

Computing & Software Engineering

Leyna Cotran, Ph.D.

Lecturer

Department of Computer engineering

Santa Clara University

Today's Agenda

- About Me
- Part I What is Computing?
- Part 2 Computing at SCU
- Part 3 Software Engineering
- Wrap Up

About You

About Me

Academic Background

- BS in Computer Science from Purdue University (2002)
- MS in Software Engineering from SCU (2005)
- Ph.D. in Information & Computer Science from UC Irvine (2013)
- Joined SCU in 2011 as a department lecturer

Industry Background

- Lockheed Martin (2002-2015)
 - Satellite Software Programmer 4 years
 - Flight Software Liaison 3 years
 - Requirements Lead (Navy Reentry Systems) 4 years
 - Systems Engineer Lead (Missile Systems) 2 years
- ARMUS Corp (present)
 - Requirements & Process Manager
 - Customer Liaison for engineering requirements
 - Corporate process improvement

Part 1 What is Computing?

What is Computing to you?

What is Computing?

- Analysis, design and development of computer systems
- It is not just about programming or cool gadgets
- It teaches you how to think more methodically
- Computing is about how to solve problems more effectively

Let's build a table...

Computing includes...

Computing includes a variety of fields:

- Mathematics
- Computer science
- Computer engineering
- Information science
- Electrical engineering

Questions you might be thinking

What is a computer professional?

Can I be the next Steve Jobs?

What will my day to day life be like?

Will I have to sit in front of a computer all day?

What kind of people will I work with?

Will I have to become a nerd too?

Will it be too hard?

Will I enjoy this career?

Others?

Some answers to these questions

And more

FUN, COOL, and EXCITING

- Cutting edge projects
- Exciting and talented people
- All over the world, in every sector
- Significant impact on society and our planet

My thoughts on working with CEs

- Creative
- Optimizing and refining better solutions
- Intelligent
- Continuously thinking "outside the box"

Why Study Computing?

Intellectually interesting

- Logical reasoning and mathematical thinking
- Finding solutions

Computing supports and links to most other areas of study

- Computing and neuroscientists the brain
- Computing and Biologists Bioinformatics
- Computing and Meteorologists weather prediction

Why Study Computing?

Computing develops life-long learning skills ... "Change is the only constant"

- Continuous learning − it never ends even after college is over ☺
- Exponential growth makes many predictions look foolish

False Predictions

- "I think there is a world market for maybe five computers"
- -- Thomas J. Watson, founder and Chairman of IBM, 1943.
- "Computers in the future may weigh no more than 1.5 tons"
- Popular Science, 1949
- "640K ought to be enough for anybody"
- Bill Gates, 1981.

Biggest Advantages of Computing

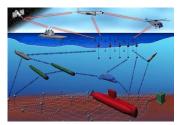
Computing teaches problem solving

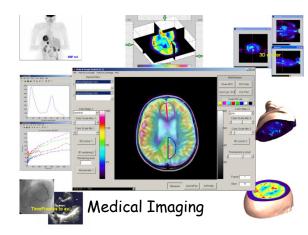
- Decomposition of a problem, abstraction, reusable concepts, modular design
- You can apply these skills to anything you do in life
- There are always new methods being investigated never a dull moment

Computing builds team work and leadership skills

- Plan, organize, control, lead complex projects
- Learn to deal with mix of talents
- Estimate and deal with risk

Future Applications


Self-driving car


Internet of Things

Personalized Healthcare

Transforming the nation's defense

True Story

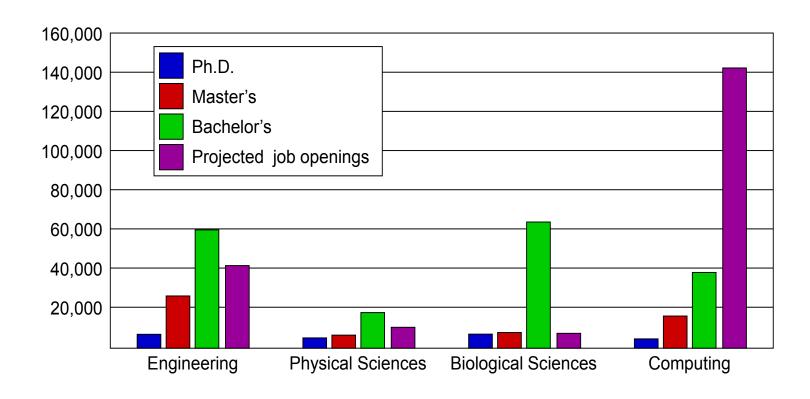
Computer Science Vs Computer Engineering

Computer Science

- Often more mathematical
- Computability theory
- Algorithmic complexity
- Data Structures
- Programming

Computer Engineering

- Often more hardware-oriented
- Image and signal processing
- Computer graphic cards / processing



Creativity

Computing is the only tech field in which you can create a product from scratch and commercialize it independently

Degree Production vs Job Openings

Sources: Adapted from a presentation by John Sargent, Senior Policy Analyst, Department of Commerce, at the CRA Computing Research Summit. http://www.cra.org/govaffairs/content.php?cid=22.

Part 2 Computing at SCU

Computing Degrees at SCU

Undergraduate degrees (BS)

- Computer science and engineering (CSE)
- Web design and engineering (WDE)
- Mathematics and computer science

Graduate degrees (MS & Ph.D.)

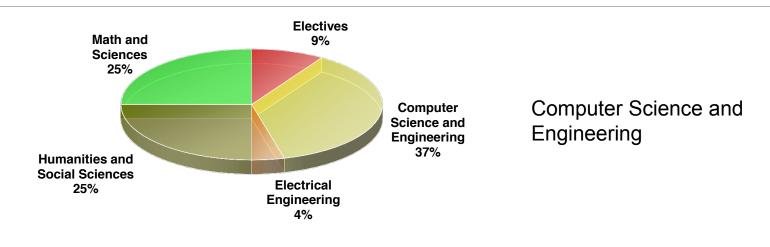
- Computer science and engineering (CSE)
- Software Engineering

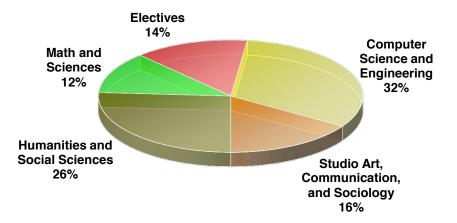
Undergraduate CSE

- Combination of computer science and computer engineering
- Focuses on theoretical and practical aspects of computing
- Design and construction of both hardware and software systems
- Computer networks, operating systems, compilers, software engineering, embedded programming, Web programming, robotics, 3D animation

Undergraduate WSE

- New major started in 2009
 - One of the first such programs in the country
- Combines computing with other disciplines:
 - Graphic arts
 - Communication
 - Sociology
- What will these specialized graduates do?
- Improve Web infrastructure
- Develop interactive, multimedia content
- Analyze the huge amount of information on the Web (Big data)
- Understand the societal impact of the Web




Video

https://www.ted.com/talks/
margaret_gould_stewart_how_giant_websites_design_for_you_and_a_billion_others_too?
language=en

Coursework

Web Design and Engineering

Part 3 What is Software Engineering?

Let's suppose that...

You were asked to design the next big app to be a direct competitor to Facebook. Where would you start in designing this app?

Why SW Engineering is important

- Visibility in to the computing products we build
- Everything in life has software
- The role of software is specifically to meet the needs of human beings

Everything we do revolves around software!

Video

https://www.youtube.com/watch?v=700bGFLDPtw

Software Engineering is an important engineering discipline

Large basis in theory

Mathematical basis, algorithms, formal languages and modeling

Large basis in practice

 The birth of architecture, design, and requirements largely resulted from a collective of common practices

Many techniques exist to:

- Engineer software requirements
- Engineer software architecture models
- Engineer software design models
- Engineer software testing using virtual simulation approaches

Questions?