Y. In our case, Z is that 

some cybersecurity disaster has happened. 

One can state that X and Y are not confounded whenever the 

observationally witnessed association between them is the same as 

the association that would be measured in a controlled experiment, 

with x randomized. 
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An equality here can be stated as P(y | do(x)) = P(y | x); this 

can be verified from the data generating model provided that we 

have all the equations and probabilities associated with the model. 

This is done by simulating an intervention do (X = x) and checking 

whether the resulting probability of Y equals the conditional 

probability P (y | x).  

Control is a concept related to confounders. Suppose that we 

are attempting to assess the effectiveness of the notice being given, 

from population data. The data shows that prior knowledge about 

such incidents (Z) influences the state of mind .e.g. worry and 

wanting to take action (Y). In this scenario, Z confounds the 

relation between X (his computer-savvy friend takes the action of  

telling him) and Y since Z is a cause of both X and Y.  

We hope to obtain an unbiased estimate P(y | do(x)) = P(y | x). 

In cases where only observational data are available, an unbiased 

estimate can only be obtained by "adjusting" for all confounding 

factors, which means conditioning on their various values and 

averaging the result.   

This gives an unbiased estimate for the causal effect of X on 

Y. The same adjustment formula works when there are multiple 

confounders except, in this case, the choice of a set Z of variables 

that would guarantee unbiased estimates must be done with care. 

One can view cause-effect relationships via directed acyclic 

graphs; one should also link causal parameters and observed data, 

such as information about the subjects studied, as well estimation 

of the resulting parameters. 

 

Figure 1. Example of a Causal Model 

3. Overview 

Since experimentation is not feasible for simulating real world 

data breaches, the analysis relies solely on observational data. In 

this regard, Judea Pearl’s theory of Counterfactual World theory is 

extended with the use of propensity scores to calculate causal 

inference. The main issue to tackle regarding the use of 

observational data is the bias within the data caused by 

confounding variables, both known and unfounded. These include 

the previously mentioned common causes, instrumental variable, 

and any other covariates. 

We thus present the use of causal modeling as a tool for gaining 

insight into how data breaches occur, and the degree to which 

certain associations behind these breaches can be seen as causal. 

We present a subset of open-sourced data offered by Verizon 

Communication. We then apply principles of Pearlian Causal 

inference through the software library DoWhy in order to 

understand the causal effects of our interventions. 

3.1. Methodology 

We concluded that DoWhy, a Microsoft open source Causal 

Modeling framework, was most appropriate for this current 

project, for its ease of use and abundant resources. It also provided 

an intuitive method to implement the Model -> Identify -> 

Estimate -> Refute structure of the analysis. All of these were 

readily provided by DoWhy and were thus implemented with 

DoWhy’s built-in functions. Due to the limitation on data 

availability regarding data breaches, we believe these provided 

enough for an exploratory analysis on the subject [9,10]. 

DoWhy also provides a principled way of modeling a given 

problem as a causal graph so that all assumptions are unequivocal 

and explicit. It provides an integrated interface for causal inference 

methods, combining the two major frameworks of graphical 

models and potential outcomes. It also automatically tests for the 

validity of assumptions if possible and assesses the robustness of 

the estimate to violations. 

It is important to note that DoWhy builds on two of the most 

powerful frameworks for causal inference: graphical models and 

potential outcomes. It uses graph-based criteria and do-calculus for 

modeling assumptions and identifying a non-parametric causal 

effect. For estimation, it switches to methods based primarily on 

potential outcomes. 

In the following paragraphs we will describe the techniques to 

use for our analysis: Propensity Score Matching, Propensity Score 

Stratification, and Linear Regression Estimator. These techniques 

can all be founded within the DoWhy framework. 

Linear Regression Estimator provides a baseline analysis 

assuming an evenly distributed dataset. It provides a foundation to 

compare results with the other methods. As linear regression only 

describes a correlation between the treatment and outcome, 

Propensity Score Matching and Propensity Score Stratification 

both use linear regression while adding additional processes in 

order to account for confounding variables and properly 

compartmentalize each data entry to find a causal relationship 

between the treatment and outcome. 

Propensity Score Stratification takes the propensity scores of 

each entry and classifies them into equal sub-groups. These 

subgroups are classified by the similarity of the covariates. The 

aim is to have each sub-group represent a distribution that 

accurately represents a non-biased dataset to the best of its ability. 

Propensity Score Matching instead takes the propensity scores 

of each entry and finds the entries with the highest propensity 

scores within the treatment group and finds the entries within the 

control group with covariates that most closely match each 

treatment group entry. This attempts to establish parity between 

the covariates of the treatment group and the control group.  

Both Matching and Stratification work to remove bias from 

high-dimensional datasets. They do so by balancing out the treated 

and control groups with processes that emulate a random 

distribution in an experiment. This is done by evaluating the 

propensity score of each group. The propensity score represents 

the probability of the treatment on each sample in the treatment 
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group and is calculated by mapping the outcomes to a linear 

regression line. The difference in the methods in how they use the 

propensity score to balance out the treatment and control group. 

In addition, refuters are necessary in the causal analysis process 

in order to verify the robustness of the results. The following 

methods all check the effects of confounding variables and 

compare them with the treatment to concretely establish a causal 

relationship. Generally, the refuters all involve rerunning the same 

causal analysis methods with the following changes to the dataset: 

• Placebo Refuter: Replaces the treatment variable with a 

placebo variable with random values 

• Data Subset Refuter: Runs the program over a randomly 

chosen subset of the original data 

• Common Cause Refuter: Generates a random confounding 

variable  

 

Figure 2: Number of Data Breaches by Industry 

3.2.  Data Acquisition 

We note that high-quality information on real-world 

cybersecurity incidents through academic or otherwise publicly 

accessible channels is likely to be unrepresentative of the nature in 

which breaches occur on a broader scale. As a result, we focus on 

analyzing healthcare privacy breach data, which generally enjoys 

stringent reporting standards. Our reasoning is as follows.    

For the private sector, disclosure of breaches can negatively 

impact short term company value as well as consumer trust. A 

report by IBM’s Ponemon Institute in 2019 estimates the global 

average impact of having a data breach to an organization to be 3.9 

million US dollars, representing a rise of 12% over the course of 

five years. For organizations with fewer than 500 employees, this 

cost averages to 2.5 million dollars [11]. Voluntary disclosure of 

data breaches may be unpalatable in light of this [12]. 

In contrast, government and healthcare institutions are 

generally under greater legal pressure to disclose similar incidents. 

For instance, the Department of Human and Health Care Services 

(HHS) in the United States mandates that information regarding 

data breaches involving over 500 individuals be disclosed to the 

media within 60 days of discovery. Structured collection of such 

breaches is made publicly available through the HHS website [13].  

Initial exploration was performed on the VERIS Community 

Database (VCDB). The VCDB is an open dataset covering a broad 

spectrum of security incidents occurring throughout both public 

and private sectors. Data available through this channel represents 

a small portion of data contained in a more comprehensive report 

presented in Verizon's annual Data Breach Investigation Report. 

The VCDB is attractive as there are few publicly available 

repositories containing annotated security breach information [14]. 

The VCDB follows the Vocabulary for Event Recording and 

Incident Sharing (VERIS) framework. Generally, information 

surrounding security incidents is divided into four categories: 

Actor, Attribute, Asset, and Action. Actor pertains to the entity or 

entities responsible for the data breach. Asset characterizes the 

type of information lost, as well as how accessible said information 

was. Attribute refers to the degree which the asset in question was 

affected, as well as the severity of the incident, the medium of 

transmission, and if said data was exposed to the public. Finally, 

Action describes how the security breach was carried out; such as 

if the breach was a result of malware, or simply negligence. 

Additional data on affected industry and incident timeline are 

included as well.  

To accommodate the wide variety in reporting standards, 

VERIS uses a fine-grained approach for characterizing security 

incidents, using a nested key-value store to accommodate some 

173 attributes. 

We will take the “actor” category as an example. For any given 

incident, the individual or individuals responsible could be 

categorized as either external, internal (affiliated with the 

organization), a partner (associate, but not directly affiliated), or 

simply unknown or not available. Within each type of actor lies a 

different subcategory. For instance, the “external actor” label can 

represent a criminal organization, foreign government, former 

employee, or a combination thereof. As a result, many of the keys 

contain lists as values, as represented in () 

 
“actor”: { 

[“external”: { 

“variety”: [“Mother Nature”, 
“Criminal Organization”],  

“motive”: [“NA”,  
“Espionage”,   

“Ideology”] 

} … 

              

 

 

()                         

 

3.3. Why Healthcare? 

While the VCDB contains many features describing the 

companies that were victims of data breach, little information 

seems to be provided regarding the situation preceding and during 

the data breach. Therefore, to maintain a degree of uniformity of 

each company, narrowing down to one industry like healthcare 

would mitigate discrepancies within the dataset. 

Furthermore, the VCDB utilizes a JSON-formatted, 

hierarchical data structure presented as a list of key-value pairs.  
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While each record adheres to the same general schema, sparsity 

arises as a result of how much data is disclosed by each entity, or 

simply what information is relevant to which sector. Referring 

back to US Healthcare data breach disclosure law, we can expect 

a baseline of data to be provided, such as the number of individuals 

affected, the type of breach, and the vector of attack.  

The next logical step was to transform the data from a 

hierarchical format into a two-dimensional, tabular structure. A 

strong motivation for this was to make the data both more 

comprehensible and consistent.  

Transforming the database for VCDB was straightforward 

thanks to the open-source library Verispy. Verispy converts the 

deeply nested structure of the original VCDB dataset into a two-

dimensional grid-like format. by performing “one-hot encoding” 

on each of the categorical variables. 

This leads to a relatively consistent dataset with the caveat of 

vastly increasing the (perceived) dimensionality. The final table 

consists of 2,347 columns, containing 2108 (89%) Boolean entries, 

147 (6%) string or string-like entries, and the remaining 92 (5%) 

numerical entries. 

 1839 entries within VCDB are related to healthcare out of 8363 

data breach entries. In order to further narrow down VCDB into 

healthcare, we further take out all irrelevant variables to our causal 

model (described in the next section) as well as drop all entries that 

have empty values in any of those variables. This drops the final 

dataset entry count to 106 entries, a mere 1.3% of the original 

VCDB size. This demonstrates sparseness of the VCDB dataset, 

despite the breadth of information available within. 

 

Figure 3. Causal Model for Cybersecurity (on VCDB) 

3.4. Data Breach Model 

 Figure 3 represents the causal graph used as the basis for our 

causal analysis. The variables are all taken from VCDB and were 

decided on how accurately they could be mapped to a timeline of 

the data breach. Since all observational data given to us are all post-

data breach, the way to approximate a causal effect for this analysis 

is to generate a model that shows a progression of events. Many of 

these variables and their sequencing were derived from personal 

interpretation than any logical standpoint. We will take a look at 

each variable type with their justifications. 

• Actor 

• Employee Count 

• Action  

• Discovery Time 

• Discovery Method 

• Records Lost 

‘Actor’ is referring to the one who instigates the action against 

the victim. This could be a single person, a group of people, or 

even a natural disaster. In the causal model, the actor is spread 

amongst three categories: Internal, External, Partner. Internal 

actors are those who work within the company that is affected by 

the breach. External actors are those with no affiliation whatsoever 

with the company. Finally, partners do have or are part of an 

organization that has an affiliation with the company but are not 

from the company themselves. This variable represents a general 

categorizable description regarding the perpetrator of the data 

breach and is put near the top of the causal graph because the 

‘actor’ is the one that will begin this data breach event. 

‘Employee Count’ represents the general size of the victim 

company, which is represented by an integer value. Employee 

count was chosen as it is a variable that conveys a simple, but 

ordinal description of healthcare organizations. 

Each of the types of data breaches (‘Malware’, ‘Hacking’, 

‘Physical’, ‘Misuse’, ‘Error’, ‘Social’) are labeled as ‘Actions’ 

within VCDB. These are the treatment variables in which the 

analysis will be performed on. Each action is a binary state, and 

while there are a few rare cases that have multiple ‘Actions’ at 

once, these are still considered one data breach. 

 

Figure 4. Distribution of ‘Discovery Time’ 

‘Discovery Time’ is the unit of time it took for the data breach 

to be discovered. VCDB does not have discovery time as an integer 

number. Instead, the variable is categorized as six different ranges 

of numbers, getting subsequently larger. Going under the 

assumption that the larger unit means that the actual discovery time 

was longer, the units were combined into one variable from 1-6, 

each representing a greater scale of time. The unit of time 

represents the general time frame of the data breach being 

discovered. Discovery time is one of the outcomes that is used to 

measure causality of data breaches. ‘Containment Time’ and 

‘Exfiltration Time’ were considered as well. However, a high 
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proportion of these entries remain unfilled in the VCDB dataset 

and are therefore not of much use. 

 

Figure 5. Distribution of Records Lost (log-scaled) 

‘Discovery Method’ is the method by which the victim was 

first able to discover the data breach. Like ‘Actor’, this is also split 

into External, Internal, and Partner, which represents the 

relationship of the individual or group that discovered the breach 

to the victim company. External meant those unrelated to the 

company, Internal part of the company, and Partner are those 

affiliated with but not directly part of the company. 

‘Records Lost’ is the second outcome we will be using as an 

outcome to test the causality of the causal model. Similar to 

Discovery Time, Records Lost is not an integer value, but ranges 

of values of subsequently greater number. This variable is also 

similarly combined into one variable ranging from 0-6. One major 

caveat is that this variable doesn’t have a defined unit and thus the 

scale of a unit of record is determined by each individual company. 

Part of the decision to focus on healthcare companies only was to 

mitigate this ambiguity. 

4. Results and Analysis 

Causal estimate calculations were run across all six ‘Actions’ 

(Social, Physical, Misuse, Malware, Hacking, and Error) and two 

outcomes (Discovery Time, Records Lost). This means multiple 

runs using the same causal model and dataset but changing the 

‘Action’ and ‘Outcome’ input for each run until all permutations 

of each variable was covered. This was then repeated across all 

refutations. The causal estimate results for Propensity Score 

Matching on Discovery Time and Records Lost are shown in 

Figure 6 and 7, respectively. 

 

Figure 6. Causal Estimates for Discovery Time 

 

Figure 7. Causal Estimates of Records Lost 

As seen in Figure 6 shows, the causal estimate of each action 

on Discovery Time shows quite a range of values and distributions 

across all actions. 3 actions (Physical, Misuse, Hacking) have 

positive causal estimates. indicating a potential strong causal 

relationship between the actions and lengthy discovery times. On 

the other hand, Social and Error turn out negative causal estimates, 

meaning that the impact of those two variables on discovery time 

is minimal. Lastly, Malware has a unique scenario where there is 

a split between the Propensity Score and its refuters.  

For records lost (Figure 7), Hacking returns an overwhelming 

higher causal estimate compared to all other actions. In fact, all the 

other actions return a negative causal estimate. This does not 

necessarily mean the lack of causal effect of the other actions on 

records lost. However, it does provide strong indication that the 

greatest impact when it comes to records lost during a data breach 

is most likely the result of hacking as opposed to all other methods. 

Interestingly, this is backed up by both the Random Common 

Cause and Data Subset, but not the Placebo Refuter. In the Placebo 

case, the causal estimate returns a comparable negative value to 

the other actions. A possible explanation can be traced back to the 

nature of the dataset. While our causal model brings into 

consideration other causes of data breach, the distribution of the 

effect of each cause can be hard to separate. This is exacerbated 

when the Placebo Refuter randomizes the treatment variable, 

setting it so that every single entry in the dataset can also be 

considered part of the method of hacking.  

This Placebo Refuter discrepancy is reflected across all the 

actions, which each return strongly diminished causal estimates. 

However, Hacking remains the only variable where the causal 

estimate goes from a positive to a negative value. 

Another quirk to note is the large value of the causal estimate 

of Hacking on Records Lost. The reason for this exaggerated value 

is likely due to a lack of a solid control group within our data. The 

dataset provides us with a large selection of data breaches in a wide 

variety of companies. What the dataset lacks are scenarios where 

no data breach has occurred, generating an inherent bias within the 

dataset. This bias makes it so that the data do not fit well into linear 

regression, hence providing an overly large value as the result. 

The most unexpected outcome was that propensity score 

stratification gave inconclusive results when ran on DoWhy, hence 

the lack of data on this portion of the analysis. After some analysis, 
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we come to the conclusion that, due to the binary nature of each 

action, the distribution of the linear regression is not clear enough 

for stratification to be able to quantify and compartmentalize the 

dataset into groups. Hence, the resulting value outputs an 

inconclusive value due to a lack of substantial strata. This applies 

to stratification and not matching because matching disregards 

parts of the dataset with low propensity score; in stratification they 

still have an impact due to those data entries being assigned into 

strata. 

Overall, in this specific scenario and dataset, Hacking would 

prove to be the most impactful amongst all methods of data breach.  

However, the refuters give strong indication on where this impact 

is limited regarding not only the action itself but the dataset as a 

whole.  

5. Conclusion and Future Work 

The principal findings of this paper demonstrate the unique 

perspective of the causal modeling approach. Because we cannot 

realistically set up an experiment on data breach incidents, 

particularly in which all factors are readily provided, DoWhy and 

Causal Modeling allow us to simulate such experiments and make 

inferences with a degree of  robustness based on events that would 

otherwise be difficult to duplicate. 

We identify a subset of factors in the Verizon Community 

Database and create a hypothesis based on the theory that malware 

and hacking are the most prominent causes of data breaches. 

Through propensity score matching and stratification, we measure 

the strength of the action behind data breaches. By running 

refutation tests, we are able to verify how well these metrics hold 

up, similar to how traditional experiments employ control groups 

or utilize a placebo treatment.  

Ample room remains for the use of causal modeling in 

cybersecurity. We limit the scope of the factors considered in the 

Verizon Dataset to Actions in order to emphasize the results of the 

exploratory approach. A larger and denser dataset could utilize the 

causal model better. 

Other fields of cybersecurity lend themselves well to causal 

modeling. In particular, the use of Directed Acyclic Graphs to 

model vectors of attack in a network intrusion scenario could lead 

to different approaches into how such cases are handled.  

The study is important to the readers in the scientific 

community since it is relevant to formulating policies in industry 

and government, in order to avoid such problems in the near future. 

Given the context of the work, exhibited in the paper, our findings 

are worthy of note. 

Conflict of Interest 

The authors declare no conflict of interest. 

Acknowledgments 

We thank the Data Science Discovery Research Program of 

UC Berkeley and their participant, Rubina Aujla of UC Berkeley, 

2018-2019, for contributions to causal modeling. 

 

 

References  

[1] P. Zornig, Probability Theory and Statistical Applications, De Gruyter. ISBN-
13: 978-3110363197        

[2] B. McLaughlin, On the Logic of Ordinary Conditionals, Buffalo, NY: SUNY 
Press, 1990. 

[3] J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge: 
Cambridge University Press, 2000.  

[4] J. Pearl, Causality, 2nd edition, Cambridge University Press, 2009.   
[5] S. Thornley, R.J. Marshall, S. Wells, R. Jackson, “Using Directed Acyclic 

Graphs for Investigating Causal Paths for Cardiovascular Disease”,  Journal 
of Biometrics & Biostatistics, 2013, 4:182. doi:10.4172/2155-6180.1000182 

[6] P. Menzies, H. Beebee. "Counterfactual theories of causation.", 2001. 
[7] A. Chesher, A. Rosen, Counterfactual worlds. No. CWP22/15. Centre for 

Microdata Methods and Practice, Institute for Fiscal Studies, 2015. 
[8] A. Agresti, An Introduction to Categorical Data Analysis, 3rd Edition, Wiley 

Series in Probability and Statistics. 
[9] A. Sharma, E. Kıcıman, 2020. Causal Inference and Counterfactual 

Reasoning. In7th ACM IKDD CoDS and 25th COMAD (CoDS 
COMAD2020), January 5–7, 2020, Hyderabad, India. ACM, New York, NY, 
USA,2 pages. https://doi.org/10.1145/3371158.3371231 

[10] A. Sharma, E. Kiciman, et al. DoWhy: A Python package for causal inference. 
2019. 

[11] IBM Security 2019 Cost of a Data Breach Study: Global Overview  
[12] R. Anderson, 2001. Why Information Security is Hard-An Economic 

Perspective. In Proceedings of the 17th Annual Computer Security 
Applications Conference (ACSAC ’01). IEEE Computer Society, USA, 358.  

[13] Department of Health and Human Services, 2013. Modifications to the 
HIPAA Privacy, Security, Enforcement, and Breach Notification Rules Under 
the HITECH Act and the GINA Act; other Modifications to the HIPAA Rules 
(78 FR 5565), pp. 5565-5702 

[14] VERIZON. Data Breach Investigations Reports Overview, 2019 (DBIR).  

http://www.astesj.com/
https://www.google.com/url?q=https://doi.org/10.1145/3371158.3371231&sa=D&source=hangouts&ust=1590529383041000&usg=AFQjCNGatHq_zm-B5k75Mope-_bUsviZzQ

