

INTRODUCTION TO WEARABLES AND IMPLANTABLES

SCU BIOENGINEERING
M.Mobed-Miremadi
7/13/2016

REFERENCES

- Biomaterials Science, 2nd Edition, An Introduction to Materials in Medicine; ISBN-10: 0123746264
- Please click on hyperlinks

EXAMPLE OF CUTTING EDGE WEARABLE AND IMPLANTABLES

PROFUSA

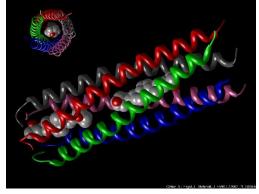
MAGMARIS

BIVACOR

KIDNEY

STRECHABLE ELECTRONICS

DEBIOTECH

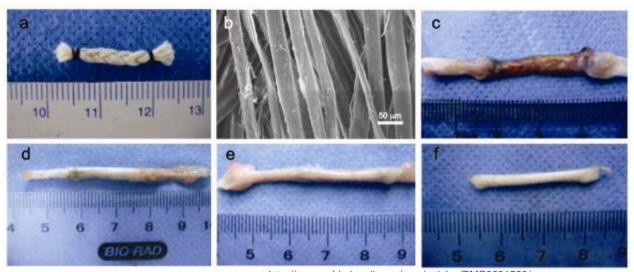


BIOMATERIALS+ BIO/MICRO-FABRICATION+ MINIATURIZATION+ BIOCOMPATIBILITY+

= Wearables and Implantables

THE STATE OF THE S

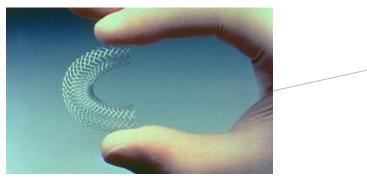
SMART POLYMERS Biomaterials



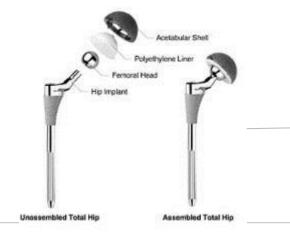
▶ ■(1) **0:01** / 1:14

Light-Activated Glue for A Broken Heart

http://www.youtube.com/watch?v=iaZhJuxPNpA


http://engineering.nyu.edu/files/pressrelease/COMPcc_blackBG_color_600dpi_4inx3in.jpg

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631569/



Bio-Medical Devices

http://virchicago.com/carotid-artery-blockage

Bio-Signals

Hyperspectral Imaging

HANDHELD APPLICATIONS TARGETED BY IMEC HSI

Food quality grading (e.g. sugar content in fruits, monitoring calorie intake,

Cosmetic / Skin tone measurement (e.g. make-up advice, etc...)

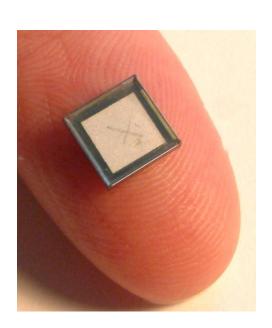
Skin-care / personalized medicine (e.g. melanoma, diabetic ulcers, wound care...)

+ many new ideas
/ application to be
generated when
HSI handled
platform ready!

Anti counterfeiting spectral tag readers

http://sites.ieee.org/scv-mems/files/2014/01/TSensors-1-22-14_final.pdf

Bio-Diagnostics and Bio-MEMS


miniaturized total chemical analysis systems (μTAS)

Bio-Chip and Micro Device Development

Miniaturized

http://djhurij4nde4r.cloudfront.net/images/images/000/121/043/fullsize/99058.Drug_Delivery_Infusion_Micropump.m.jpg?1390576193

BIOCOMPATIBILITY TESTING MATRIX

Nelson Laboratories Tests for Consideration [Based on ISO 10993-1:2003(E) and FDA G95-1 Guidelines]

Device Categories			Biological Effect Initial								Other⁴		
Body Contact		Contact Duration A- Limited [≤ 24 hrs] B- Prolonged [>24 hrs to ≤30 days] C- Permanent [>30 days]	Cytotoxicity	Sensitization	Irritation	Systemic Toxicity	Subacute (Subchronic Toxicity	Genotoxicity	Implantation	Hemocompatibility	Chronic Toxicity	Carcinogenicity	
	Skin	A B C	-	•	•								
Surface Devices	Mucosal Membranes	A B C	•	•	•	◊	◊	•	◊		0		
	Breached or Compromised Surfaces	A B C	•	:	:	0	٥ •	•	0		٥		
External Communicating Devices	Blood Path, Indirect ³ Tissue ¹ /Bone/Dentin Communicating	A B C A B C A	•	•	• · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	◊ ■ ■	• • •	◊	•	•	•	
	Circulating Blood ³	B C	•	:	:	:	•	•	•	•	•	•	
Implant Devices	Tissue/Bone	A B C	•	•	•	•	•	•	•		•	•	
	Blood ³	A B C	•	•	•	•	•	•	•	•	•	•	

¹ "Tissue includes tissue fluids and subcutaneous spaces.

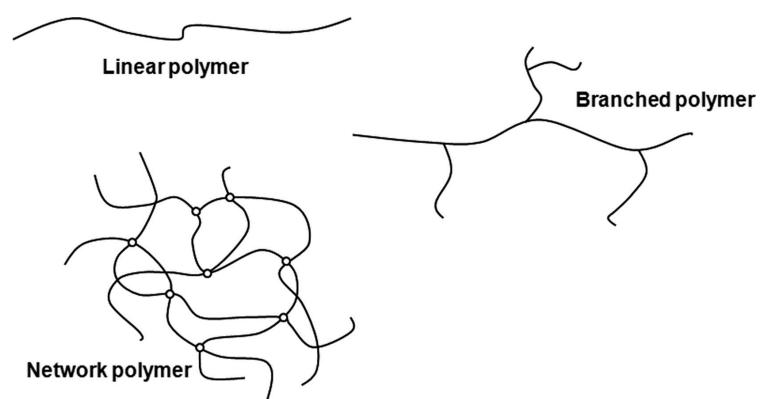
For additional information or a price quote contact sales@nelsonlabs.com

² For all devices used in extracorporial circuits.

³ Pyrogenicity/Materials Mediated should be considered.

⁴ Supplemental tests for consideration

^{■-} ISO Evaluation Tests for Consideration


⁰⁻ Additional tests which the FDA considers may be applicable

FOCUS: POLYMERS SPECIFICALLY HYDROGELS

WHY POLYMERS?

- Weaker than metal and ceramics because chains are linked by London, Van Der Waal, H-bonding and dipole-dipole interactions.
 - Less brittle than ceramics and biocompatibility can be inferred by functional groups
 - Chemical resistance (PVC)
 - Optical properties (contact lenses)
- Inert with a wide range of transition temperatures (PE and PP for food storage and refrigeration
 - Light weight
 - Sterilizable

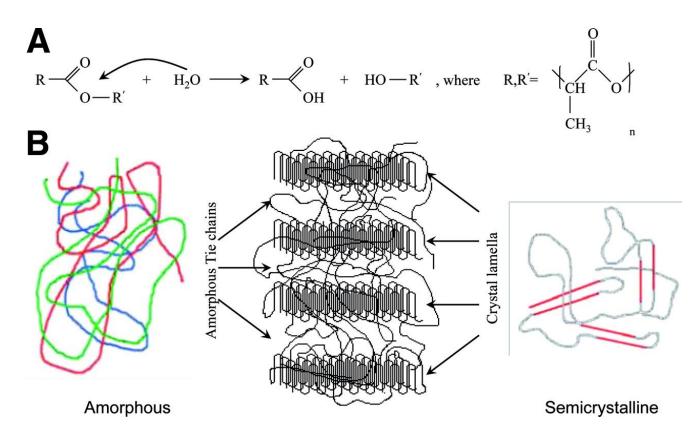
.....

Main Categories of Synthetic Polymers:

Plastics:

Thermoplastics – can be remelted (reversible phase transitions)

Ultrasonic welding: eg. PMMA, Polyamide (Nylons, PA), PLLA, Polystyrene.


Thermosetting Plastics – can not be remelted
 Strong but brittle, Polyurethanes, Silicones

• Elastomers:

Thermosets and thermoplastic
Extremely flexible (mostly thermosets)
Isoprene, Nitrile

A, Reaction pathway for hydrolytic degradation of the PLA family of polymers.
B, Schematic presentation of amorphous polymer (left), semicrystalline structure of the PLLA with crystal lamella (crystalline polylactide) interconnected by amorphous tie chains binding the lamellae together (middle), and semicrystalline polymer (right).

http://circ.ahajournals.org/content/123/7/779/F1.expansion.html

--AAAAAAAAAAAA-----

Homopolymer

----AAAABBBBBAAAA-----

Block copolymer

----AABABBBAABBAB-----

Random copolymer

B B B B B

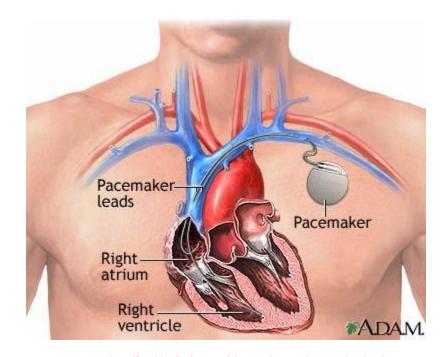
----ABABABABABA-----

Alternating copolymer

Graft copolymer

POLYMERS IN MEDICINE

http://www.techreleased.com/blog/your-life-could-depend-on-plastics/



http://bonesmart.org/joints/is-the-plastic-used-in-knee-implants-and-hip-implants-safe/

http://www.theplasticsurgerycenter.com/implants.html

http://health.allrefer.com/pictures-images/pacemaker.html

PTFE

$$\begin{array}{c|c} F & F \\ \hline - C - C - - I_n \\ \hline F & F \end{array}$$

tetrafluoroethylene

polytetrafluoroethylene

Isoprene

Polyurethane

(PE)

F F

Polytetrafluoroethylene
(PTFE)

Polypropylene (PP)

(PVC)

$$\begin{array}{c}
CH_3 \\
- Si - O \\
CH_3
\end{array}$$
Polydimethylsiloxane

(PDMS)

Poly(methyl methacrylate) (PMMA)

$$\begin{array}{c|c} H & CH_3 \\ \hline -C & C \\ D & C \\ H & C \\ \hline -C \\ C \\ C_2H_4OH \\ \end{array}$$

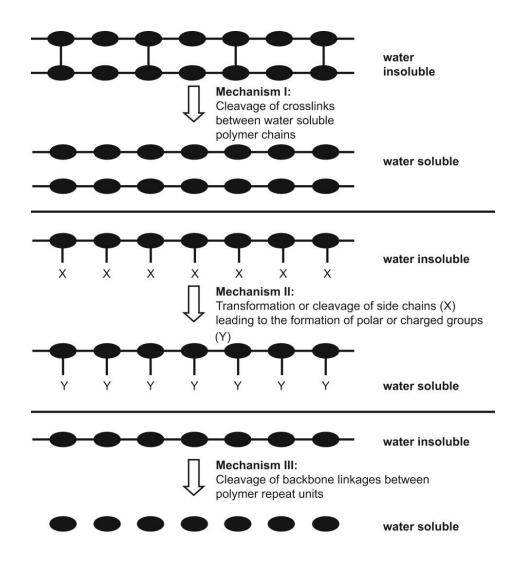
Poly(hydroxyethyl methacrylate) (PHEMA)

$$\begin{array}{c|ccccc}
H & H & O & O \\
-(-N-(CH_2)_6-N-C-(CH_2)_4-C-
\end{array}$$
And on 6.6

Figure 8.03

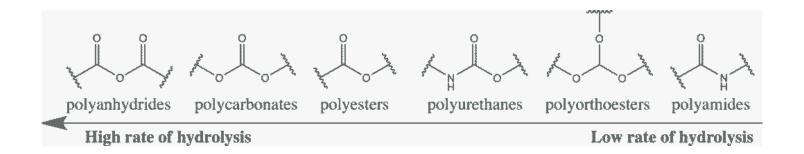
Polymer	Application
UHMWPE	Knee, hip & shoulder joints
Silicone	Finger Joints
Polylactic acid, polyglycolic acid,nylon	Sutures
Polymethyl methacrylate (PMMA)	Bone Cement, Contact Lenses
Acetal, polyethylene, polyurethane	Pacemakers
(PTFE), PVC	Blood Vessels
Hydrogels	Ophtalmology, Artificial Organs
Polydimethyl siloxane, polyurethane	Facial Prostheses

Degradation of Polymers & Hydrogels



- **Degradation** (Chemical): Classical definition is a cleavage of covalent bonds. For Bioengineers this could mean hydrolysis, oxidative/reductive, photodegradation and enzymatic mechanisms.
 - Erosion (Physical): Loss of mass Equivalent to degradation, ablation, dissolution, mechanical wear. pH and Temperature (physical conditions) are very important.
- Official definition of **biodegradation** "enzymatic hydrolysis. For example, initial degradation of PLA stents is not biodegradation it is dissolution
- **Bio-erosion** is chemical and physical:

 Physical dissolution consists of water insoluble chain becoming water soluble this could have been initiated by backbone cleavage and vice-versa.
 - **Bio-absorption** and **Bio-resorption** processes are referred to as material removed through cellular activity (i.e. phagocytosis).



ARA LINE STATE OF THE STATE OF

TARA (A)

CLASSIFICATION OF HYDROGEL-BASED DEGRADABLE MEDICAL IMPLANTS

1) **Temporary support device:** Temporary mechanical support until tissue gains it s strength Sutures [PGA, Dexon]; vascular grafts, bone fixation devices. http://www.medicaldevice-network.com/contractors/biotechnology/degradable-solutions-ag/

2) **Temporary barrier: Prevention of post-surgical adhesions** "Artificial skin" products used in burns and deep skin lesions. SINUFOAM: https://www.youtube.com/watch?v=5ZLQp6-nWJA

3) Implantable drug delivery devices/injectable polymer-drug depot system/Tissue scaffolding PLA, PGA, Alginate, liquid-crystals (liposomes)

HYDROGELS

Properties of Hydrogels

- Water insoluble 3D polymeric chain of networks.
- Swellable
- Porous
- Sterilizable
- Biocompatible

BIOMIMETIC SOFT TISSUE

Properties of Hydrogels

- One ore more highly electronegative atoms resulting in charge asymmetry and H-bonding.
- Porous and hydrophiic, water content may constitute 10%-95% of the total weight by volume.

Xerogels

- Dried Hydogels
- Usually cross-linked and optically clear.
- Slow diffusion of water through the pores and swelling enables release of trapped compounds.

- Neutral
- Anioninc
- Cationic
- Ampholytic
- Amorphous
- Semi-crystalline
- Hydrogen-bonded hydrogels

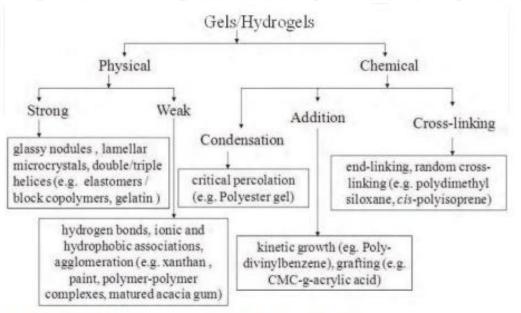


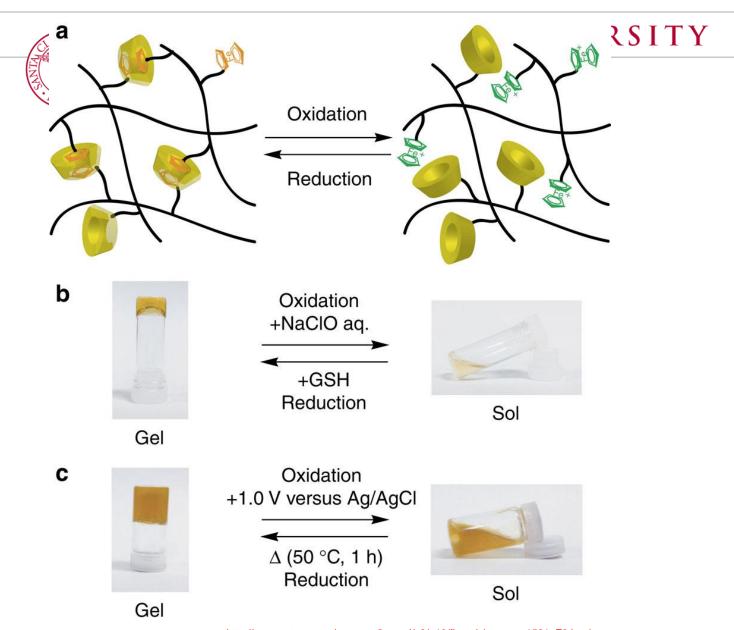
Fig. 1. Classification of gelation mechanism and relevant examples.

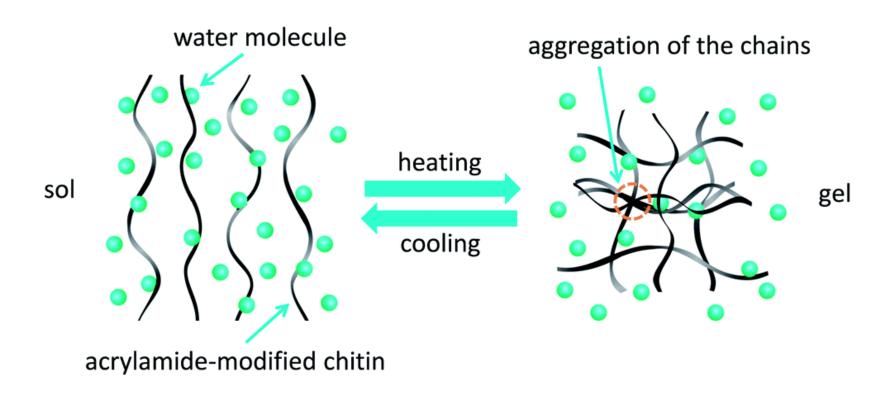
1.2 Classification of hydrogel

Hydrogels are broadly classified into two categories:

Permanent / chemical gel: they are called 'permanent' or 'chemical' gels when they are covalently cross-linked (replacing hydrogen bond by a stronger and stable covalent bonds) networks (Hennink & Nostrum, 2002). They attain an equilibrium swelling state which depends on the polymer-water interaction parameter and the crosslink density (Rosiak & Yoshii, 1999).

Reversible / physical gel: they are called 'reversible' or 'physical' gels when the networks are held together by molecular entanglements, and / or secondary forces including ionic, hydrogen bonding or hydrophobic interactions. In physically cross-linked gels, dissolution is prevented by physical interactions, which exist between different polymer chains (Hennink & Nostrum, 2002). All of these interactions are reversible, and can be disrupted by changes in physical conditions or application of stress (Rosiak & Yoshii, 1999).


Source: http://cdn.intechopen.com/pdfs-wm/17237.pdf



SMART HYDROGELS

http://www.nature.com/ncomms/journal/v2/n10/fig_tab/ncomms1521_F3.html

http://pubs.rsc.org/en/content/articlelanding/2014/tb/c4tb00067f#!divAbstract

http://www.gizmag.com/electrically-charged-hydrogel-soft-robotics/28576/ SOFT ROBOTICS and IONOPRINTING

BIOFABRICATION

PHOTOLITHOGRAPHY JOVE

3D-Bioprinting ORGANONOVO

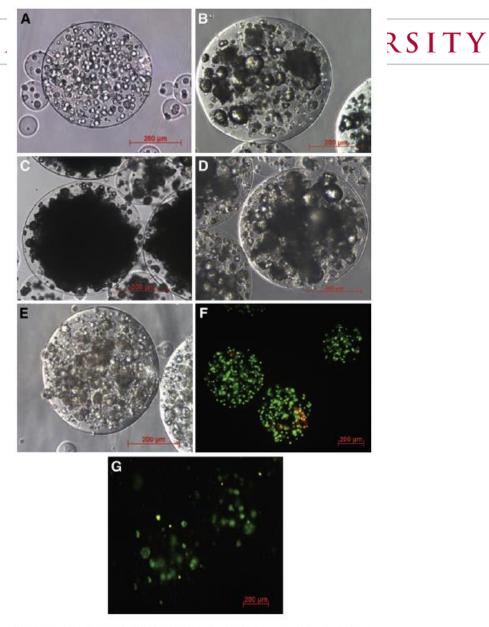


Fig. 4. Encapsulated mESC retrieved from the peritoneal cavity of BALB/c mice were encapsulated as single cells on day 0 (A). Capsules retrieved at one month (B), two months (C), and three months (D) have formed aggregates in contrast to being single cells prior to transplantation. The same occurred during culture in vitro after one week (E). Retrieved capsules were also assessed for viability using fluorescent microscopy. Viable cells stain green (6-CFDA) and dying cells red (PI) prior to transplantation (F) and two months posttransplantation (G). Reproduced, with permission from [91] @ 2006 Lippincott Williams and Wilkins

MWCO of different Artificial Cell Membranes

				Stokes Radius
Membrane Type	Application	Diffusing Molecule	MW	(nm)
Liposomes	Drug Delivery	Oxygen	16	0.2
	Blood Subtitutes	Carbon Dioxide	44	0.3
		Urea	60	0.3
	Inborn Errors for			
Lipid-Complexed	Metabolism	Creatinine	113	0.4
Polymer	Drug Delivery	Phenylalanine	147	0.4
		Glucose	180	0.4
Cellulose Nitrate	Hemoperfusion	Beta-endorphin	3,438	1.1
and Polyamide		Insulin	5733	1.3
		IL-beta	17000	1.9
Alginate-Polylysine-				
Alginate	Regenerative Medicine	Super Oxide Dismutase	31,187	2.3
(1.5%-2% alginate-based)	Oral Delivery of Genetically	TNF	51000	2.7
	Engineered Bacteria	Albumin	66248	3.0
Hollow Fiber	Liver Support System	Transferrin	81,000	3.2
Filter		Ig-D	160,000	4.0
		Ig-E	190,000	4.2

SOCIETAL MOTIVATION

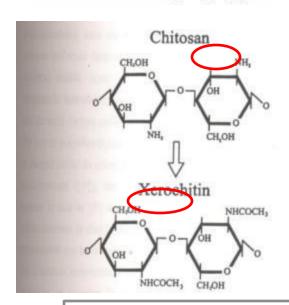
- Prevalence of Coronary Heart Disease (2010): 11.8% of the American population (http://www.cdc.gov/nchs/fastats/heart.htm).
- Prevalence of Chronic Kidney Disease (2010): 10% of the American population (kidney.niddk.nih.gov/kudiseases/pubs/kustats/)
- The World Health Organization in its annual report states that 10 percent of the deaths in the low-income countries and about 15 percent of the deaths in the high income countries are due to injuries and blood loss. The current survey evaluated the wound management market in just United States alone at \$7.4 billion in 2009, almost three times its value in 2002

(http://www.idataresearch.net/idata/report_view.php?ReportID=822)

SUSTAINABLE WATER-BASED CHEMISTRY

BASE MATERIAL: ALGINATE

An anionic copolymer of various MWs (degrees of polymerization), comprised of β-Dmannuronic acid (M-block) and $(1\rightarrow 4)$ -linked α-L-guluronic acid (G-block) units arranged in non-regular blockwise pattern of varying proportion of GG, MG and MM blocks.


POLYCATIONS

$$H_{HN} \longrightarrow CO_{n} OH$$

$$n = 25 \sim 30$$

• For polylysine (polycationic) molecular weight determination (intrinsic viscosity) is important because of the polyelectrolyte effect.

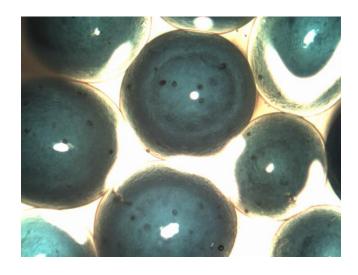
OR

- (Xero)-Chitin confers rigidity to the exoskeleton of all Arthropods.
- Chitin and its derivative are considered as stiff chains.
- Chitosan, a cationic polyelectrolyte is commercially available and characterized by its degree of de-acetylation.

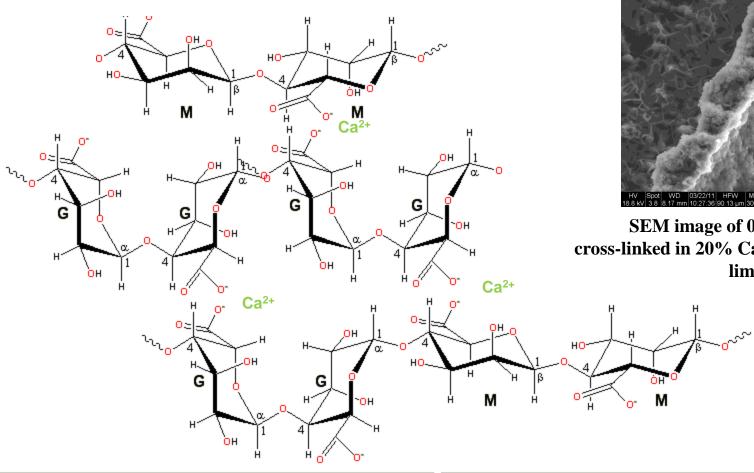
$$[\boldsymbol{\eta}] = \lim_{c \to 0} \frac{\boldsymbol{\eta}_{sp}}{c} \equiv \lim_{c \to 0} c^{-1} \ln \boldsymbol{\eta}_{rel}$$
$$[\boldsymbol{\eta}] = KM^{a}$$

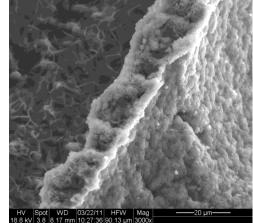
d.p≈15

ALGINATE the Miracle Bio Polymer


- Economical (\$0.44/g)
- Biocompatible
- Biodegradable
- Viscoelastic once cross-linked
- Sterilizable

Bio-Printing and Alginate Structure Fabrication Involves Cross-Linking

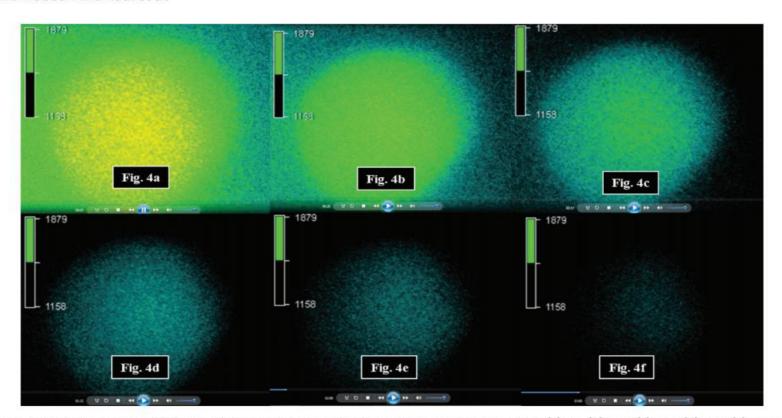
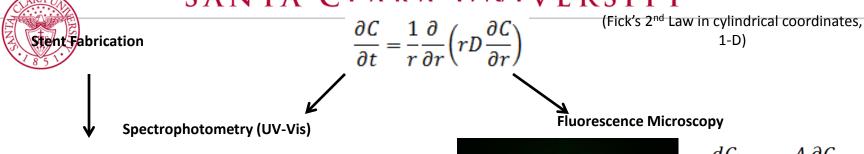
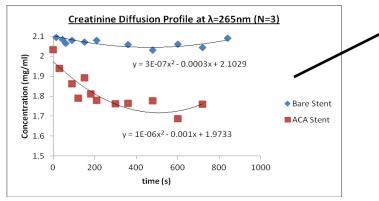


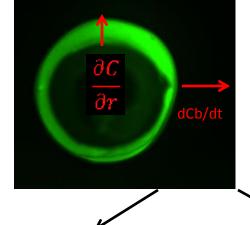


CROSS-LINKING ALGINATE USING **DIVALENT IONS**

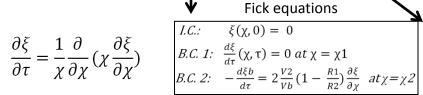
SEM image of 0.5% Alginate cross-linked in 20% CaCl₂ membrane/co limit

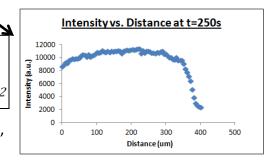
4 M. Mobed-Miremadi et al.

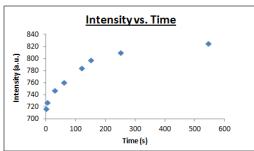





Figure 4. Snapshots of outward diffusion of the FITC 4 kDa marker from microcapsules captured at (a) 5 s, (b) 28 s, (c) 57 s, (d) 92 s, (e) 120 s, and (f) 180 s. Shown on each image is the pseudo-color intensity scale.

SANTA CIARA IINIVERSITY



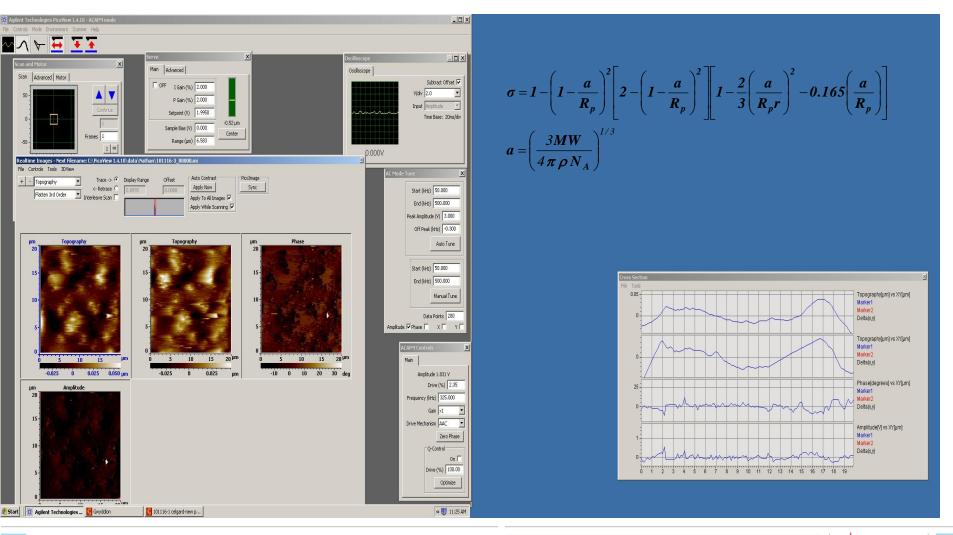

 $\frac{dC_{\rm b}}{dt} = D \frac{A}{V} \frac{\partial C}{\partial r}$ (Fick's 1st Law)

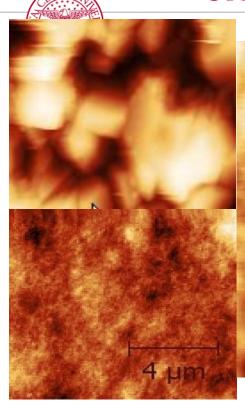

Hollow alginate stents mixed with FITC-dextrans (4K, 70K, and 500K).

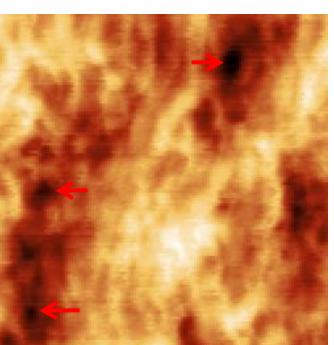
Non-dimensionalized

Diffusion coefficients across alginate membranes were determined in Matlab for creatinine, PEG and albumin (Stokes' radii ranging from 0.36-3.5 nm).

<u>Diffusion Modeling of Bioresorbable Alginate Stents Using Fick's Laws</u>





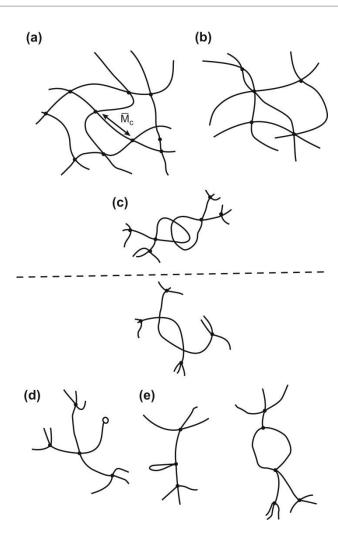

How Do Membrane Pore Size and Porosity Change as a Function Alginate Concentration?

Surface Characterization of Semi-Permeable Alginate Stent

Area: 0.1 micron square 0.5% Alginate 5-12 nm

Alginate AFM imaging was done using Alginate 5500 AFM under contact mode. the Z range, and 0.05 A in Z sensitivity. The X and Y resolution is estimated 20-30 nm. Gwyddion was used to transpose our AFM images to 3D for quantification.

		Alginate Pore Sizes Observed with AFM														
		Alginate Concentration, Cross-linked with 1.5% CaCl ₂														
							Uncoated		Coated		Dialysis					
		0.50	0.50%		1.00%		1.50%		2.00%		0.5%LV		0.5% LV		Membrane	
		Δх	Δy	Δх	Δу	Δх	Δy	Δх	Δу	Δх	Δу	Δх	Δy	Δх	Δу	
Po	ore size		4.7													
	range	6.3 -	-	3.7	4 -	4.8	4.2 -	5.5	5.5	6.4	2.9 -	5.0 -	4.6 -			
	(nm)	12.9	12.3	- 5.6	6.2	- 6.4	5	- 6.0	- 7.5	- 7.9	12	14.4	5.6	2.7	7.00	
l n	Median					·										
Δх	and Δy	8.0	0	0 4.20		5.00		5.75		7.05		5.70		4.85		
A	verage															
Δх	and Δy	8.4	0	4.	74	5.	5.19 6.13		13	7.22		7.00		4.85		



HYDROGEL THEORY AND DEMO

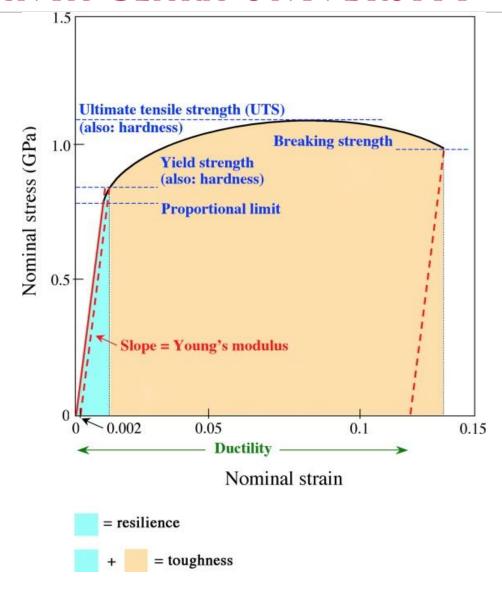
Figure 20.01

THERMODYMICS OF SWELLING

Hydrogel	D	D	0	1/1 /ml/mal)	w2 o		(3,)	Ma	PDI	N/I	Ma	
- nyurogei	D _{1 (mm)}	D _{2 (mm)}	Q	V1 (ml/mol)	v2,s	χ	ν (cm³/g)			M _w	Mc	ρ
Α	1	4	64	18	0.015625	0.154	0.95	1000000	2	2000000	48335	2.18E-05
В	1	1.5	3.375	18	0.296296296	0.154	0.87	200000	1.4	280000	257	4.47E-03
C	1	3	27	18	0.037037037	0.154	0.54	3000000	1	3000000	21028	8.81E-05
D	1	2	8	18	0.125	0.154	0.45	40000	1.2	48000	2500	8.89E-04
	PDI=MW/	/Mn										
	v2,s	volume of	funswolle	n/volume of s	wollen							
	Q	1/V2,s										
	Mc	Interchain	MW (use	the formula in	n the book)							
	ρ	cross-den	sity (use tl	he formula in t	the book)							

$$V_{2,s} = \frac{Volume \ of \ Polymer}{Volume \ of \ gel} = \frac{V_p}{V_{gel}} = 1/Q$$

 $V_{2,s}$ polymer volume fraction of gel


Q deg ree of swelling

Q is related to the mechanical properties of the Hydrogel

ARA VI

SANTA CLARA UNIVERSITY

