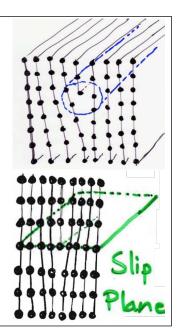
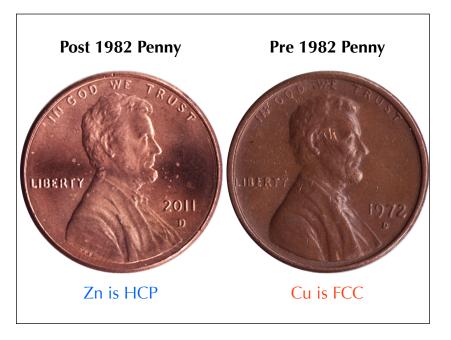

Ductility in Metals

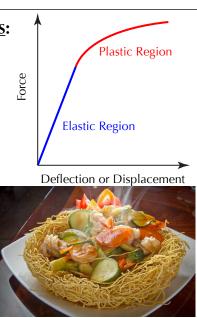
by: Dr. Robert A. Marks Dept. of Mechanical Engineering


2016 Summer Engineering Seminar



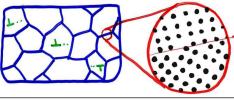
DISLOCATION STRUCTURE:

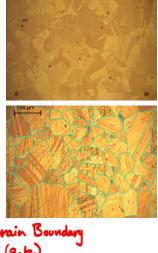
- A dislocation extends through the material in three dimensions (we can think of it as a line or curve meandering throughout the crystal).
- •Dislocation motion (a.k.a. slip) occurs more easily in metals compared to covalent solids (e.g., diamond) or ionic solids (e.g., NaCl).
- For "easy" slip want atoms close together in the <u>slip direction</u>, but with large separation perpendicular to the slip plane.



STRAIN HARDENING IN METALS:

- Higher force needed for continued plastic deformation.
- Dislocation movement becomes more difficult as deformation proceeds.
- Dislocations get "tangled" up with one another and it becomes harder for them to move, so more force is required to continue deforming the metal.


In a heavily deformed metal, there can be as much as ≈10¹² cm of dislocation line per cm³ of material.


 10^{12} cm = 10^{7} km $\approx 25 \times$ distance to the moon

MICROSTRUCTURE IN SOLIDS:

- Solids formed from solidification; this leads to many micro-crystals called grains.
- Difficult for dislocations to cross a grain boundary
- •By cooling faster, smaller grains are formed; i.e., more grain boundaries.
- •When a solid is heated, large grains grow at the expense of smaller grains.

SUMMARY:

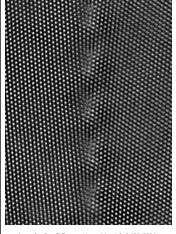


Image by: SETH T. TAYLOR, Nature Materials, 3 682 (2004).

- Stretching of atomic bonds is reversible and occurs during elastic deformation.
- Dislocation motion is <u>irreversible</u> and leads to permanent or plastic deformation.
- Solids are usually composed of several microscopic crystals known as grains.
- The size of grains increases (grain growth) when a solid material is exposed to higher temperatures.
- Dislocation motion is impeded by grain boundaries; hence, smaller grained metals tend to be more difficult to deform plastically.

LAB WORKSHEET

rite the letter of y	our brass samp	le here		
rite the hardness	values you mea	sured for your	sample below.	
	•	,	1	
_				
ter consulting wi le was annealed (group, write the temp	oerature at which eac
	500°C, 600°C, 			perature at which eac Sample D
le was annealed (Sample A	500°C, 600°C, San ou expect to ha	700°C, or 800	0°C) below.	Sample D
le was annealed (Sample A Thich sample do y	500°C, 600°C, San ou expect to ha	700°C, or 800 mple B ave the smalless	O°C) below. Sample C	Sample D sample do you expe

6) On the back of this page, briefly explain how you came to your conclusions for 4) and 5).